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The Value of Proton MR Spectroscopy in Pediatric Metabolic
Brain Disease

Robert A. Zimmerman and Zhiyue J. Wang, the Children’s Hospital of Philadelphia (Pa)

What is the future for in vivo proton MR spectroscopy in
the understanding of pediatric metabolic diseases? To gain
a perspective, it is necessary to look back at what has
happened, examine the present accomplishments, and try
to understand what problems cloud the future.

The invention of magnetic resonance (MR) imaging
followed by more than a quarter century the first observa-
tions of proton MR in condensed matter. However, the
value of MR spectroscopy as an analytic tool for chemists
was appreciated soon after the discovery of MR, when it
was found that different molecular groups had different
chemical shifts (1). Despite this advantage of MR spec-
troscopy, its clinical application in the study of metabolism

in diseases has evolved at a much slower pace than that of
MR imaging.

The successful application of proton MR spectroscopy
to pediatric metabolic diseases has been around for only
the past decade. With the successful implementation of
magnetic field shimming, pulse sequence design, and wa-
ter suppression on 1.5-T magnets, spectroscopy could be
performed in a reasonable time frame of 10 to 20 minutes
or more, first from single voxels and then, with the devel-
opment of chemical-shift imaging spectroscopy and the
use of longer acquisition times, from multiple voxels,
within a single section and then within multiple sections.
Initially, echo times (TEs) were long (eg, 135 and 270

Address reprint requests to Robert A. Zimmerman, MD, Department of Radiology, the Children’s Hospital of Philadelphia, 34th Street and Civic Center
Boulevard, Philadelphia, PA 19104.

Index terms: Magnetic resonance, spectroscopy; Children, diseases; Special reports

AJNR 18:1872–1879, Nov 1997 0195-6108/97/1810–1872 © American Society of Neuroradiology

1872 SOM AJNR: 18, November 1997



milliseconds), but with improvements in magnetic field
gradient coils, TEs of 10 to 40 have become common-
place. The shorter TEs enable more metabolites to be
identified and potentially quantitated, either by ratio to one
another or by assumptions made relative to quantities of
other metabolites or to water or to control solutions. Long
TEs allow more precise estimation of lactate without su-
perimposed fat peaks, whereas shorter TEs allow estima-
tion of myo-inositol, lipids, and, often with less reliability,
glutamine, g-aminobutyrate (GABA), and glutamate. Both
techniques have advantages and disadvantages. For in-
stance, a short-TE sequence minimizes the signal loss and
distortion to the spectra from T2 and spin-coupling effects,
thereby greatly improving the detectability of inositol, glu-
tamine, glutamate, and other short T2 components and
coupled spin systems. However, there are substantial
amounts of lipid signal present between 1 and 2 ppm and
macromolecules contributing to the baseline. Because
thespectrum is crowded and the baseline not well defined,
short-TE spectra are not as easily managed as long-TE
spectra.

Although the hurdles faced in obtaining and under-
standing the data remain enormous, they are not uncon-
querable. First, the pediatric patient that is often of most
interest is young and therefore not cooperative. Metabolic
brain disease, an inborn error of metabolism that interferes
with neurologic function, frequently, but not always, rep-
resents a serious medical problem, and, in many in-
stances, the patient can be medically unstable. Imaging
these patients often requires sedation and/or medical sup-
port, plus time out of the intensive care unit. It requires a
more prolonged use of the MR imager for tests that usually
are not reimbursable (in the United States, proton spec-
troscopy is only reimbursed in Ohio and California) and
takes potential time away from paying patients, a practice
for which hospitals often have little tolerance. In addition,
the inborn errors of metabolism, are, for the most part, rare
conditions, even at subspecialty tertiary pediatric centers.
Thus, for instance, the prevalence of maple syrup urine
disease (MSUD) in the general population is given as 1 in
290 000 (2), so accumulating sufficient numbers of pa-
tients studied by a standard spectroscopic technique pre-
sents a challenge; that is, in order to have statistically
significant numbers.

Finally, we are dealing with complex diseases, ones that
are for the most part still being unraveled by specialists in
many facets of disease: molecular geneticists, metabolic
disease specialists, pediatricians, pathologists, neurolo-
gists, and so on. These researchers have only some insight
into the complexity of the issues, and many issues they do
not grasp at all. For instance, the metabolic pathways and
the substrates produced within the living, intact, in vivo
human brain are still incompletely understood, and it is
these metabolites that we, as neuroradiologists and phys-
icists doing proton spectroscopy, are seeking to compre-
hend. One can imagine the frustration of being confronted
with a child with an as yet unknown brain disorder in whom
proton spectroscopy reveals yet another peak for a me-
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tabolite that is not normally present and that we are not
even able to assign a name to.

Technical Aspects of Brain Proton
Spectroscopy

Metabolites Detected and Their Significance

On commercial clinical MR imagers, nuclei accessible
for MR spectroscopic studies are phosphorus-31 and pro-
ton. In vivo MR spectroscopy with carbon-13 and nitro-
gen-15 provides valuable information, and these studies
are also actively pursued in research investigations. Of all
these, proton offers both the highest sensitivity and the
richest information (3), and it is the most developed for
use in clinical examinations. Proton MR spectroscopy al-
lows detection of a variety of metabolites, including N-
acetylaspartate (NAA), total creatine and phosphocre-
atine (Cr), choline-containing compounds (Cho), myo-
inositol, scyllo-inositol, glutamine, glutamate, glucose,
taurine, GABA, alanine, and lactate. Some metabolites do
not appear under normal conditions, but become detect-
able when they are abnormally prominent in disease
states. The Table summarizes the role of various metabo-
lites and the significance of abnormal changes in them.

Localization and Quantitation Techniques

Both single-voxel techniques—stimulated-echo acqui-
sition mode (STEAM) (4) and point-resolved spectros-
copy (PRESS) (5) (P. A. Bottomley, “Selective Volume
Method for Performing Localized NMR Spectroscopy,” US
patent 4 480 228 1984)—and spectroscopic imaging
techniques (6–8) are commonly used in clinical MR spec-
troscopic studies. Single-voxel studies are easier to per-
form and have demonstrated reliable quantitation. The
absolute signal intensity can be calibrated with an external
standard positioned inside the coil with the patient (9), or
with a phantom after the patient study is completed (10),
or by using tissue water as an internal reference (11).

Although brain involvement in metabolic diseases is
often diffuse, the distribution of metabolites in the brain is
not uniform, and the pattern of distribution of abnormal
metabolites may vary. Chemical-shift imaging, which is
used to map metabolite distribution in the brain, can be
performed in one, two, or three spatial dimensions. Two-
dimensional chemical-shift imaging sequences with short
and long TEs are currently available with most commercial
MR imagers. Although chemical-shift imaging is capable
of absolute quantitation (12), this capability has not been
fully realized with routine clinical studies. However, this
situation may change in the near future. The internal ref-
erence calibration of chemical-shift imaging is not as easy
to accomplish as in single-voxel studies. The acquisition of
an internal reference signal for each voxel is possible, but
requires another chemical-shift imaging acquisition, which
is time-consuming. An in vivo chemical-shift imaging sig-
nal can also be calibrated by using a phantom before or
after the patient study. Before shielded gradient coils were
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used in MR imagers, the variation of signal from chemical-
shift imaging voxels on a uniform phantom were on the
order of 10%. Therefore, the apparent signal variation
across the section could be artifactual. With the use of
shielded gradients, signal variation across a transverse
section on a phantom is much smaller; calibration of
chemical-shift imaging signal using a phantom has be-
come a good approach (12). One problem is the nonideal
point spread function: a nominal voxel also contains con-
tributions from outside tissue (13). Although one needs to
be careful in using chemical-shift imaging to obtain quan-
titative measurements because of the potential for spectral
leakage, this problem does not have serious consequence
for most clinical applications, in which the important issue
is often whether metabolite levels have changed markedly
over volumes larger than the nominal voxel size. A method
for eliminating the long-range signal contamination is to
apply k-space filtering, which is a feature provided with
commercial MR imaging units. However, with this tech-
nique, the effective voxel size (volume that contributes to
the spectrum of one nominal voxel) is drastically in-
creased. To reduce the size of effective voxels, many in-
vestigators perform chemical-shift imaging using 32 3 32
phase-encoding steps to decrease the nominal voxel size.
Because of the long minimal measuring time, it is difficult
to use a long repetition time (TR) to acquire signal free of
T1 saturation, especially for sedated children.

To cover a three-dimensional volume, several methods
are now available to acquire chemical-shift images in mul-
tiple sections, including 3-D phase-encoding chemical-
shift imaging (14), sequential multisection chemical-shift
imaging (15), and a 1-D Hadamard spectroscopic imaging
(HSI)/2-D chemical-shift imaging hybrid (16). Each
method has advantages and disadvantages. Three-dimen-
sional chemical-shift imaging is a simultaneous data ac-
quisition technique. The position of the chemical-shift im-
aging grid can be adjusted in all three spatial directions in
postprocessing. However, the severity of the spectral leak-
age increases with the number of dimensions in chemical-
shift imaging. K-space filtering may be used in all three
directions and the effective voxel volume is much larger
than the nominal voxel. The multiple-section chemical-
shift imaging technique provides reliable spectral isolation
between sections. In this technique, the data acquisition of
different sections are interleaved to improve time effi-
ciency. In one TR, data from one phase-encode sequence
are acquired for all sections sequentially. Therefore, a
longer TR is needed to acquire data for multiple sections.
For example, to obtain four sections, the TR is more than
four times the spectral acquisition window. Although four
sections are commonly used now, it is possible to extend
the method to more sections. When absolute quantitation
and spectra free of T1 saturation are desirable, and a long
TR is needed anyway, this method is advantageous. The
HSI-chemical-shift imaging hybrid of 3-D spectroscopy is
a simultaneous acquisition technique with optimal effi-
ciency, and signal leakage between adjacent sections is
small. Hadamard encoding may be thought of as an ex-
tension of the single-voxel localization method of imaging
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selected in vivo spectroscopy (ISIS) (17), which is a sub-
traction technique. Therefore, it is important that the pa-
tient does not move during the acquisition. In well-sedated
children, good results can be obtained in most cases. More
recently, chemical-shift imaging measurements have been
obtained with the use of echo-planar imaging (18). Chem-
ical-shift imaging using echo-planar techniques can be
done in one, two, or three dimensions. The advantage of
this method is that the time needed to acquire a complete
data set can be reduced to 1/N, where N is the number of
phase-encoding steps in one spatial direction. For exam-
ple, to obtain a 16 3 16 2-D chemical-shift image, the
minimal measuring time is 1/16 that required for a con-
ventional 2-D phase-encoding chemical-shift image. Be-
cause of the short minimal measuring time, this technique
has the advantage that planned data acquisition may be
interrupted before it has finished, with the data already
accumulated still being useful, provided that the signal-to-
noise ratio is acceptable.

Choice of Echo Time

For short-TE spectra, the metabolite levels can be
quantified with the linear combination model method (19).
In this method, solution spectra for each metabolite are
measured and used as the base function. The measured
spectrum is reconstructed using the model functions by a
least-squares curve-fitting procedure. The baseline is de-
termined by a smoothness criterion. This procedure gives
satisfactory results in most cases, as evidenced by the low
residual small noise level of the difference between the in
vivo data and the fit. To obtain reliable metabolite levels, it
is crucial to acquire spectra with good shimming and good
water suppression. Although a value is returned for all
metabolites, some metabolites are determined with higher
precision than others. The uncertainty of metabolite levels
determined by least-squares curve fitting due to random
noise in the spectrum can be calculated (20, 21). For
spectra with multiple peaks, overlapping between peaks
increases the uncertainty of peak area measurement (Z.
Wang, J. Haselgrove, “Determination of Errors in MR
Spectroscopy Measurement Caused by Random Noise,”
in: Proceedings of the Society of Magnetic Resonance 3rd
Meeting and the European Society for Magnetic Resonance
in Medicine and Biology 12th Annual Meeting 1995;3:
1949). The metabolites that can be determined most reli-
ably in short-TE spectra are NAA, total Cr, Cho, and myo-
inositol (S. W. Provencher, W. Hanicke, T. Michaeis,
“Automated Quantitation of Localized 1H MR Spectra In
Vivo: Capabilities and Limitations,” in: Proceedings of the
Society of Magnetic Resonance 3rd Meeting and the Euro-
pean Society for Magnetic Resonance in Medicine and
Biology 12th Annual Meeting 1995;3:1952). The preci-
sion with which glutamine, glutamate, and GABA can be
determined is not as good, because they have broad res-
onance line shapes and overlap with one another. In many
cases, it is advantageous to acquire spectra with long TEs,
if the major interest is NAA, Cho, and Cr. Although the
signal intensity is decreased, the precision of these peaks
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Major metabolites observed in the brain

