Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBrain

Reperfusion Cellular Injury in an Animal Model of Transient Ischemia

Seung-Koo Lee, Dong Ik Kim, Si Yeon Kim, Dong Joon Kim, Jong Eun Lee and Jae Hwan Kim
American Journal of Neuroradiology September 2004, 25 (8) 1342-1347;
Seung-Koo Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dong Ik Kim
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Si Yeon Kim
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dong Joon Kim
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jong Eun Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jae Hwan Kim
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

Abstract

BACKGROUND AND PURPOSE: Early thrombolytic therapy is encouraged in hyperacute stroke, although this might result in delayed reperfusion injury. Our purpose was to investigate the serial changes in cerebral perfusion following transient ischemia by means of MR imaging and to correlate them with the histologic findings obtained by using the TdT-mediated dUTP-biotin nick-end labeling (TUNEL) assay.

METHODS: One-hour transient occlusion of the middle cerebral artery was produced in 10 cats. Serial perfusion-weighted MR imaging was performed for 3 days after reperfusion. The reperfusion characteristics in each region of the brain were classified into four groups according to the serial perfusion MR imaging status: normal perfusion (N), continuous hyperperfusion (I), early hyperperfusion and gradual decrease (II), and persistent hypoperfusion (III). After the last imaging session, a specimen was obtained, and TUNEL staining was performed. TUNEL-positive cells were counted under a high-power-field (HPF) light microscope (×200). The degree of TUNEL positivity was compared among the four reperfusion groups classified on the basis of serial perfusion-weighted imaging findings.

RESULTS: Group N had 16.8 ± 5.1 TUNEL-positive cells per HPF. Groups I and II had a statistically significant increase in TUNEL positivity (39.5 ± 13.4 and 43.6 ± 16.7 cells per HPF; P < .01, one-way analysis of variance), whereas group III had a statistically insignificant increase in TUNEL positivity (23.3 ± 6.9 cells per HPF).

CONCLUSION: Reperfusion followed by hyperperfusion induced cellular damage, although the initial MR imaging findings were normal. The inclusion of anti-reperfusion injury therapy should be considered in thrombolytic treatment.

  • Copyright © American Society of Neuroradiology
View Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 25 (8)
American Journal of Neuroradiology
Vol. 25, Issue 8
1 Sep 2004
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Reperfusion Cellular Injury in an Animal Model of Transient Ischemia
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Seung-Koo Lee, Dong Ik Kim, Si Yeon Kim, Dong Joon Kim, Jong Eun Lee, Jae Hwan Kim
Reperfusion Cellular Injury in an Animal Model of Transient Ischemia
American Journal of Neuroradiology Sep 2004, 25 (8) 1342-1347;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Reperfusion Cellular Injury in an Animal Model of Transient Ischemia
Seung-Koo Lee, Dong Ik Kim, Si Yeon Kim, Dong Joon Kim, Jong Eun Lee, Jae Hwan Kim
American Journal of Neuroradiology Sep 2004, 25 (8) 1342-1347;
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Conclusion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Pterostilbene Protects Cochlea from Ototoxicity in Streptozotocin-Induced Diabetic Rats by Inhibiting the Apoptosis
  • Effects of Microvascular Permeability Changes on Contrast-Enhanced T1 and Pharmacokinetic MR Imagings After Ischemia
  • Seizures during stroke thrombolysis heralding dramatic neurologic recovery
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Fast Contrast-Enhanced 4D MRA and 4D Flow MRI Using Constrained Reconstruction (HYPRFlow): Potential Applications for Brain Arteriovenous Malformations
  • Multimodal CT Provides Improved Performance for Lacunar Infarct Detection
  • Optimal MRI Sequence for Identifying Occlusion Location in Acute Stroke: Which Value of Time-Resolved Contrast-Enhanced MRA?
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire