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Blood-Brain Barrier:
Phenomenon of Increasing
Importance to the Imaging Clinician

Research during the past decade has greatly extended our appreciation of the
blood-brain barrier (BBB) and its functional importance [1-3]. Although disturb-
ance of the barrier has been recognized for many years as the basis for
radionuclide imaging of cerebral abnormalities [4], enhanced computed tomo-
graphic (CT) images also reflect changes in the BBB produced by various disease
processes. For optimum application of imaging methods of the brain, clinicians
should have a knowledge of the normal BBB and the pathologic conditions that
may alter it. Our current understanding of the barrier, its structure and properties,
and the mechanisms of alterations by major disease is reviewed.

Concept of the Blood-Brain Barrier

In most nonneural tissues, the endothelium of the capillary wall is permeable
and allows free passage of ions and nonelectrolytes up to the molecular size of
albumin between blood and interstitial fluid [3]. In the nervous system, the
situation is very different. The endothelial cells of the cerebral capillaries restrict
the movement of many molecules from the blood to brain, and, in many sub-
stances, fail to equilibrate with the brain tissue water even under steady state
conditions [1]. This has given rise to the concept of the blood-brain barrier, which
is now known to be a complex physiologic phenomenon [1-3].

Historically, the concept of the BBB developed from observations that intra-
venous injections of certain dyes resulted in staining of various organs while the
brain, except for the choroid plexus, remained unstained [5-7]. In 1898, Biedl
and Krauss [8] noted that the brain was not stained with bilirubin in jaundice,
while many other tissues were saturated with the bile pigment. In contrast,
Goldmann [9] noted that trypan blue introduced directly into the cerebrospinal
fluid (CSF) did produce staining of the nervous system tissues. There appeared
to be a barrier preventing the escape of dye from cerebral blood vessels into the
brain but this barrier could be circumvented by direct injection into the CSF.

The concept was expanded in 1921 by Stern and Gautier [10], and they
introduced the term blood-brain barrier. Further studies with dyes [11-13],
bacterial toxins [12], ions [14], metabolites [15], and drugs [16] added further
support to the fact that the permeability of the cerebral capillaries was different
from those of other tissues.

Morphologic Aspects of the Blood-Brain Barrier

Many authors have reviewed various theories to explain the phenomenon of
the BBB [1-3, 12, 17-22]. These generally relate to differences in capillaries
throughout the body [22-25]. In most nonneural tissues, there appear to be large
water-filled channels crossing capillary walls, formed both between adjacent
endothelial cells and by transient fusion of vesicles across their cytoplasm (fig.
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Fig. 1.—Comparison of neural and nonneural capillary endothelium char-
acteristics.
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1) [3]. The latter phenomenon permits transfer by vesicular
transport or pinocytosis. Capillaries in nonneural tissues
often have a discontinuous or fenestrated basement mem-
brane and also often have wide intercellular gaps (fig. 1). In
contrast, the endothelia of cerebral capillaries, endoneu-
rium, retina, and inner ear have a continuous basement
membrane, with cells being connected by a continuous belt
of tight junctions [26]. Vesicular transport (pinocytosis) is
rare (figs. 1 and 2) [23-25]. Because of these morphologic
characteristics, the endothelium of cerebral capillaries has
the permeability properties of an extended plasma mem-
brane [25-27]. The continuous tight junctions prevent the
passage of protein molecules from the capillary lumen
through the endothelium into the extravascular space [26].
Both horseradish peroxidase (molecular weight, 43,000)
and a microperoxidase (molecular weight, less than 2,000),
when injected into the blood stream, remain within the
cerebral capillary lumen [26, 28, 29]. On the other hand,
when peroxidase is injected into the CSF, the molecule not
only penetrates the ependyma and brain parenchyma, but
permeates the capillary basement membrane and the clefts
between adjacent endothelial cells up to the tight junctions
(fig. 3).

Unlike nonneural capillaries, cerebral capillaries have a
closely investing glial sheath, composed of the ‘‘end-feet”
of astrocytes (fig. 2). Although the astrocytic end-feet are
joined by discontinuous gaps and allow the passage of
peroxidase [30], the close association between the astro-
cytes and the blood vessels suggests a functional relation-
ship [31]. Davson and Oldendorf [32] speculated that the
physiologic tightness of the barrier, namely tight junctions
and a lack of pinocytosis, may be due to an inductive
influence from such astrocytic end-feet [31]. This hypothesis
has never been proven but has much substantial evidence
to support it [31].