Metabolite Role Clinical Significance

N-acetylaspartate (NAA) Present in neuronal cell and synthesized in
mitochondria. Physiological role is poorly
understood. It is also an osmolite.

NAA is a neuronal marker. Neuronal damage and cell
death cause decrease in NAA. Overall, NAA is the
most sensitive metabolite to central nervous system
disorders. Sometimes a small decrease in NAA is
reversible, and may not indicate permanent cell
damage. NAA is increased in Canavan disease.

Total creatine and phosphocreatine
(Cr)

Involved in energy metabolism of cells. Level of Cr is relatively stable in metabolic diseases;
however, Cr may decrease, and it is not a reliable
internal reference.

Choline-containing compound
(Cho)

Membrane component and an osmolite. Cho is sensitive to myelin disorders and is often
decreased; however, it may be increased when cell
membrane turnover is increased, usually in the early
or acute stage of a demyelinating disease. Cho is
increased in malignant brain tumors.

Myo-inositol Present only in glial cells. It is a hormone
messenger and osmolite.

Myo-inositol is a glial marker. It is sensitive to
osmolarity and reflects the serum sodium level. Myo-
inositol is increased in hypernatremia and decreased
in hyponatremia. Its level may change in white matter
diseases.

Glutamate and glutamine Glutamate is an excitatory neurotransmitter,
glutamine is involved in the recycle of
glutamate

Glutamine is increased in hepatic encephalopathy. Total
glutamate and glutamine are increased in human
immunodeficiency virus and other viral infections.

Glucose Fuel for brain cells Glucose level is low under normal conditions. Elevation
of glucose may be observed in diabetics.

g-aminobutyrate (GABA) Inhibitory neurotransmitter Higher GABA as a result of medication helps to
suppress seizures.

Taurine Osmolite and bile acid Taurine appears to be important in neonates.
Lactate Product of anaerobic glucose metabolism. Lactate elevation is found in hypoxia, stroke, and

mitochondria diseases. Lactate elevation may be
found in other disorders, too, but the reasons for this
are not fully understood.
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may even improve owing to a lack of interference from
other metabolites and a well-defined baseline at long TEs
(Provencher et al, “Automated...”). The area of the peak
can also be calibrated, but the peak areas are subject to T1
and T2 effects. Recently, the PRESS technique was com-
bined with the Carr-Purcell-Meiboom-Gill sequence to
eliminate effects of J coupling at long TEs (T. Thiel, O.
Speck, J. Hennig, “Improved Sensitivity to Overlapping
Multiple Signals in In Vivo Proton Spectroscopy Using a
Multiecho Volume Selective (CPRESS) Experiment,” in:
Proceedings of the International Society for Magnetic Res-
onance in Medicine Fifth Scientific Meeting and Exhibition
1997:242). The spectra are similar in appearance to the
short-TE spectra, but the macromolecular contribution is
much smaller.

