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Abstract: 

CD4+ T cells provide adaptive immunity against pathogens and abnormal cells, and they are 

also associated with various immune related diseases. CD4+ T cells’ metabolism is 

dysregulated in these pathologies and represents an opportunity for drug discovery and 

development. Genome-scale metabolic modeling offers an opportunity to accelerate drug 

discovery by providing high-quality information about possible target space in the context of a 

modeled disease. Here, we develop genome-scale models of naïve, Th1, Th2 and Th17 CD4+ 

T cell subtypes to map metabolic perturbations in rheumatoid arthritis, multiple sclerosis, and 

primary biliary cholangitis. We subjected these models to in silico simulations for drug response 
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analysis of existing FDA-approved drugs, and compounds. Integration of disease-specific 

differentially expressed genes with altered reactions in response to metabolic perturbations 

identified 68 drug targets for the three autoimmune diseases. In vitro experimental validations 

together with literature-based evidence  showed that modulation of fifty percent of identified 

drug targets has been observed to lead to suppression of CD4+ T cells, further increasing their 

potential impact as therapeutic interventions. The used approach can be generalized in the 

context of other diseases, and novel metabolic models can be further used to dissect CD4+ T 

cell metabolism.   

Introduction: 

CD4+ T cells are essential components of the human immune system that fight against 

pathogenic invaders and abnormal cells by producing cytokines, and stimulating other cells, 

such as B cells, macrophages, and neutrophils.1 During immune response, CD4+ T cells are 

activated and proliferate, and their metabolism adjusts to fulfill increased bioenergetic and 

biosynthetic demands. For example, activated effector CD4+ T cells are highly glycolytic2 and 

use aerobic glycolysis and oxidative phosphorylation (OXPHOS) for proliferation.3 On the other 

hand, naïve, resting, and regulatory CD4+ T cells are less glycolytic and use OXPHOS and fatty 

acid oxidation (FAO) for energy generation. Accordingly, metabolically dysregulated CD4+ T 

cells were observed in several diseases such as diabetes,4 atherosclerosis,5 cancers,6 and 

autoimmune diseases such as rheumatoid arthritis (RA),7,8 multiple sclerosis (MS),9 primary 

biliary cholangitis (PBC),10 and systemic lupus erythematosus (SLE).11,12 Furthermore, 

metabolism of Type 1 T helper (Th1), Type 17 T helper (Th17), and inducible regulatory T cells 

have been found to be dysregulated in MS.13 Controlling CD4+ metabolic pathways can be 

important in fighting against some immune diseases. For example, CD4+ T cells are 

hyperactive in systemic lupus erythematosus (SLE), and inhibiting glycolysis as well as the 
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mitochondrial metabolism improved the outcome in an animal model.14 Together, this evidence 

suggests a significant role of CD4+ T cell metabolism in immune-mediated diseases.  

Repurposing existing drugs for novel indications represents a cost-effective approach for the 

development of new treatment options.15 Several studies have recently demonstrated the 

potential for drug repurposing in CD4+ T cell-mediated diseases.16,17 For example, 2-deoxy-D-

glucose (anticancer agent) and metformin (antidiabetic drug) were shown to reverse SLE  in a 

mouse model.14 However, drug repurposing, as well as drug discovery and development efforts 

for targeting T cell metabolism have been limited due the lack of knowledge about the key 

molecular targets in this context.   

In recent years, analysis of large-scale biological datasets has emerged as a powerful strategy 

for discovery of novel mechanisms, drug targets, and biomarkers in human diseases.18–21 Here, 

we develop a computational modeling approach that integrates multi-omic data with systematic 

perturbation analyses of newly constructed whole-genome metabolic models of naïve CD4+ T 

cells, and Th1, Th2, and Th17 cells. This led to identification of potential drug targets for CD4+ 

T cell-mediated diseases (RA, MS, and PBC).   

Results 

Identification of genes expressed in the CD4+ T cells 

We used the computational approach shown in Fig.1 (see also Supplementary Methods 1) to 

construct metabolic models of naïve and effector CD4+ T cells. To identify metabolic genes 

expressed across CD4+ T cell subtypes (naïve, Th1, Th2, and Th17 cells), we integrated 

transcriptomics and proteomics data (Supplementary Data 1). The comparison of genes 

expressed in CD4+ T cell subtypes identified by different datasets are shown in Supplementary 

Figure 1. The analysis showed that between 675 and 836 metabolic genes were expressed 

depending on the CD4+ T cell subtype (Supplementary Data 2). Of these, 530 genes were 
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expressed in all subtypes (Fig. 2a). On the other hand, 16, 25, 7, and 96 genes were specific to 

naïve, Th1, Th2, and Th17 cells, respectively. Pathway enrichment analysis using active 

metabolic genes suggested 6 enriched KEGG pathways common across all subtypes: carbon 

metabolism, TCA cycle, oxidative phosphorylation (OXPHOS), amino sugar and nucleotide 

sugar metabolism, and valine, leucine and isoleucine degradation (Fig. 2b).  Fatty acid 

degradation and pentose phosphate pathway were enriched in naïve CD4+ T cells only, and 

fatty acid metabolism was enriched in the naïve, Th2, and Th17 subtypes. No specific KEGG 

pathways were found enriched solely in Th1, and Th17 cells. Among the enriched pathways 

shared by all CD4+ T cells, TCA cycle was enriched more than two-fold in naïve, Th1, and Th2 

subtypes. Similarly, OXPHOS was enriched more than two-fold in naïve and Th1 subtypes (Fig. 

2c). These results suggest that key metabolic pathways are active across all the subtypes. 

Importantly, the metabolism of various CD4+ T cell subtypes can be different with respect to 

these pathways’ levels of activity and the number of reactions active within the pathways.  

Development and validation of genome-scale metabolic models of CD4+ T cells 

To further examine these issues, we developed constraint-based metabolic models specific to 

naïve CD4+ T cells, Th1, Th2, and Th17 cells. Our genome-scale metabolic models comprised 

of 3956 to 5282 reactions associated with 1055 to 1250 genes (Table 1; Supplementary Dataset 

1). The number of internal enzyme-catalyzed reactions were 2501, 1969, 2549, and 2640 for 

naïve, Th1, Th2, and Th17 models respectively, distributed across 84 metabolic pathways 

(Supplementary Figure 2; note that transport and exchange reactions were excluded). The 

models include more genes associations than active genes identified from the data because the 

model-building algorithm inserts some reactions that are not supported by data but required for 

the model to achieve essential metabolic functions for biomass production (see Materials and 

Methods). We compared our models with the existing model for naïve CD4+ T cell (CD4T1670) 

(Table 1). Since our models exclude blocked reactions and dead ends, we have removed dead 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.01.02.893164doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.893164
http://creativecommons.org/licenses/by-nd/4.0/


5 

ends from CD4T1670 for fair comparisons. Since we based all models of this study on the more 

recent human metabolic network Recon3D, they include more reactions and metabolites than 

CD4T1670, based on Recon2.     

We validated the models based on the active pathways and gene essentiality. We first identified 

pathways that are known to be active in different CD4+ T cell subtypes (see Materials and 

Methods) and searched for their activity (with non-zero fluxes) in the corresponding models 

through Flux Balance Analysis (FBA). Several major pathways were in agreement with the 

literature. These include glycolysis, TCA cycle, glutaminolysis and pyruvate to lactate 

conversion (aerobic glycolysis) that showed non-zero flux in all the models. We present an 

illustrative flux map of the pathways mentioned above for the naïve model in Fig. 3. The figure 

also indicates flux differences with the Th1 model for critical reactions. Flux maps for the Th1, 

Th2, and Th17 models are shown in Supplementary Figure 3, 4, and 5.  Furthermore, we show 

some specific observed behaviors of CD4+ T cells collected from the literature used for 

validation in Table 2. For comparison, we also performed these validations in CD4T1670, also 

shown in Table 2.  In all the models developed in this study, limiting glucose from the 

environment resulted in a decreased growth rate (Fig. 4a), in agreement with existing 

knowledge but not reproduced by CD4T1670 model (Supplementary Figure 6). All the models 

produced lactate (Table 2, Supplementary Figure 7). Literature shows that increasing PDHm 

(pyruvate dehydrogenase) by inhibiting PDHK (pyruvate dehydrogenase kinase) would redirect 

flux from pyruvate to TCA cycle and, therefore, will decrease the lactate production. This was 

reproduced by our models (Figure 4b). Our models were also able to reproduce the essentiality 

of Leucine, Arginine, and ACC1 for T cell growth (Table 2), in agreement with the literature. It’s 

important to note that the activity of some pathways in the models was not in agreement or 

partially agreeing with the literature. Specifically, we did not observe a significant effect on 

growth rate when glutamine 22 was removed from exchange reactions in the effector CD4+ T 
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cell models (Fig. 4c). However, literature has shown that while transporters of glutamine in 

activated CD4+ T cells are dispensable, removal of glutamine is critical and affects growth. Our 

systematic analyses showed that (1) inhibiting glutamine synthase (GLNS) (that converts 

glutamate to glutamine) in the absence of glutamine uptake in the model decreases growth to 

zero, and (2) glutamine can have an impact on growth when glucose availability is limited (less 

than 2 mmol/g.DW/hr) (Fig. 4d). Using CD4T1670, no effect on biomass was observed when 

glutamine was varied in presence and absence of glucose (Supplementary Figure 8).  Thus, we 

may hypothesize that glutamine might be conditionally critical for CD4+ T cells specifically when 

availability of other nutrients is low.  

Next, we predicted essential genes, and compared the results against independent data to 

identify overlap between genes predicted by our models and identified from experiments. 

Because large scale essentiality datasets were not available for CD4+ T cells, we used 

essentiality datasets available for different human cancer cell lines. Gene deletion analysis 

predicted 84, 95, 81, and 84 genes as essential in the naïve, Th1, Th2, and Th17 models 

respectively (Supplementary Data 3). More than 70% of these predictions agreed with genes 

experimentally defined as essential and conditionally essential in those different but related cell 

lines.23 (Supplementary Figure 9). To assess if higher ranked predictions compared better with 

gene essentiality data, we generated precision-recall curves using 84, 95, 81, and 84 genes 

respectively from each model that were identified as essential. The area under curve for all 

models was > 75% (Supplementary Figure 10 - 13). Additional validations based on CD4+ T 

cell-specific essential functions are presented in Supplementary Methods 3. Overall, the 

validation confirmed that our constraint-based metabolic models specific to naïve CD4+ T cells, 

Th1, Th2, and Th17 cells represent relevant and realistic systems to examine drug response 

and predict drug targets. 
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Mapping existing, and identifying potential drug targets in CD4+ T cells  

We used the validated CD4+ T cell-specific models to predict potential drug targets and 

combined it with  the publicly available drug repurposing and tool compound data set from the 

Connectivity Map (cMap) database and mapped the approved drugs, clinical drug candidates 

and tool compounds in the dataset with the metabolic genes in the models (Fig. 5a). Next, we 

performed in silico knock-outs of the associated drug target genes. Due to the presence of 

isozymes, not all the deleted target genes influenced the reaction(s). We identified 86, 79, 86, 

and 90 target genes whose deletion blocks at least one associated reaction in naïve, Th1, Th2, 

and Th17 models, respectively (Fig. 5b). In turn, these disruptions block multiple downstream 

reactions. Of these, 62 were common among four CD4+ T cell subtypes (Fig. 5c). Four genes 

were targeted only in Th1 cells. All modeled gene deletions resulted in altered flux distributions 

that were quantified using flux ratios. For each drug target deletion, we classified all reactions 

into three categories (see Materials and Methods): (1) reactions with decreased fluxes (down-

reactions), (2) reactions with increased fluxes (up-reactions), and (3) reactions without any 

changes. We used these flux ratios to identify potential drug targets specific for immune 

diseases, by exploring how disease-specific metabolic functions are affected upon each drug 

target inhibition.  

First, we identified disease-specific metabolic functions for RA, MS, and PBC using differential 

gene expression analysis of publicly available patients’ data (Case-Control studies) (see 

Materials and Methods). We identified 852, 1459, and 553 differentially expressed genes 

(DEGs) for RA, MS, and PBC, respectively (Supplementary Data 4). From these DEGs, we 

selected genes relevant to our metabolic models. For example, 36 metabolic genes were 

upregulated and 27 genes were downregulated in RA (Fig. 6a). Biological process enrichment 

analysis identified purine metabolism, and starch sucrose metabolism as enriched in 

upregulated genes. On the contrary, lysine degradation, fatty acid elongation, and carbon 
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metabolism were downregulated. Enriched metabolic pathways for all three diseases are shown 

in Supplementary Data 4.  

To identify potential drug targets for the aforementioned diseases, we looked for target genes 

whose deletion (inhibition) would have the appropriate effect on diseases’ DEGs. For each gene 

inhibition, we specifically investigated the decrease in metabolic flux through reactions 

controlled by genes upregulated in disease, and increase in metabolic flux through reactions 

controlled by genes downregulated in disease (Fig. 6b). Using flux ratios of metabolic DEGs, we 

calculated a perturbation effect score (PES; see Materials and Methods) for each drug target 

gene in each pair model/disease. PES represent the effect of gene inhibition on both 

upregulated and downregulated genes. A positive PES value for the drug target gene means 

that its inhibition decreases more fluxes controlled by genes upregulated in disease than it 

increases or increases more fluxes controlled by genes downregulated in disease than it 

decreases. As such, inhibition of that gene target reverses the fluxes controlled by disease 

DEGs. In contrast, a negative PES means that the inhibition of a target gene increases more 

fluxes controlled by upregulated genes or decrease the more fluxes controlled by 

downregulated genes than the opposite. Among the different combinations of cell types and 

diseases, the PESs range was from -2 to 2 (Supplementary Figure 14). Based on these 

considerations, genes with higher positive PES can serve as potential drug targets for the 

disease.  

Using PES as a measure of target relevance, we identified 62 potential drug targets that were 

common to our models (Fig. 5c). These genes displayed various PES ranks across models and 

diseases. To choose drug targets that performed better across different CD4+ T cells, we 

considered PES ranks of the four subtype-specific models. First, we normalized the PES ranks 

by transforming them to Z-scores in each model. Since the studied diseases typically involve 

more than one type of CD4+ T cell subtype, we next summed up  the Z-scores of all the models 
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within a disease for each drug target (Supplementary Figure 14). A minimum aggregate Z-score 

represents overall high PES ranks predicted across four cell types. Therefore, a gene with a 

minimum aggregated Z-score could be a potential high confidence drug target. We used a Z-

score cutoff of -1 (1 standard deviation lower than the mean aggregated Z-score) and identified 

17, 27, and 24 potential drug targets for RA, MS, and PBC, respectively (Table 3). Ranking 

based on aggregated Z-scores is provided in Supplementary Data 5. Taken together, our 

combined use of the disease-matched genome-scale metabolic models of CD4+ T cells and the 

well target-annotated public dataset of bioactive compounds generated a manageable list of 

potential drug targets suitable for deeper analysis and follow-up.  

Analysis and validation of predicted drug targets 

To further analyze and validate our target list, we performed a comprehensive literature survey 

(Table 3). Among the 17 suggested drug targets for RA, dihydroorotate dehydrogenase 

(DHODH) and Acetyl-CoA acetyltransferase (ACAT1) have been already explored as targets in 

drug development efforts24,25, and 15 genes were newly identified. Among these, eight (LSS, 

NAMPT, FDPS, SQLE, EPHX2,  CAT, CS, SOD2) have been found to inhibit CD4+ T cell 

proliferation upon deletion (Table 3). The product of the reaction catalyzed by 4-Aminobutyrate 

Aminotransferase (ABAT) is linked to RA. Dysregulation of other genes, such as pyruvate 

dehydrogenase E1 (PDHB), Farnesyl-diphosphate farnesyltransferase 1 (FDFT1), Oxoglutarate 

Dehydrogenase (OGDH), alpha- galactosidase (GAA), has not been previously reported to 

impact CD4+ T cell proliferation. 

Furthermore, we predicted 27 possible drug targets for MS. Of these, glutathione reductase 

(GSR), and dihydrofolate reductase (DHFR) were already explored as targets using the 

experimental autoimmune encephalomyelitis (EAE) model26,27 and  25 genes were newly 

identified. Among these, 12 (CAT, IDH2, HMGCR, PKM, ABAT, LSS, FASN, PPAT, PNP, CS, 

CAD, SQLE) have been previously reported inhibiting CD4+ T cell proliferation upon deletion. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.01.02.893164doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?oeZaOP
https://www.zotero.org/google-docs/?Wgmk6J
https://doi.org/10.1101/2020.01.02.893164
http://creativecommons.org/licenses/by-nd/4.0/


10 

Genes that were not previously reported to affect CD4+ T cells upon deletion include Carnitine 

O-palmitoyltransferase 2 (CPT2), MP cyclohydrolase (ATIC), Ornithine decarboxylase (ODC1), 

Dihydropyrimidine dehydrogenase (DPYD), and Farnesyl-diphosphate farnesyltransferase 

(FDFT1).  

Finally, we identified 24 possible drug targets for PBC. None of them was previously explored 

as a drug target in PBC. Deletion of seven of these potential gene targets (NAMPT, EPHX2, 

FASN, ADA, SLC2A3, TXNRD1, ACLY) has been reported to affect CD4+ T cells in the 

literature. Genes that have not yet been reported to affect CD4+ T cells upon deletion include 

Long-chain-fatty-acid--CoA ligase 3 (ACSL3), Adenosine kinase (ADK), and S-

adenosylmethionine decarboxylase proenzyme (AMD1).  

43 of the 68 predicted drug targets were found for only one disease. Six drug targets (LSS, 

ABAT, SQLE, FDFT1, CAT, CS) were common to RA and MS;  five drug targets (NAMPT, 

EPHX2, COMT, HIBCH, GAA) were in common between RA and PBC; and two drug targets 

(ADH5, FASN) were in common between MS and PBC. We show the drugs and compounds 

available for these targets in Table 4. Out of the 55 unique drug targets identified across three 

diseases, 38 were found to be robust across different cutoffs (Supplementary method 9). A few 

examples of drug targets from purine metabolism, fatty acid synthesis, and TCA cycle are 

shown in Fig. 7.  

Experimental validation: Next, we experimentally validated our predictions by targeting genes 

that have not been reported in the literature to suppress CD4+ T cell proliferation. We selected 

ten FDA-approved drugs, including at least one target from each disease, based on their 

association with reactions belonging to pathways we were interested in. Four of the tested drugs 

indeed resulted in decreased CD4+ T cell proliferation. Genes targeted by these drugs include: 

COMT (RA, PBC), CPT2 (MS), DPYD (MS), and ACSL3 (PBC). COMT is associated with five 
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different reactions of the tyrosine metabolism (Fig. 7f). The genes CPT2 and ACSL3  both 

catalyze the production of Long-chain Acyl-CoA in fatty acid biosynthesis from different 

substrates (Fig. 7c). DPYD catalyzes the production of uracil and thymine from dihydrouracil 

and dihydrothymine in pyrimidine metabolism. We subjected human CD4+ T cells stimulated 

with TCR signaling and IL-2 to different doses of drugs for 48 h and 72 h. Their proliferation was 

assessed by the MTT colorimetric cell proliferation assay (Fig. 8). A reduction of CD4+ T cell 

proliferation was observed for every chosen drug. Entacapone, targeting the COMT gene, 

showed significant activity at 48 h and 72 h at 100 μM and 1000 μM (Fig. 8a). EPA, targeting 

ACSL3, decreased proliferation at the highest dose (1000 μM) at 72 h while the other 

concentrations did not exhibit a significant effect on proliferation (Fig. 8b). Perhexiline, targeting 

CPT2, also reduced proliferation at 72 h at 100 μM and 1000 μM (Fig. 8c). Fluorouracil, 

targeting DPYD,  is the only drug that showed an effective impact on CD4+ T cell proliferation at 

a lower dose (1 μM) at 72 h (Fig. 8d). Interestingly, Entacapone, Perhexiline exhibit a significant 

enhancement of proliferation at a low dose (1 μM), indicating that these drugs can present a 

biphasic effect in T cell proliferation. Our experimental validations thus indicate that the 

perturbation of the activity of our predicted targets can impact CD4+ T cells proliferation in a 

time and dose-dependent manner. 

Six drugs showed no or opposite effect on the T cell proliferation, including DFMO, Pemetrexed, 

N6022, Ethyl-pyruvate, Pyrazinamide, and Quercetin. As an example, Fig. 8e shows that 

DFMO, targeting ODC1 does not impact T cell proliferation with indicating dose and period of 

time.   

Taken together our analysis has identified 68 possible drug targets of relevance to metabolic 

regulation of autoimmune diseases. We discuss the implications of our results in more detail 

below. 
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Discussion 

Our predicted drug targets were classified into two categories: validated, and novel. We 

considered a target to be validated if previously explored as such in the context of RA, MS 

and/or PBC. Novel targets, those not previously reported as such for the three diseases we 

focused on here, were further classified into three subcategories: target genes that are 

supported by published experimental data, predicted target genes for which no data is currently 

available, and predicted drug targets for which we provide experimental validation. We will 

discuss select examples of targets in each of these categories to illustrate ways in which our 

model and analysis can be used to advance future drug repurposing as well as drug discovery 

efforts.    

Our predictions include  three genes (DHODH,  ACAT1, and DHFR) that code for proteins 

targeted by approved drugs currently used for treatment of autoimmune diseases.24–28 A strong 

example of an already validated drug target predicted by our models is dihydroorotate 

dehydrogenase (DHODH), a key enzyme in de novo pyrimidine synthesis pathway, and a target 

of leflunomide, an approved drug for rheumatoid arthritis.25,29 DHFR (dihydrofolate reductase) is 

a well-established oncology drug target, and also as an immunosuppressant and anti-

inflammatory target.30 Low doses of an FDA-approved DHFR inhibitor methotrexate  have been 

found effective as a treatment for MS, RA, and Crohn's disease.27 Mitochondrial acetyl-CoA 

acetyltransferase (ACAT1) is a target for FDA approved anti-inflammatory drug sulfasalazine in 

inflammatory bowel syndrome. Furthermore, this drug is indicated for treatment for rheumatoid 

arthritis and ulcerative colitis.31 Taken together, our models successfully replicated current 

clinical practice, further strengthening the value of our approach.  
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Interestingly, a major subcategory of gene targets we identified code for proteins that have not 

previously been explored for treatment of RA, MS, and PBC. We can now use these insights to 

formulate novel preclinical and clinical hypotheses. For example, ABAT, which encodes the 

GABA-transaminase enzyme that breaks down γ-aminobutyric acid (GABA; a neurotransmitter), 

was identified in our analysis as a potential target. While ABAT has not been previously 

identified as a drug target for RA, we can hypothesize that its inhibition may increase free GABA 

levels which would, in turn, inhibit CD4+ T cell activation. The relationship between GABA levels 

and suppressions of CD4+ T cell activation has been previously reported, further suggesting a 

link between neurotransmission and immune response.32–34 There are currently two FDA 

approved drugs, vigabatrin and phenelzine, that target ABAT. Although we don’t expect that 

either one of these agents can be repurposed to treat autoimmune disease given that they are 

an anti-seizure medicine and an antidepressant, respectively, we propose that further analysis 

of relationships between neurotransmission and immune response offers an interesting 

targeting opportunity.24 Another example is glutathione reductase (GSR), an enzyme that 

reduces oxidized glutathione disulfide to cellular antioxidant GSH.35 It has been shown that 

inhibition of the de novo GSH synthesis can reduce the pathological progression of 

experimental autoimmune encephalomyelitis (EAE).26 Here, carmustine, a chemotherapy drug, 

is FDA approved drug that targets GSR, offering a viable starting point for future pre-clinical 

testing (Table 4). Additional high confidence predictions and target candidates are a group of 

genes that have been experimentally shown to repress CD4+ T cells upon inhibition. This list 

includes nicotinamide phosphoribosyltransferase (NAMPT), which we now predict is a drug 

target for RA. This enzyme is involved in NAD+ synthesis36 and was previously explored as a 

drug target in EAE for MS37, melanoma, T cell lymphoma, and leukemia.38 Given that two 

NAMPT inhibitors, GMX1778 and FK-866, are in phase II clinical trials (Table 4), this enzyme 

represents a target where pre-clinical testing and follow-up may lead to drug repurposing 

opportunities. Another example worth highlighting is epoxide hydrolase 2 (EPHX2), which 
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converts toxic epoxides to non-toxic dihydrodiols.35,36 Its inhibition was reported to result in 

decreased production of proinflammatory cytokines in preclinical evaluation in inflammatory 

bowel syndrome.39 For EPHX2, an inhibitor GSK2256294A is in phase I clinical trial, indicating 

that developing drugs for this target may be possible. Moreover, our model implicated enzymes 

such as pyruvate kinase (PKM), which impacts glycolysis,  HMG-CoA reductase (HMGCR), 

which regulates cholesterol biosynthesis and adenosine deaminase (ADA), which converts 

harmful deoxyadenosine to not harmful deoxyinosine. Each one of these enzymes has been 

experimentally linked to T cell proliferation and development,40–42 and all three targets have 

been the subject of previous drug development campaigns (Table 4).  ATP Citrate Lyase 

(ACLY), Catalase (CAT), Farnesyl diphosphate synthase (FDPS), Lanosterol synthase (LSS), 

Squalene epoxidase (SQLE), and Superoxide dismutase 2 (SOD2) also represent targets we 

identified. SQLE is involved in cholesterol biosynthesis, and in general agreement with recent 

reports that inhibiting cholesterol pathways can suppress T cell proliferation.41 The loss of SOD2 

can increase superoxides and defective T cell development.43 For all these targets, either 

preclinical, clinical or approved inhibitors are available, which we consider encouraging for 

further study and drug repurposing (see Table 4 for details).  

Other predicted genes are part of the TCA cycle (Citrate synthase (CS), Isocitrate 

dehydrogenase 2 (IDH2)), ribonucleotide biosynthetic processes (Phosphoribosyl 

pyrophosphate amidotransferase (PPAT), Carbamoyl-phosphate synthetase 2, Aspartate 

transcarbamylase, and Dihydroorotase (CAD)), and lipid biosynthesis (Fatty acid synthase 

(FASN)) that are also important for T cell development. As with examples above, many of these 

potential candidate targets have inhibitors that are in different stages of preclinical and clinical 

development, and some (like PPAT and FASN inhibitors) have been FDA approved (Table 4).   
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In addition to gene targets with robust or partial existing experimental evidence, we identified 31 

novel gene targets for which no evidence currently exists. These genes are involved in 

glycolysis, TCA cycle, OXPHOS, fatty acid metabolism, pyruvate metabolism, purine, and 

pyrimidine metabolism, arginine and proline metabolism,and  tyrosine metabolism pathways, 

which are critical for T cell activation and proliferation.44,45 We performed in vitro experiments to 

investigate predicted targets without existing published evidence and we tested ten FDA-

approved drugs. In four cases of drug targets (COMT, ACSL3, CPT2, and DPYD), the drugs 

(entacapone, EPA, perhexiline, and fluorouracil, respectively) have inhibited the proliferation of 

CD4+ T cells in a dose and time-dependent manner. Some drugs displayed a “biphasic effect”, 

where it encouraged proliferation at a low dose, while inhibiting proliferation at a higher dose. 

This dose-response effect, called hormesis, is usually an adaptive survival response to toxic 

agents or stressful environments. Hormetic effects are in general produced by highly conserved 

evolutionary systems, and characterized by the coordinated activation of molecular signals 

triggering  coherent metabolic responses to maintain cell homeostasis.46 Indeed, it is well 

established that the ability of T cell to modulate their metabolism upon environmental changes is 

key to preserve their survival and fulfil their functions.47 In the case of ODC1, we did not observe 

any impact on CD4+ T cell proliferation under any tested concentration of DFMO at both 48 and 

72 hours. It is difficult to explain this lack of effect without further experimental investigations. It 

might be that ODC1 is in large excess in our cell cultures, or that the amount of active enzyme 

is tightly regulated. In addition, each subset of T helper cells is associated with particular 

metabolic circuits, increasing the difficulty of assessing precise pharmacological strategies to 

target them. Our computational model is taking into account the precise metabolic requirements 

for each subset of CD4+ T cells, reducing the space to explore in order to specifically target the 

essential metabolic pathway in a given cell type.  
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Collectively, our models and approach led to identification of potential high-value targets for RA, 

MS and PBC treatment, and proposed several drugs in current clinical use for drug repurposing.  

Data integration enabled us to build, refine, and validate high-quality cell type-specific models. 

While many of the major pathways important for CD4+ T cell activation and proliferation are 

commonly active across different CD4+ T cell subtypes we tested, the models differ with respect 

to how these pathways are used for growth. For example, higher activity of the fatty acid 

oxidation pathway is more important in naïve but not in effector CD4+ T cells that have elevated 

glycolysis 44 and fatty acid synthesis pathways. A significant number of essential genes 

identified from these models overlapped with gene essentiality  data obtained from different cell 

lines.23 We are conscious that assessing model performances based on comparison with 

essential genes defined on different cell lines is not ideal. Properly assessing their accuracy 

would require CD4+ T cell-specific essentiality data. Integration of disease-associated DEGs 

with flux profiles under gene knock-out helped us to select disease-specific drug targets. While 

computational models of signal transduction in CD4+ T cells48,49 are available, metabolic models 

of effector and regulatory CD4+ T cells have not been developed (except for naïve CD4+ T 

cells50). Similar metabolic models were previously used to predict drug targets against 

pathogens 18 and complex diseases such as cancers.51  

While our approach can be generalized for human diseases and used with any -omics dataset, 

the unavailability of reliable data contributes to some limitations. Because of heterogeneity with 

respect to time after stimulation with cytokines in the available datasets, constructed models 

represent inclusive metabolic phenotypes during activation and proliferation for each CD4+ T 

cell subtype. Thus, time-specific data would be required to study metabolic phenotype at a 

specific time point in CD4+ T cell development. Furthermore, by integrating gene expression 

and proteomics data, we have improved the identification of active genes compared with the 
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sole use of gene expression or proteomics datasets. This approach presents certain limitations 

because of post-transcriptional and post-translational modifications. Integrating more functional 

data such as enzyme activities and measured metabolic fluxes, could further improve the 

selection of active reactions within the context of specific models. In addition, the biomass 

objective function used in our study is not specific to CD4+ T cells. We used a biomass 

objective function generated for human alveolar macrophages. Differences in growth conditions 

and the respective sizes of macrophages and CD4+ T cells might  impact the ratios of 

precursors used for biomass objective functions. Since the precursors for biomass production 

would be the same across different cell types, in the absence of comprehensive data on 

precursor rations from a specific cell type, the objective function of similar cells is useful for 

obtaining flux distribution. A specific objective function that considers varying utilization of 

precursor metabolites (such as glycolysis intermediates) by different CD4+ T cells for biomass 

production, might further improve the models. However, we have shown that changing objective 

functions (from the Recon3D to macrophage model) had no significant impact on the 

constructed models (see Materials and Methods for details). Similarly, reliable disease-specific 

data were unavailable for specific CD4+ T cell subtypes, therefore, building subtype specific cell 

metabolic models under disease conditions was not possible. We mitigated this limitation by 

integrating disease-specific DEGs from sorted CD4+ T cells with models, which resulted in 

metabolic fluxes relevant to diseases. In the future, with the availability of more disease and cell 

type-specific data, our integrative approach may further improve these results. 

Overall, our integrative systems modeling approach has provided a new perspective for the 

treatment of RA, MS, and PBC. Moreover, the newly constructed models may serve as tools to 

explore metabolism of CD4+ T cells. Additionally, our approach is generalizable to other 

disease areas for which reliable disease-specific data are available, making it a potentially 
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important computational platform for both novel drug target identification and prioritizing targets 

for drug repurposing efforts.  

Materials and Methods 

High throughput data acquisition and integration 

We collected transcriptomics data from the GEO52 database and proteomics data.53 A total of 

121 transcriptomics54–62 and 20 proteomics53 samples relevant to the CD4+ T cells were 

selected (Supplementary Data 1). Transcriptomics data analysis was performed using the affy63 

and limma64 R packages. Because we aimed to characterize gene activities instead of gene 

expression levels, the processed transcriptomics data were discretized (active = 1; inactive = 0) 

and samples for each cell type were combined. Genes active in more than 50% of the samples 

in which the probe was present were considered as active (see Supplementary Methods 2). 

Similarly, proteins expressed in more than 50% of samples in the proteomics dataset were 

considered as active. In the proteomics datasets, protein IDs were mapped to gene IDs.  

Next, we integrated activities from transcriptomics and proteomics datasets. First, biological 

entities that overlapped in both types of data were selected as high-confidence. Second, we 

found that some genes were expressed in the majority of transcriptomics datasets, but 

expressed in less than 50% samples of proteomics data. Similarly, some proteins were 

identified within groups of highly abundant proteins in multiple samples in proteomics datasets 

but expressed in less than 50% samples of transcriptomics datasets. Such non-overlapping 

genes were selected as moderate-confidence based on consensus in single types of -omics 

data (Supplementary Methods 2.1.1). Third, moderate-confidence genes exclusively present in 

the transcriptomics data were added to the overlapping genes if expressed in at least 90% of 

samples. Fourth, moderate-confidence genes exclusively present in the proteomics dataset 

were added if their abundance was ranked in the top 25% (fourth quartile) (Supplementary 
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Methods 2; Supplementary Data 6). We used these cutoffs to decrease the false negatives 

while not selecting false positives by removing genes and proteins that are not expressed in any 

sample either in transcriptomics or proteomics data.  

Cell type-specific genome-scale metabolic model reconstruction  

We used the GIMME65 method (in COBRA toolbox) to construct the metabolic models of 

different CD4+ T cells (naïve, Th1, Th2, Th17). The inputs for GIMME were the generic human 

Recon3D66 (as a template) and gene expressions based on integrated multi-omics data. The 

template Recon3D was modified prior to constructing CD4+ T cell-specific metabolic models. 

These modifications included gene-protein-reaction (GPR) associations (all genes associated 

with a reaction written using AND and OR operators), media conditions, and reaction 

directionality. In the original Recon3D, GPRs used transcript IDs. Because our data included 

gene IDs, we mapped the transcript IDs to the gene IDs. For naïve and effector cells, different 

types of media condition were selected based on nutrient preference information obtained from 

the literature (Supplementary Methods 2.1.2). In addition, new reactions involved in the biomass 

objective function were added, and some reactions were removed as described below (See also 

Supplementary Methods 2). The transcriptomics and proteomics data have information about 

genes/proteins instead of transcript variants. To map the data obtained for genes, we updated 

transcript IDs provided in Recon3D to Entrez gene IDs. A total of 1892 genes were included in 

the modified Recon3D model. Furthermore, because different CD4+ T cells have different 

nutrient uptake preferences, we used two types of media conditions (one for each naïve and 

one for all effector T cells), shown in Supplementary Methods 2.1.2.4. For all cell subtypes, in 

addition to the basal metabolites (freely available, i.e. H2O, O2, H, O2S, CO2, Pi, H2O2, HCO3, 

H2CO3, and CO), glucose, glutamine, and other amino acids were set as open (but tightly 

constrained) for uptake. The major difference in media condition was the presence of fatty acids 

in the naïve model. Furthermore, during the refinement of the CD4+ T cell models, the 
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directionality of some reactions was updated based on the Recon 2.2.05 model67 and the 

MetaCyc database (Supplementary Methods 2.1.2.5 and 2.2.3). Because of the lack of CD4+ T 

cell-specific data, the biomass objective function was adopted from the macrophage model iAB-

AMØ-141068 and added to the Recon3D.  

For each subtype, we constructed three models based on transcriptomics, proteomics, and 

integrated (transcriptomics and proteomics data) datasets. A comparison of these models is 

provided in Supplementary Figure 15 and details can be found in Supplementary Methods 2. 

The models constructed with integrated data were selected for further analysis. Additionally, to 

investigate the effect of biomass objective function on constructed models, we built two models 

using biomass objective functions from (1) Recon3D and (2) iAB-AMØ-1410 models. The 

reactions in output models generated based on each biomass function were compared. The 

models based on the two objective functions were not significantly different (Supplementary 

Figure 16) with respect to the numbers of reactions. Biomass objective function from iAB-AMØ-

1410 consists of a few extra precursors that predicted better fluxes through fatty acid pathways. 

The literature has shown that effector CD4+ T cells synthesize fatty acids, whereas naive CD4+ 

T cells exhibit fatty acid oxidation. We compared the fluxes of models created with objective 

functions from Recon3D and iAB-AMØ-1410. The models created with biomass objective 

function adopted from iAB-AMØ-1410 had more reactions carrying non-zero flux in the fatty acid 

pathways (than the models created with Recon3D biomass objective function). Therefore, 

models that are constructed based on biomass reaction adopted from iAB-AMØ-1410 were 

used in subsequent analyses. Models were further reduced by removing the dead-end 

reactions. Reactions in the models are distributed across different compartments including 

extracellular, cytoplasm, mitochondria, nucleus, Golgi apparatus, lysosome, and endoplasmic 

reticulum. The models were investigated to perform basic properties using leak test, gene 

deletion and further refined in an iterative manner. To examine leaks, we simulated the models 
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with all the exchange reactions closed and analyzed all the reactions individually for non-zero 

flux. If the models were producing metabolites, the mass imbalance was checked and fixed. We 

used gene deletion analysis to check if the model was able to predict gene essentiality. 

Because effector T cells are highly glycolytic, deleting glucose transporters should result in 

reduced growth. We used this as a reference to check that the model was behaving correctly. 

Furthermore, we investigated if inhibiting acetyl-CoA carboxylase (ACC1) — which was 

experimentally observed as essential for CD4+ T cell function — resulted in altered growth. 

These analyses helped us identify problematic reactions that were corrected based on 

Recon2.2.05 — a manually curated model for mass charge balancing and reaction directionality 

— and the MetaCyc database. Refined models were then subjected to 460 metabolic tasks that 

were used with the Recon3D model and included in Test4HumanFctExt function in COBRA 

(Supplementary Data 7). The constructed models were simulated using Flux Balance Analysis 

(FBA) and Flux Variability Analysis (FVA). The final numbers of metabolites and reactions are 

presented in Table 1. These models were named as TNM1055 (naïve model), T1M1133 (Th1 

model), T2M1127 (Th2 model), and T17M1250 (Th17 model). The models encoded in SBML 

can be found as Supplementary Dataset 1. They have also been submitted to BioModels 

database69 under accessions MODEL1909260003, MODEL1909260004, MODEL1909260005,  

MODEL1909260006.  

Model validation  

Models were validated based on literature knowledge related to active pathways in proliferating 

and differentiated CD4+ T cells. CD4+ T cell-specific metabolic functions were searched in the 

literature using PubMed.70 Naïve CD4+ T cells tend to have low energy demands, and mainly 

rely on fatty acid β-oxidation, oxidation of pyruvate and glutamine via the TCA cycle.71 On the 

other hand, the high bioenergetics demand in effector cells is met by shifting OXPHOS to 

glycolysis and fatty acid oxidation to fatty acid synthesis.45 Furthermore, similar to cancer cells, 
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proliferating effector CD4+ T cells convert lactate from pyruvate by lactate dehydrogenase 

enzyme.45 Thus, we obtained the flux distribution of metabolic pathways under wild type 

conditions using Flux Balance Analysis (FBA) and searched the non-zero fluxes through the 

aforementioned pathways in all the models. Flux maps were created using Escher web 

application (https://escher.github.io/#/).72,73 It has also been observed previously that deficiency 

in glucose and glutamine impairs CD4+ T cell activation and proliferation.74,75 We performed this 

experiment in silico, whereby we varied the flux through exchange reactions of glucose 

(EX_glc[e]) and glutamine (EX_gln_L[e]) in the models and analyzed the effect on growth rate.  

Comparison of essential genes predicted by the models and  identified in different cell 

lines 

To predict gene essentiality, we knocked out model genes to predict their effect on the growth 

rate. This was performed using singleGeneDeletion in the COBRA toolbox using the 

Minimization of Metabolic Adjustment (MoMA) method.76 Because of the unavailability of CD4+ 

T cell-specific data, predicted essential genes were compared with experimentally identified 

essential genes in humans from different cell lines. The data for experimentally tested essential 

and nonessential genes for human were obtained from the OGEE database.23 In this database, 

the essentiality data for humans was compiled using 18 experiments across various cell lines 

that include RNAi based inhibition, CRISPR, and CRISPR-CAS9 systems. To investigate how 

many model-predicted essential genes are also essential in other cell lines, predicted essential 

genes were compared with experimentally observed essential and conditionally essential genes 

reported in the OGEE database. Essential and conditionally essential genes were merged 

together. Additional validations of models using CD4+ T cell-specific essential genes can be 

found in Supplementary Methods 3.   
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Mapping drug targets  

The developed models were used to predict potential drug targets for autoimmune diseases in 

which effector subtypes have been found hyperactive.77,78 Therefore, a reasonable drug target 

should downregulate effector CD4+ T cells. Among the metabolic genes of selected models, we 

first identified targets of existing drugs. The drugs and their annotations including target genes 

were imported from The Drug Repurposing Hub79 in the ConnectivityMap (CMap) database.80 

All withdrawn drugs and their annotations were first removed. In this list, the gene symbols of 

target genes of drugs were converted to Entrez IDs. Next, we searched Entrez IDs from CMap 

data in the genes of metabolic models. For each mapped gene in the model, the drugs were 

listed.  

Metabolic genes differentially expressed in autoimmune diseases 

The lack of reliable data from specific CD4+ T cell subtypes involved in autoimmune disease 

conditions led us to utilize patients’ data (case-control studies) available for autoimmune 

diseases that were collected from peripheral CD4+ T cells. Datasets GSE56649 81 (rheumatoid 

arthritis), GSE4359182 (multiple sclerosis), and GSE9317083 (primary biliary cholangitis) were 

obtained from the GEO database. Raw data files were processed using the affy and limma 

packages63,64 in Bioconductor/R. The limma package was used to identify DEGs between 

patients and healthy controls. For significant differential expression, selective cutoffs of fold-

changes were used with adjusted P-values < 0.05. For differentially expressed genes, we used 

a two-fold cutoff. A cutoff of 1.5-fold was used for datasets where two-fold resulted in a very low 

number to zero differentially expressed metabolic genes.  

Perturbation of metabolism and perturbation effect score (PES)  

In metabolic models, the knockout of genes that are targets of existing drugs was performed in 

the COBRA toolbox using MoMA.76 For each knockout, we investigated the change in fluxes 

regulated by DEGs in diseases. The change in fluxes was computed using flux ratios of 
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perturbed flux/WT flux, and all fluxes that are affected by each perturbation were calculated. We 

counted fluxes regulated by upregulated genes that are decreased or increased after 

perturbation (UpDec and UpInc) as well as fluxes regulated by downregulated genes that are 

decreased or increased after perturbation (DownDec and DownInc). The total number of fluxes 

for each perturbation also include upregulated genes that were unchanged after perturbation 

(UpUnc) as well as downregulated genes that were unchanged after perturbation (DownUnc) 

(see also Supplementary Methods 7). For each perturbed gene, a perturbation effect score 

(PES) was calculated as: 

𝑃𝐸𝑆 =  
(𝑈𝑝𝐷𝑒𝑐 − 𝑈𝑝𝐼𝑛𝑐)

(𝑈𝑝𝐷𝑒𝑐 + 𝑈𝑝𝐼𝑛𝑐 + 𝑈𝑝𝑈𝑛𝑐)
+  

(𝐷𝑜𝑤𝑛𝐼𝑛𝑐 − 𝐷𝑜𝑤𝑛𝐷𝑒𝑐)

(𝐷𝑜𝑤𝑛𝐼𝑛𝑐 + 𝐷𝑜𝑤𝑛𝐷𝑒𝑐 + 𝐷𝑜𝑤𝑛𝑈𝑛𝑐)   
 

Next, for each disease and model combination, the ranks of PES were computed. The gene 

with the highest PES obtained the top rank and the one with the minimum PES obtained the 

lowest rank. For each disease, we prioritized drug targets by utilizing their ranks across all 

models. The PES ranks in each model were first transformed into Z-score as: 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 =  
(𝑥 −  𝜇)

𝜎
 

where x is a PES rank, μ is the mean of PES ranks in a model for one disease, σ is the standard 

deviation of PES ranks obtained by a model for one disease. For each disease type and each 

gene, Z-scores across four models were summed up to calculate an aggregated Z-score. 

Genes were ranked based on minimum to maximum aggregate Z-scores.  

Pathway enrichment analysis 

For biological processes enrichment analysis, we used DAVID V6.8,84 and STRING database85 

together with Gene Ontology biological processes,86 KEGG pathways,87 and Reactome 

pathways.88 A cutoff of 5%89,90 False Discovery Rate (FDR) and P-value < 0.05 were used for 

significant enrichment.  
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The pathway maps used in Fig. 7 were generated with yED graph editor software.  

Experimental Validation 

Cells culture: We used frozen vials of peripheral blood mononuclear (IXCells Biotechnologies) 

from healthy donors. CD4+ were purified by negative selection using magnetic human CD4+ T 

cells nanobeads (MojoSort, Biolegend) according to the manufacturer's protocol. For cell 

activation, anti-CD3 (clone OKT3, Biolegend) was coated on plates at 4 µg/ml overnight in PBS 

at 4 °C. Cells were then cultured in X-Vivo media (Lonza) supplemented with 2 µg/ml of anti-

CD28 (clone CD28.2, Biolegend) and with 10 ng/ml of recombinant IL-2 (Peprotech) for 7 days. 

Half of the media was renewed every 2-3 days by adding fresh media supplemented with 

2 µg/ml of anti-CD28 and 10 ng/ml IL-2. 

Drug treatment: We purchased alpha-difluoromethylornithine (DFMO) and eicosapentaenoic 

Acid (EPA) from Cayman Chemical. DFMO was resuspended in water at 50mM while EPA was 

already resuspended in ethanol at 826 mM. Perhexiline, Entacapone, and Fluorouracil were 

obtained from Tocris and dissolved in DMSO to make stock solution at 12 mM, 200 mM, 

198 mM, respectively. For drug treatment, CD4+ T cells were seeded at 50000 cells in 96 round 

bottom wells in culture media supplemented with anti-CD3, anti-CD28 and IL-2. Before 

incubation with CD4+ T cells, drugs were diluted in culture media with concentration ranging 

from 1 µM to 1000 µM and incubated for 48 h or 72 h. 

MTT assay: We assessed T cell proliferation using the TACS MTT proliferation assay (R&D 

systems). Briefly, a tetrazolium salt solution (10 μl) was added to each well, and the plate was 

incubated at 37 °C for 4 h. After incubation, 100 μl of stop solution was added to each well and 

incubated overnight before absorbance measurement. Cell proliferation was read at 48 h and 

72 h post-drug treatment. The absorbance was measured at 570 nm using the BioTek 

microplate reader instrument (BioSPX). We corrected cell absorbance readings using cells 

treated with DMSO or the media controls. 
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Statistical analysis: The CD4+ T cell proliferation upon drug treatment was analyzed 

statistically with a paired t-test, one-tailed for five independent experiments. All data are 

presented as mean plus or minus standard error of the mean (SEM) and analyzed using 

GraphPad Prism software. The fold change of cell proliferation-cultured was calculated using 

untreated cells as 1. 
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Table 1: Metabolic models of CD4+ T cells 

 Naïve Th1 Th2 Th17 CD4T1670 
(Naïve) 
(reduced)* 

Genes 1055 1133 1127 1250 1027  
 

Reactions 5179 3956 5252 5282 2592 
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Internal reactions 
(Enzyme catalyzed) 

2501 1969 2549 2640 1146 

Metabolites 3153 2517 3156 3263 1402 

 

* Our models do not include dead ends and use gene IDs. To make  CD4T1670 comparable to our 

models we removed dead ends and counted the number of genes in the reduced model (in place of 

transcripts).  
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Table 2: Model validation using specific behaviors  

 

Observation from 
literature 

In silico experiment  Naïve Th1 Th2 Th17 CD4T1670 
(Naïve) 

1. Glucose transporter 
deficiency will inhibit the 
proliferation of cells.74,91 

Inhibited glucose 
transporters / remove 
glucose from the 
environment 

↓growth ↓growth ↓growth ↓growth 
No change 

2. CD4+ T cells produce 
lactate.45  

Observed if models have 
produced lactate 

Lactate + Lactate + Lactate + Lactate + Lactate + 

3. Activated CD4+ T cells 
control pyruvate 
dehydrogenase function 
which in turn redirect 
pyruvate from entering the 
TCA cycle towards lactate 

production.91 

Increasing flux through 
pyruvate dehydrogenase 
reaction (PDHm) should 
decrease the lactate 
production 

↓Lactate ↓Lactate ↓Lactate ↓Lactate 
NA 

4. During T cell activation 
GAPDH is important for 
glycolysis.91 

Investigating if inhibition of 
GAPDH is impacting the 
growth 

↓growth 0 growth 0 growth 0 growth ↓growth 

5. Lack of transporters for 
Leucine impairs the 
metabolic reprogramming 

required Th1 and Th17.91  

 

Remove leucine from 
media and investigate the 
impact on growth 

0 growth 0 growth 0 growth 0 growth 0growth 

6. In T cells arginine 
depri­vation leads to cell 
cycle arrest.91 
 

Remove arginine from the 
media and investigate the 
impact on growth 

0 growth 0 growth 0 growth 0 growth 0growth 

7.  Gene acetyl-CoA 

carboxylase alpha (ACC1) 
is essential for T cell 

homeostasis.91 

Inhibit gene ACC1 or 
reaction Acetyl Coenzyme 
A Carboxylase (ACCOAC) 
and investigate the impact 
on growth 

No 
change 

0 growth 0 growth 0 growth No change 

8. Glutamine deficiency in 

media leads to low growth 

and proliferation.91 

Removing glutamine from 
media ↓growth 

No 
change 

No 
change 

No 
change 

No change 

 

* ↓ = decrease, + = produced, light green = agreed with literature, gray = partial agreement, red 

= disagreement, NA = experiment was not executed because infeasible. 
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Table 3: Identified CD4+ T cell drug targets for RA, MS, and PBC 

 

Disease Entrez ID Gene 
Symbol 

Gene description Aggregate 
Z-score 

Literature evidences relevant to CD4+ T cells and 
autoimmune diseases 

ChEMBL 92IDs* 
 

RA 4047 LSS Lanosterol synthase -3.35 Inhibition of lanosterol synthase (LSS) might decrease 
the endogenous cholesterol that may lead to impact cell 
division. 93 

CHEMBL3593 

18 ABAT 4-aminobutyrate 
aminotransferase 

-3.20 GABA downregulate inflammatory response in a mouse 
model of RA; 24 Inhibition of ABAT might increase 
GABA.16 

CHEMBL2044 

10135 NAMPT Nicotinamide 
phosphoribosyltransferase 

-3.11 Nampt inhibition reduces demyelination and disability in 
EAE37), Lack of NAMPT expression affect T cell 
development.94 

CHEMBL1744525 

2224 FDPS Farnesyl pyrophosphate 
synthase 

-2.98 Inhibition of FDPS inhibit T cell cytokine production.95 CHEMBL1782 

6713 SQLE Squalene monooxygenase -2.96 Increased Membrane Cholesterol in T cells leads to 
inflammatory response. 96 

CHEMBL3592 

2222 FDFT1 Farnesyl-diphosphate 
farnesyltransferase 

-2.66  No support CHEMBL3338 

2053 EPHX2 Bifunctional epoxide 
hydrolase 2 

-2.44 Inhibition of EPHX2 pre clinically evaluated as drug 
target for IBD.39 

CHEMBL2409 

4967 OGDH 2-oxoglutarate 
dehydrogenase 

-2.30  No support CHEMBL2816 

847 CAT Catalase -2.22 Protect T cells against oxidative stress.97 CHEMBL3627594 

1431 CS Citrate synthase -2.17 Inhibition of citrate synthase leads to reduction in citrate 
leading to reduced proliferation.98 

DB02637 

5162 PDHB Pyruvate dehydrogenase E1 
component subunit beta 

-2.04 No reduced  CD4+ T cell proliferation under treatment 
with drug ethyl-pyruvate treatment (This study) 

DB00119 

1312 COMT Catechol O-
methyltransferase 

-1.80 Reduced CD4+ T cell proliferation when inhibited using 
drug entacapone (This study)  

CHEMBL2023 

26275 HIBCH 3-hydroxyisobutyryl-CoA 
hydrolase 

-1.73 No reduced  CD4+ T cell proliferation under treatment 
with drug quercetin (This study) 

CHEMBL3817723 

6648 SOD2 Superoxide dismutase [Mn], 
mitochondrial 

-1.32 Loss of SOD2 increased superoxide, and defective T 
cell development.43 

CHEMBL4105776 

1723 DHODH Dihydroorotate 
dehydrogenase 

-1.26 Explored as a potential drug target for RA25 and MS99. CHEMBL1966 

2548 GAA alpha-glucosidase -1.06  No support CHEMBL2608 

38 ACAT1 Acetyl-CoA 
acetyltransferase, 
mitochondrial 

-1.01 Target of Sulfasalazine that is anti inflammatory 
indicated for treatment of ulcerative colitis and 
rheumatoid arthritis.31 

CHEMBL2616 

MS 1376 CPT2 Carnitine O-
palmitoyltransferase 2 

-3.09 Reduced CD4+ T cell proliferation when inhibited using 
drug perhexiline  (This study)  