In nonneural tissues, pinocytic vesicles are important sites

1 Blood - Brain Interface (Cerebral Capillaries)
2 Brain - CSF Interface (Ependyma or Pia Mater) (no inset)

3 Blood - CSF Interface (Choroid Plexus. Arachnoid Mater)

Fig. 3.—Major compartments of CNS and interfaces between blood, CSF,
and brain tissue. Relatively free passage (straight arrows) of vital dyes,
horseradish peroxidase, and contrast media occurs between CSF and brain
tissue and between vessels and tissue of choroid plexus. However, such
substances are prevented (deflected arrows) from passing freely between
cerebral blood vessels and tissues by tight junctions: between dural vessels
and CSF by arachnoid mater and between tissues of choroid plexus and CSF
by ependyma.

for transferring macromolecules out of peripheral vessels
[24, 25, 31, 33]. A characteristic feature of the endothelium
of cerebral vessels is the paucity of such vesicles, and it
has been suggested that this represents another manifes-
tation of the BBB [1-3, 26, 34, 35].

The BBB is notable for its resistance to a number of
physical and chemical insults, but its permeability may be
increased in certain specific and fairly extreme circum-
stances [31]. Despite extensive research, there remains
great division in the literature on the ultrastructural basis of
barrier breakdown [31]. Initially, it was usually attributed to
opening of the tight junctions between the endothelial cells,
but, more recently, increased vesicular transport activity
has been suggested. Perhaps different ultrastructural
changes occur in response to different insults [31].

Properties and Purpose of the Blood-Brain Barrier

The function of the BBB is to maintain the homeostasis of
the neuronal environment [31]. The continuity produced by
the tight junctions between individual cells allows the en-
dothelium of cerebral capillaries to behave like a plasma
membrane [2, 3, 36, 37]. Substances with a high degree of
lipid solubility [1], a low degree of ionization at physiologic
pH, and a lack of plasma protein binding are permitted free
entry and rapid equilibration [38, 39]. On the other hand,
slow entry and lack of equilibration occur with substances
poorly soluble in lipids [15, 40], ions and substances mostly
dissociated at physiologic pH [18, 41], and substances
bound to plasma proteins [42, 43]. Being a near perfect
semipermeable membrane, the barrier allows water to move
in either direction to maintain equal osmotic concentrations
of solutes in cerebral extracellular fluid and blood [3]. How-
ever, the changes in volume of the brain are resisted despite
prolonged osmotic disturbances, and solutes such as po-
tassium, calcium, and magnesium are maintained in very
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Fig. 4.—Normal enhanced CT scan. Enhancement of tentorial incisura
(arrowhead) and falx (arrow).

Fig. 5.—Normal enhanced CT scan. Vessels of circle of Willis (arrowhead)
due to iodinated contrast media in blood pool. Normal enhancement of
tentorium (arrow).

constant CSF concentrations despite severe and prolonged
disturbances in blood plasma concentrations [1-3].

Cerebral capillaries are unique in comparison with other
capillaries in the distribution of a variety of enzymes [1, 3].
A lack of nucleoside phosphatase activity may represent
one aspect of the BBB. The entry of glucose into the brain
appears to be an enzyme-mediated process [15, 44] and
several carrier systems for the uptake of amino acids have
been described [45].

Sites of the Blood-Brain Barrier

The BBB separates the major compartments of the central
nervous system (CNS), the brain and the CSF, from the third
compartment, the blood [1-3]. Interfaces between the blood
and these two compartments are found in the blood vessels
of the brain and the subarachnoid space, the choroid plexus,
and the arachnoid membrane overlying the subarachnoid
space (fig 3).

Unlike the brain parenchyma, the choroid plexus stains
after intravenous vital dyes. It is also the site of active
transfer of some substances from the blood to CSF [1] and
acts as an effective barrier to the diffusion of some lipid-
insoluble substances. A blood-CSF barrier is sometimes
proposed to explain why intravascular substances enter the
CSF and brain at different rates [22], but this may simply
reflect the gross anatomic relation between the three com-
partments [2].

The ependyma and the pia constitute the brain-CSF inter-
face (fig 3). The ependyma allows rapid equilibration be-
tween the extracellular fluid of the cerebral tissues and the
CSF [2, 3, 14, 46, 47]; the easy passage of horseradish
peroxidase and other smaller molecules between the lining
ependymal cells has been clearly demonstrated [2, 3, 30,
48].

Certain specialized areas of the brain appear devoid of
the BBB. These include the choroid plexus [9], hypophysis
[49], tuber cinereum [50], area prostrema [51], paraphysis
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[52], pineal gland [53], and the preoptic recess [54]. Unlike
other cerebral capillaries, vessels in these areas appear to
have fenestrations, greater pinocytotic activity, and differ-
ences in enzymes [35, 55-57]. The blood vessels of the
dura also have a discontinuous endothelial cell layer and
allow rapid diffusion of peroxidase and vital dyes into the
tissue [2]. However, although the three layers of the me-
ninges are all mesodermal in origin, the outermost layer of
the arachnoid has capillaries with tight junctions, and per-
oxidase introduced into the CSF will not penetrate through
this outer layer, which, therefore, represents the barrier
between the CSF and the mesoderm [568-60]. Similarly, vital
dyes injected intravenously stain the dura that covers the
arachnoid membrane but do not penetrate into the CSF

[11].

Blood-Brain Barrier and Contrast Enhancement in CT

The BBB renders cerebral capillaries impermeable to
iodine contrast agents [61], and, normally, intravenous in-
jection of contrast media demonstrates only vascular struc-
tures. The cerebral parenchyma shows a slight increase in
density since the cerebral blood volume represents 4%-5%
of total brain volume [61, 62]. Normal white and gray matter
show a very slight increase in attenuation in contrast-en-
hanced CT (average enhancement, 1.9 Hounsfield units [H]
for gray matter and 1.4 H for white matter [63]).

The dural vessels are fenestrated and allow passive dif-
fusion of contrast agents into their extracellular space.
Normally, intense enhancement of the dural folds of the falx

and tentorium occurs (fig. 4) [64]. The choroid plexus ves-

sels also lack an impervious barrier between capillaries and
the extracellular space and show marked enhancement
[64]. Naidich et al. [64] also report that at times there is a
distinct blush of the lateral walls of the lateral ventricles
after contrast enhancement. The explanation for this is
unknown but it may be due to the caudate nucleus and the
subependymal veins.

It has been shown that an iodine concentration of 1 mg/
ml raises the average attenuation of a solution by 24-30 H
[65-67]. The high values of the tissue-blood ratio of en-
hancement in pathologic conditions in CT cannot be ex-
plained by the iodinated blood volume per unit volume of
tissue alone [65]. From recent studies [68, 69], it must be
concluded that cerebral contrast enhancement by iodinated
material in CT is to a great extent a reflection of a loss of the
integrity of the blood-brain barrier, except where large vas-
cular channels contain a sufficiently large pool of iodinated
materials to be visualized directly (fig. 5) [67].

Unlike contrast media, xenon is fat-soluble and passes
freely across the normal blood-brain barrier. Therefore,
specific damage to the BBB cannot be detected by xenon
enhancement [70]. However, having a high atomic number
(54), xenon results in enhancement in the extravascular
tissue, and experimental studies suggest that such enhance-
ment may have a place in blood flow studies [71, 72].
Recently, xenon, as inhaled gas, was used for contrast
enhancement in CT of the brain, spinal cord, and other
tissues [72-75]. Theoretical considerations and possible
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use of contrast agents other than those incorporating iodine
in CT have been discussed [75].

Pathologic Alterations in the BBB and Their Relevance
to CT Enhancement

Intraaxial Tumors

Normally, the cerebral capillary endothelium has a close
investment by a glial sheath, the “‘end feet'’ of astrocytes
(fig. 2) [31], and the physiologic tightness of the BBB may
be due to an inductive influence from these astrocytic end-
feet [31, 32]. Disruption of this glial sheath by mitotic activity
may make the capillaries more permeable [3].

Tumors stimulate the p'roliferation of abnormal capillaries
by releasing specific angiogenic factors in the brain
[76-78]. The nature of these capillaries in glial tumors is
somewhat predictable [61]. In low-grade gliomas, such as
grade 1 astrocytoma, new capillaries resemble normal cere-
bral capillaries with maintenance of the BBB, and, therefore,
no CT enhancement is demonstrated (fig. 6) [61]. On the
other hand, in more malignant tumors, the capillaries are
fenestrated with vesicule formation (pinocytosis), have an
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Fig. 6.—Enhanced CT scan of patient
with large low grade astrocytoma of tem-
poral lobe. Extensive area of hypodens-
ity but no enhancement because new
tumor capillaries resemble normal cere-
bral capillaries with maintenance of
BBB.