Editing Techniques and Correlation Spectroscopy

Proton spectra contain rich information. However, be-
cause of overlap between the peaks, reliable detection of
interesting metabolites, such as glutamine, glutamate, and
GABA, is difficult. Even lactate signal can be contaminated
by lipids. Taking advantage of a J coupling (22) between
protons in the same molecule, specially designed “editing”
pulse sequences can be implemented to selectively detect a
metabolite. Most editing sequences rely on the generation
and manipulation of double quantum or zero quantum co-
herence, longitudinal spin order, or phase modulation caused
by J coupling. Long TEs are needed to generate the multiple
quantum coherence and spin orders. For an interaction with
strength J to take full effect, a time on the order of 1/J is
needed. For example, the J coupling strength between CH
and CH3 protons in lactate is approximately 7 Hz (23), and
all lactate editing techniques use a TE of 135 to 144, inde-
pendent of B0 field strength and regardless of whether it is
based on zero quantum, double quantum, and so on. The
question of lactate editing has been studied by a number of
investigators, and many articles have been published on this
subject. Editing sequences for detection of GABA (24), glu-
tamine, and glutamate are also being developed (25). In
many cases, the editing procedure introduces significant sig-
nal loss, as a combined effect of the long TE and intrinsic loss
due to editing. Because of the high specificity of these tech-
niques, they have considerable clinical potential in the diag-
nosis and treatment monitoring of metabolic diseases. How-
ever, their application to clinical studies is still at a very early
stage. They require additional time to perform after the basic
MR spectroscopic study has been obtained, and these se-
quences are not currently provided by commercial manufac-
turers.



Another frequent problem of proton spectroscopy is the
assignment of unknown peaks. Although peak assignment
can sometimes be made by using information based on
clinical diagnosis and other clues, it is desirable to make
an unambiguous peak assignment on the basis of MR
spectroscopy alone. This is difficult with a 1-D spectrum.
Two-dimensional correlation spectroscopy is a promising
technique for solving this problem. It has routinely been
used by chemists to unravel spectra of complicated mol-
ecules, revealing which peaks in the spectrum belong to
the same molecule by the presence of cross peaks arising
from J coupling, which facilitate peak assignment. Initial
results of the technique in the in vivo human brain have
been demonstrated (26, 27). Its difficulty comes from the
short T2 of the in vivo lines, and, as a consequence, the
signal is weak, requiring long examination times. How-
ever, with improvements in the technique and in signal
detection sensitivity, by going to a higher B0 field and by
the use of phased-array coils, such studies will become
possible and thereby increase our understanding of certain
metabolic diseases.

Clinical Applications of Proton Spectroscopy
to Metabolic Diseases

A relatively simplistic system for classifying metabolic
disorders affecting the brain, both gray and white matter, is
used in looking at the existing literature on pediatric met-
abolic diseases of the central nervous system. This clas-
sification includes peroxisomal, lysosomal, mitochondrial,
aminoacidopathic, and primary white matter disorders.

Peroxisomal Disorders

Peroxisomal disorders include X-linked adrenoleu-
kodystrophy (ALD), neonatal ALD, and Zellweger syn-
drome. Of these, there is a small body of literature on ALD,
which includes two series, that by Tzika et al (28), with 11
patients, and that by Kruse et al (29), with 25 patients.
ALD has several presentations: 1) the severe, cerebral
form of child ALD (cALD), which occurs most often be-
tween the ages of 4 and 8 years, leads to a rapid vegetative
state, and accounts for 50% of ALD patients (30); 2)
adrenomyeloneuropathy (AMN), which occurs in young
adults, represents 25% of ALD patients, and involves the
spinal cord and peripheral nerves (31); 3) ALD in which
there is adrenal involvement or in which patients are
asymptomatic, accounting for 20% of ALD patients; and 4)
adolescent or adult cerebral forms (aALD), which include
8% of ALD patients. In addition, disabilities similar to AMN
develop in 20% of women who are heterozygous for ALD
(32).

Kruse et al (29) used multisection proton MR spectros-
copy to study three patients with severe cALD or ALD, five
patients with AMN, 12 patients with no neurologic deficits,
and five women with the heterozygote and disabilities sim-
ilar to those that accompany AMN. Abnormalities included
decreased NAA, increased Cho, and intermittently ele-
vated lactate. Five patients with normal MR imaging stud-

1876 ZIMMERMAN
ies had abnormal MR spectroscopic findings; and in eight
patients with abnormal MR imaging studies, the MR spec-
troscopic abnormalities were judged as more severe than
the MR imaging abnormality.

Tzika et al (28) studied 11 patients, seven with cALD
and four who were asymptomatic. MR spectroscopy in six
patients with abnormal MR imaging findings showed a
decrease of 65% in NAA/Cr and an elevation of 55% of
Cho/Cr. In the four asymptomatic patients, Cho/Cr was
elevated 51%, indicating that MR spectroscopy was more
sensitive than MR imaging for detecting active early dis-
ease.

Cho elevation in patients with ADL appears to be a
marker of active demyelination. That MR spectroscopy
may be a more sensitive indicator of early central nervous
system involvement and that it may furthermore give a
measure of the degree of activity of the demyelination has
important bearing on treatment of ADL. Bone marrow
transplantation (BMT) as a therapeutic method is reserved
only for children with early CNS involvement, as patients
with advanced disease do worse with BMT (29). Further-
more, since clinically unaffected children may be destined
for the milder AMN phenotype and not cALD, and BMT is
not indicated in this group, MR spectroscopy and MR im-
aging can be combined to monitor the population at risk at
6- to 12-month intervals for detection of the earliest signs
of disease during the period of vulnerability (29).

Lysosomal Disorders

Lysosomal disorders include, among others, the lipido-
ses such as Krabbe disease, metachromatic leukodystro-
phy, Niemann-Pick disease, and the mucopolysaccharido-
ses. Of these, metachromatic leukodystrophy was
described by Kruse et al (33) in seven patients and by
Wang et al (34) in one patient, while Sylvain et al (35)
described a patient with Neimann-Pick disease.

Kruse et al (33) performed proton MR spectroscopy in
seven children, four with the late infantile form and three
with the juvenile form of metachromatic leukodystrophy.
In six patients, MR spectroscopy was performed more than
6 months after the onset of symptoms, and the MR images
showed severe findings. Decreased NAA was found in gray
and white matter, and lactate was elevated at the sites of
demyelination. The decreased NAA was thought to reflect
neuronal-axonal degeneration and therefore loss of func-
tional brain parenchyma. A generalized increase in myo-
inositol (two to three times normal) in white matter stood
out in contrast to MR spectra of other leukodystrophies.
The increased myo-inositol may have reflected instabili-
ties due to a change in myelin lipid composition, possibly
the myo-inositol was a primary event rather than a sec-
ondary one. Active gliosis was thought to be responsible
for the increase in lactate.

In a patient with Neimann-Pick disease, Sylvain et al
(35) found an abnormal lipid peak at 1.2 ppm at age 9
months. After treatment with cholesterol-lowering agents,
this peak was gone at age 13 months, suggesting that MR
spectroscopy could be beneficial as a noninvasive means
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of monitoring the response of the central nervous system
to treatment.

Grodd et al (36) reported one case of mucopolysaccha-
ridosis type II in which the NAA was decreased; this was a
nonspecific finding that was associated with supratentorial
atrophy and white matter loss.

Mitochondrial Disorders

Mitochondrial disorders include such diseases as Leigh
disease; Kearns-Sayre syndrome; mitochondrial myopa-
thy, encephalopathy, lactacidosis, and stroke (MELAS);
and myoclonus epilepsy with ragged red cell fibers, among
others. Leigh disease and MELAS have been addressed by
various authors, including Barkovich et al (37), Castillo et
al (38), Detre et al (39), Wang et al (34), Grodd et al (36),
and Krageloh-Mann et al (40). A total of six patients with
Leigh disease and seven with MELAS were examined with
proton MR spectroscopy, which revealed elevated lactate
within gray matter, especially at the sites of recent onset of
elevated T2 signal intensity abnormalities. In Leigh dis-
ease, this is commonly in the lentiform nuclei (37), but, as
shown by Detre et al (39), can also be found in normal
T2-appearing gray and white matter as compared with
normal control subjects. Castillo et al (38) also found that
two patients with negative MR imaging findings had ele-
vated lactate. Barkovich et al (37) found that in patients
with MELAS, the lactate elevations were found by to be
more often within the affected parietooccipital cortex. De-
pending on the state of the injury to the brain, both Grodd
et al (36) and Detre et al (39) reported a decrease in NAA
of the affected tissue.