CHEMBL3238 

847 CAT Catalase -3.08 Protect T cells against oxidative stress.97 CHEMBL3627594 

498 ATP5F1A ATP synthase subunit alpha -3.04 No reduced  CD4+ T cell proliferation under treatment 
with drug quercetin (This study) 

CHEMBL2062351 

506 ATP5F1B ATP synthase subunit beta -2.88 No reduced  CD4+ T cell proliferation under treatment 
with drug quercetin (This study) 

CHEMBL2062350 

509 ATP5F1C ATP synthase F1 subunit 
gamma 

-2.71 No reduced CD4+ T cell proliferation under treatment 
with drug quercetin (This study) 

DB04216 

4953 ODC1 Ornithine decarboxylase -2.67 No reduced CD4+ T cell proliferation under treatment 
with drug DFMO (This study) 

CHEMBL1869 

471 ATIC MP cyclohydrolase  -2.66 No reduced CD4+ T cell proliferation under treatment 
with  drug pemetrexed(This study) 

CHEMBL3430882 

513 ATP5F1D ATP synthase subunit delta -2.55  No support DB00228 

515 ATP5PB ATP synthase F(0) complex 
subunit B1 

-2.39  No support BTB06584 (cMap) 

128 ADH5 Alcohol dehydrogenase 
class-3 

-2.19 No reduced CD4+ T cell proliferation under treatment 
with  compound  N6022 

CHEMBL4116 

1806 DPYD Dihydropyrimidine 
dehydrogenase 

-1.83 Reduced CD4+ T cell proliferation when inhibited using 
drug perhexiline  (This study)  

CHEMBL3172 

3418 IDH2 Isocitrate dehydrogenase -1.61 knockdown of IDHl or IDH2 reduces IL-17 producing 
cells (Patent WO2017123808A1). 100 

CHEMBL3991501 

2936 GSR Glutathione reductase -1.59 Inhibition of GSH de novo synthesis reduce the 
pathological progression of EAE. 26 

DB0262 
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3156 HMGCR 3-hydroxy-3-methylglutaryl-
coenzyme A reductase 

-1.58 Potential target for autoimmune diseases. 101 CHEMBL402 

2222 FDFT1 Farnesyl-diphosphate 
farnesyltransferase 

-1.55  No support CHEMBL3338 

1719 DHFR Dihydrofolate reductase -1.52 Low dose Methotrexate (inhibitor of DHFR) found 
effective for MS, RA, and Crohn's disease. 27 

CHEMBL202 

5315 PKM Pyruvate kinase -1.51 Potential target to regulate inflammation. 40  CHEMBL1075189 

2618 GART phosphoribosylglycinamide 
formyltransferase 

-1.46 No reduced CD4+ T cell proliferation under treatment 
with  drug pemetrexed (This study) 

CHEMBL3972 

18 ABAT 4-aminobutyrate 
aminotransferase 

-1.41 GABA downregulate inflammatory response in mouse 
model of RA; 24 Inhibition of ABAT might increase 
GABA. 16 

CHEMBL2044 

4047 LSS Lanosterol synthase -1.28 Inhibition of lanosterol synthase (LSS) might decrease 
the endogenous cholesterol that may lead to impact cell 
division. 93 

CHEMBL3593 

2194 FASN Fatty acid synthase -1.16 Fatty acid synthase linked to pathogenicity of Th17 
cells. 102 

CHEMBL4106134 

5471 PPAT phosphoribosyl 
pyrophosphate 
amidotransferase 

-1.15 Knock down of CAD and PPAT promotes regulatory 
CD4+ T cells.103 

CHEMBL2362992 

4860 PNP Purine nucleoside 
phosphorylase 

-1.12 inhibition leads to T cell suppression.104 CHEMBL4338 

1431 CS Citrate synthase -1.11 Increased Citrate in MS patients.105 DB02637 

293 SLC25A6 ADP/ATP translocase 3 -1.11 No support CHEMBL4105854 

790 CAD carbamoyl-phosphate 
synthetase 2 

-1.03 Knock down of CAD and PPAT promotes regulatory 
CD4+ T cells.103 

CHEMBL3093 

6713 SQLE Squalene monooxygenase -1.00 Increased Membrane Cholesterol in T cells leads to 
inflammatory response. 96 

CHEMBL3592 

PBC 10135 NAMPT Nicotinamide 
phosphoribosyltransferase 

-6.10 Nampt inhibition reduces demyelination and disability in 
EAE 37, Lack of NAMPT expression affect T cell 
development. 94 

CHEMBL1744525 

3704 ITPA Inosine triphosphate 
pyrophosphatase 

-5.31  No support CHEMBL4105788 

132 ADK Adenosine kinase -4.90  No support CHEMBL3589 

2181 ACSL3 Long-chain-fatty-acid--CoA 
ligase 3 

-4.42 Reduced CD4+ T cell proliferation when inhibited using 
drug EPA (This study)  

DB00159 

1890 TYMP Thymidine phosphorylase -4.13  No support CHEMBL3106 

262 AMD1 S-adenosylmethionine 
decarboxylase proenzyme 

-4.04  No support CHEMBL4181 

353 APRT Adenine 
phosphoribosyltransferase 

-3.89  No support CHEMBL4105819 

128 ADH5 Alcohol dehydrogenase 
class-3 

-3.89  No support CHEMBL4116 

1312 COMT Catechol O-
methyltransferase 

-3.71 Reduced CD4+ T cell proliferation when inhibited using 
drug entacapone (This study)  

CHEMBL2023 

2053 EPHX2 Bifunctional epoxide 
hydrolase 2 

-3.64 Inhibition of EPHX2 pre clinically evaluated as drug 
target for IBD.39 

CHEMBL2409 

26275 HIBCH 3-hydroxyisobutyryl-CoA 
hydrolase 

-3.64 No reduced CD4+ T cell proliferation under treatment 
with drug quercetin (This study) 

CHEMBL3817723 

2194 FASN Fatty acid synthase -3.62 Fatty acid synthase linked to pathogenicity of Th17 
cells. 102 

CHEMBL4106134 

2720 GLB1 Beta-galactosidase -3.56 No support CHEMBL2522 

114971 PTPMT1 Phosphatidylglycerophospha
tase and protein-tyrosine 
phosphatase 1 

-3.28 No support CHEMBL2052033 

100 ADA Adenosine deaminase -3.15 ADA is a potential target for treatment of inflammatory 
disorders. 106 

CHEMBL1910 

2739 GLO1 Lactoylglutathione lyase -3.10 No support CHEMBL2424 

2539 G6PD Glucose-6-phosphate 1-
dehydrogenase 

-3.06 No support CHEMBL5347 

3251 HPRT1 Hypoxanthine-guanine 
phosphoribosyltransferase 

-2.97  No support CHEMBL3243916 

2548 GAA  alpha-glucosidase -2.96  No support CHEMBL2608 

6515 SLC2A3 Solute carrier family 2, 
facilitated glucose 
transporter member 3 

-2.51 Glut3 expressed in differentiated cells and resting 
equals to glut1.74 

CHEMBL5215 
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4363 ABCC1 Multidrug resistance-
associated protein 1 

-2.31  No support CHEMBL3004 

7296 TXNRD1 Thioredoxin reductase 1 -1.99 essential for DNA synthesis during T-cell metabolic 
reprogramming and proliferation.107 

CHEMBL1927 

6647 SOD1 Superoxide dismutase -1.67  No support CHEMBL2354 

47 ACLY ATP-citrate synthase -1.57 Inactivation of ACLY reduces IL-2-promoted CD4+  T-
cell growth.108 

CHEMBL3720 

*When ChEMBL ids were not available DrugBank31 ids of molecules or name of molecule are provided as 

given in the repurposing tool of cMap database. 
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Table 4: Drugs and compounds for identified drug targets 
 

Gene Symbol Gene description Drugs/ compound* Status of drugs/Compounds* 

LSS Lanosterol synthase R0-48-8071 Preclinical 

ABAT 4-aminobutyrate aminotransferase Vigabatrin, Phenelzine, valproic acid launched 

NAMPT Nicotinamide phosphoribosyltransferase FK866  Phase 2 

FDPS Farnesyl pyrophosphate synthase Pamidronic acid, Zoledronic acid, Alendronic 
acid, Ibandronate, Risedronic acid  

 Launched 

SQLE Squalene monooxygenase Ellagic-acid Phase 2 

FDFT1 Farnesyl-diphosphate 
farnesyltransferase 

TAK-475 Investigational 

EPHX2 Bifunctional epoxide hydrolase 2 GSK2256294A  Phase 1 

OGDH 2-oxoglutarate dehydrogenase Valproic acid   Launched 

CAT Catalase Fomepizole  Launched 

CS Citrate synthase Oxaloacetate  Phase 2/ Phase 3 

PDHB Pyruvate dehydrogenase E1 component 
subunit beta 

2-oxopropanoate Preclinical 

COMT Catechol O-methyltransferase Entacapone, Nitecapone, Opicapone Launched, Phase 2, phase 3 

HIBCH 3-hydroxyisobutyryl-CoA hydrolase Quercetin Launched 

SOD2 Superoxide dismutase [Mn], 
mitochondrial 

Tetraethylenepentamine Phase 2/ Phase 3 

DHODH Dihydroorotate dehydrogenase Atovaquone, Leflunomide, Teriflunomide,  
Brequinar 

Launched 

GAA alpha-glucosidase Miglitol, Acarbose Launched 

ACAT1 Acetyl-CoA acetyltransferase, 
mitochondrial 

Sulfasalazine Launched 

CPT2 Carnitine O-palmitoyltransferase 2 Perhexiline Launched 

ATP5F1A ATP synthase subunit alpha Quercetin Launched,  

ATP5F1B ATP synthase subunit beta Quercetin Launched 

ATP5F1C ATP synthase F1 subunit gamma Quercetin Launched 

ODC1 Ornithine decarboxylase MC-1, Putrescine, DFMO Phase 3, Phase 2, launched 

ATIC MP cyclohydrolase  Pemetrexed Launched 

ATP5F1D ATP synthase subunit delta Sevoflurane, Enflurane, Methoxyflurane Launched 

ATP5PB ATP synthase F(0) complex subunit B1 BTB06584 Preclinical 

ADH5 Alcohol dehydrogenase class-3 N6022 Phase 1/Phase 2 

DPYD Dihydropyrimidine dehydrogenase 5-fluorouracil, Gimeraci Launched 

IDH2 Isocitrate dehydrogenase AGI-6780 Preclinical 

GSR Glutathione reductase Carmustine Launched 

HMGCR 3-hydroxy-3-methylglutaryl-coenzyme A 
reductase 

Atorvastatin, Fluvastatin, Lovastatin, Meglutol, 
Pitavastatin, Pravastatin, Rosuvastatin, 
Simvastatin, Nadide 

Launched 

DHFR Dihydrofolate reductase Aminopterin, Chlorproguanil, Methotrexate,   
Pralatrexate, Proguanil, Pyrimethamine, 
Sulfameter, Trimethoprim, Pemetrexed 

Launched 

PKM Pyruvate kinase TEPP-46, 2-oxopropanoate Preclinical 

GART phosphoribosylglycinamide 
formyltransferase 

Pemetrexed Launched 

FASN Fatty acid synthase Pyrazinamide, Cerulenin Launched 

PPAT phosphoribosyl pyrophosphate 
amidotransferase 

Azathioprine, Mercaptopurine Launched 
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PNP Purine nucleoside phosphorylase Acyclovir, Didanosine Launched 

SLC25A6 ADP/ATP translocase 3 Clodronic-acid Launched 

CAD carbamoyl-phosphate synthetase 2 Sparfosate Phase 3 

ITPA Inosine triphosphate pyrophosphatase Citric-acid Preclinical 

ADK Adenosine kinase ABT-702 Preclinical 

ACSL3 Long-chain-fatty-acid--CoA ligase 3 Eicosapentaenoic Acid Launched 

TYMP Thymidine phosphorylase Tipiracil Launched 

AMD1 S-adenosylmethionine decarboxylase 
proenzyme 

Ademetionine, Putrescine Launched, Phase 2 

APRT Adenine phosphoribosyltransferase Citric-acid Preclinical 

GLB1 Beta-galactosidase Fagomine Phase 2 

PTPMT1 Phosphatidylglycerophosphatase and 
  protein-tyrosine phosphatase 1 

Alexidine Preclinical 

ADA Adenosine deaminase Cladribine, Pentostatin, Dipyridamole, 
  Fludarabine 

Launched 

GLO1 Lactoylglutathione lyase Indomethacin Launched 

G6PD Glucose-6-phosphate 1-dehydrogenase RRx-001 Phase 2 

HPRT1 Hypoxanthine-guanine 
phosphoribosyltransferase 

Azathioprine, Mercaptopurine Launched 

SLC2A3 Solute carrier family 2, facilitated glucose 
  transporter member 3 

2-deoxyglucose Phase 2 

ABCC1 Multidrug resistance-associated protein 1 Reversan, Ko143 Preclinical 

TXNRD1 Thioredoxin reductase 1 Fotemustine Launched 

SOD1 Superoxide dismutase Tetraethylenepentamine Phase 2/Phase 3 

ACLY ATP-citrate synthase ETC-1002 Phase 3 
  

 

* Data obtained from  repurposing tool79 of cMap database and DrugBank.31 
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Figure 1 

 

 

Fig. 1. Integrative approach for the identification of potential metabolic drug targets 

The computational approach comprised of five major steps: (1) Construction of metabolic 

models using integrated transcriptomics and proteomics data, (2) Identification of metabolic 

genes that are targets for existing drugs/compounds, (3) In silico inhibition of targets of existing 

drugs to identify affected reactions, (4) Identification of integrating differentially expressed genes 

(DEGs) in autoimmune diseases and integration with flux ratios obtained by perturbed and WT 

flux comparisons, and (5) Validation with literature and prediction of new targets. 
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Figure 2 

 

Fig 2. Construction of metabolic models in CD4+ T cells 

(a) Active metabolic genes identified using integrated transcriptomics and proteomics data of 

CD4+ T cell subtypes. (b) KEGG pathway enrichment analysis of active genes in each cell type 

using all 1,892 metabolic genes as a background. (c) Fold enrichment and P-values (smaller 

sizes correspond to lower P-values) of KEGG pathways enriched across CD4+ T cell subtypes. 

A pathway was considered significantly enriched with P-value < 0.05 and false discovery rate 

(FDR) < 5%. 
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Figure 3

 

Fig 3. Flux maps of metabolic pathways active in CD4+ T cell metabolic models 

Escher maps showing fluxes through glycolysis, glucose to lactate conversion, TCA cycle, 

glutaminolysis in naïve (a) and Th1 (b) models. Both naïve and Th1 models convert pyruvate to 

lactate (aerobic glycolysis). In glycolysis, the naïve model had the reverse direction flux through 

PGI reaction while Th1 cells have forward direction flux. All the models exhibit an uptake of 
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glutamine that ultimately forms α-Ketoglutaric acid (glutaminolysis). GLNtm (glutamine 

transporter) and GLUNm (convert glutamine to glutamate) reactions are active in naïve model 

and not in Th1 model that use different routes for glutamine to glutamate conversion.  
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Figure 4 

 

Fig. 4: Validation of metabolic models 

(a) Dependency of growth rate to varying rate of glucose uptake (b) Production of lactate with 

increased flux through pyruvate dehydrogenase. (c) The dependency of growth rate (in all 

models) on glutamine when glucose was available (> 5 mmol/ gDW/hr). (d) The dependency of 

growth on glutamine when glucose was removed from the environment. Dots in Figure (a, c, 

and d) are average flux and error bars are standard deviation (n = 5).  
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Figure 5 

 

Fig. 5: Drug targets in CD4+ T cell models 

(a) Distribution of metabolic drug target genes, and inhibitory drugs or compounds in each 

model. (b) Number of metabolic genes in the models mapped with inhibitory drugs (blue bars) 

and number of genes among drugs mapped genes that can block at least one reaction upon 

inhibition (red bars). (c) Comparison of metabolic drug targets that affect reactions upon deletion 

in CD4+ T cell models.  
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Figure 6 

 

Fig. 6: Identification of potential drug targets for RA, MS, and PBC 

(a) Number of all differentially expressed genes (DEGs) and metabolic DEGs in three diseases 

rheumatoid arthritis (RA), multiple sclerosis (MS), and primary biliary cholangitis (PBC). The 

DEGs were analyzed using three transcriptomics datasets (one dataset per disease). The data 

were obtained from peripheral CD4+ T cells of groups of patients and healthy individuals. (b) 
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Schematic representation of the integration of disease-associated differentially expressed genes 

and affected reaction on each drug target gene perturbation. For each drug target deletion, we 

investigated how many of fluxes regulated by upregulated genes are decreased and fluxes 

regulated by downregulated by increased. We used these numbers to calculate PES 

(perturbation effect score, see Materials and Methods).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 
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Fig. 7: Examples of identified drug targets mapped on the metabolic pathways. Relevant 

sub-networks of pathways where drug targets were mapped are shown for (a) pyruvate 

metabolism, (b) TCA cycle, (c) fatty acid biosynthesis, (d) steroid biosynthesis, (e) purine 
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metabolism, and (f) tyrosine metabolism. The mapped drug targets (bold font) and diseases (in 

brackets) are shown in blue colored text.   
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Fig. 8. Analysis of CD4+ T cell proliferation response upon drug treatment by MTT assay. 

CD4+ T cells were exposed to various concentrations of drugs (1 μM, 10 μM, 100 μM and 

1000 μM) for 48 h (white bars) and 72 h (orange bars). Drugs' names (Entacapone, EPA, 

Perhexiline, Fluorouracil, and DFMO) were indicated on the top of each graph bar with their 

corresponding targeted gene in parentheses. Cell proliferation is expressed as fold change +/- 

SEM relative to untreated control cells and is representative of five independent experiments. 
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Statistic significance was only shown for effective concentration and was evaluated using paired 

t-test, one-tailed (* p < 0.05, **p < 0.005). 
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