Aminoacidopathies

Aminoacidopathies include, among others, phenylke-
tonuria (PKU), MSUD, homocystinuria, methylmalonic
acidemia, and glutaric acidemia type I. Various instances
of these disorders have been reported, but for the most
part as one or two cases, with the exception of the eight
cases of PKU reported by Pietz et al (41, 42). These au-
thors were able to detect elevated phenylalanine at 7.37
ppm on proton MR spectra in the white matter, as were
Novotny et al (43). Otherwise, the MR spectra were nor-
mal. The potential exists for the synergistic use of MR
imaging and MR spectroscopy to elucidate the pathogen-
esis of brain dysfunction and provide guidelines for clinical
treatment in PKU. The potential therefore exists to use MR
spectroscopy to monitor the effect of sodium benzoate
therapy in PKU.

One case each of MSUD has been reported by Heindel
et al (44), Wang et al (34), and Felber et al (45). Each
group observed a peak at 0.9 ppm, which represents the
branched chain amino acids and branched chain 2-oxoac-
ids that accumulate as a result of defective oxidative de-
carboxylation of leucine, isoleucine, and valine. The pro-
ton MR spectroscopic findings are positive even when MR
imaging is negative but the patient shows signs of neuro-
logic decompensation and the peripheral blood analysis is
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positive. With successful treatment, the peak at 0.9 ppm
decreases. Thus, proton MR spectroscopy can be used to
evaluate the state of disease in MSUD and its response to
therapy. Heindel et al (46) reported two infants with non-
ketotic hyperglycinemia, identified as a large glycine peak
at proton MR spectroscopy at 3.55 ppm and further found
that proton MR spectroscopy in one patient revealed a
different time course for cerebral glycine content than the
plasma and cerebrospinal fluid did. The continuing reduc-
tion of glycine in brain tissue corresponded more reliably
with the clinical picture.

Engelbrecht et al (47) found mildly decreased NAA at
MR spectroscopy and hypomyelination at MR imaging in a
10-month-old girl with methylenetetrahydrofolate reduc-
tase deficiency. While both MR imaging and MR spectro-
scopic findings were nonspecific relative to this disease,
therapy with betaine as a methyl donor did produce a
decrease in hypomyelination at follow-up MR imaging.
Potentially, MR spectroscopy may also be useful in mon-
itoring response to therapy. In patients with glutaric aci-
demia, Grodd et al (36) found both decreased NAA and
increased lactate.

Primary White Matter Disorders

In the primary white matter disorders, which include,
among others, Canavan disease, Alexander disease, and
Pelizaeus-Merzbacher disease (PMD), a number of case
reports or small series have been reported.

Canavan disease has received the most attention and
has been characterized by an increase in NAA. At proton
MR spectroscopy, this has been reported to be in the
20%-to-100% range (48–50), while biochemically in the
brain it is often increased by a factor of five. Cho is de-
creased and myo-inositol is elevated (34, 51). Thus, for
patients with diffuse white matter disease and macroceph-
aly who have decreased NAA, the diagnosis has been
other than Canavan disease (51). In one family, the MR
spectroscopic findings and clinical features led to the de-
scription of a new autosomal dominant disorder of white
matter (51). Takanashi et al (52) found that in early PMD,
the MR spectra are distinct from those of Canavan disease,
in that they are normal. However, Grodd et al (36) had
different results in PMD. In patients with advanced disease,
the NAA was decreased and the Cho was elevated. In two
patients with Alexander disease studied by Grodd et al (36),
NAA was decreased in the frontal lobes whereas it was close
to normal levels in the occipital lobes. Lactate was elevated in
the frontal lobe of the child with the most advanced disease.

Conclusion
Technological developments and clinical research in

this field have been proceeding at a rapid pace. It has been
demonstrated, repeatedly, that MR spectroscopy can pro-
vide specific information that is not available from MR
imaging. MR spectroscopy has evolved into a valuable
clinical tool (53), and is now widely available in major
university medical centers. Useful clinical information can
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be obtained for disorders involving the central nervous
system in children (4, 34, 54). Because MR spectroscopy
can noninvasively characterize the biochemistry of brain
tissue, and because of the continuing development
and improvement of this technology, together with the
accumulation of knowledge and experience, this tech-
nique will play an increasingly important role in the eval-
uation of metabolic diseases.
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