Fig. 7.—Glioblastoma multiforme. A,
Plain study. Extensive vasogenic edema.
B, After contrast. Intense enhancement
of tumor due to disturbance or even
complete absence of BBB.

Fig. 8.—Enhancement of two meta-
static tumors surrounded by rim of
edema. Proliferation of nonneural capil-
laries, similar to tissue of origin, allows
passage of contrast from blood pool into
tumor tissue.

Fig. 9.—Obstructive hydrocephalus
due to meningioma in posterior fossa.
Hyperdense lesion in plain study (A)
shows intense enhancement after con-
trast (B), illustrating absence of BBB in
these tumors.

incomplete BBB, and allow enhancement with contrast ma-
terial (fig. 7) [61, 79]. In malignant tumors, Long [77] sug-
gested that it was more correct to speak of a complete
absence of the BBB rather than a breakdown by endothelial
hyperplasia or extensive vesicle formation. The basement
membrane of malignant tumor capillaries is often difficult to
define and glial processes are often absent. Fenestrated
capillaries have been demonstrated in experimental tumors
[80], while rupture of the endothelial cells themselves has
been postulated with tumor growth [81]. Barrier breakdown
allows protein and other blood solutes to be taken up by the
astrocytes, particularly in relation to the capillaries, and this
has been reported in the case of tumors [80, 82]. This may
also upset the postulated influence of the astrocytic end-
feet on barrier integrity.

There is no relation between the angiographic architec-
ture of a particular tumor on the one hand and enhancement
at CT on the other [61, 65]. The major influence on enhance-
ment of such lesions is a change or alteration in the BBB
due to the factor above. Gado et al. [65] suggested that the
vascular pool of angioblastic tumors represents at best only
20%-30% of enhancement.

Metastatic tumors in the brain induce proliferation of
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Fig. 10.—Enhanced scan 7 days
after cerebrovascular accident. Intense
cortical enhancement in area of recent
infarction. Luxury perfusion and stasis
may be factors in such enhancement
transiently but increased permeability of
BBB is dominant factor.

Fig. 11.—Patient with known colloid
cyst who developed left hemiplegia 10
days before. A, Plain series. Vague
areas of low density in anterior temporal
region on right side. B, After contrast.
Enhancement of both cortical mantle
(arrow) and deep central gray matter of
basal ganglia (arrowhead) indicates ex-
tensive area of infarction.

nonneural capillaries, characteristic of the tissue of origin.
For example, capillaries of cerebral metastatic lymphoma
have regular endothelial cells with pinocytotic activity and
fenestrations characteristic of a normal lymph gland rather
than of cerebral capillaries [83]. Such capillaries have no
BBB, and, therefore, show CT enhancement (fig. 8). Al-
though the change in the BBB is the most important factor
in enhancement, the volume of the extracellular space in
both primary and secondary tumors is also important [65].

Extraaxial Tumors

Meningiomas arise from arachnoid rests in the dura. Be-
cause of the mesenchymal origin of such tumors, the cap-
illaries are fenestrated and, therefore, have no significant
BBB. This absence explains the intense enhancement seen,
particularly with meningiomas (fig. 9). Similarly, the anterior
lobe of the pituitary normally has no blood-brain barrier and
the normal gland, therefore, enhances uniformly [84], being
isodense with cerebral vessels. Therefore, typically, pitui-
tary macroadenomas appear hyperdense compared with
brain tissue after contrast enhancement [61]. On the other
hand, the density and contrast enhancement in prolactin-
secreting microadenomas is often less than that of the
surrounding normal gland [84, 85].

Hypoxia, Ischemia, and Infarction

Maintenance of the integrity of the BBB in the face of
hypoxia and ischemia has been confirmed by many authors
[3, 86, 87]. This resistance is attributed to a differential
sensitivity, of the endothelial cells on one hand and neurons
and glial cells on the other, to lack of oxygen [2, 3, 88,
89]. However, extended periods of ischemia lead to focal
necrosis and infarction [90, 91], and neurons, glia, and
capillary endothelial fall out in sequence [2]. Edema devel-
ops at the periphery of the infarcted area, where increased
BBB permeability is demonstrated, reaching a maximum at
4-5 days and remaining for 20 days or more [2]. Invading
phagocytes eventually remove necrotic tissue, which is re-
placed by a fluid-filled cyst with normal blood vessels [91].

CT findings in the acute cerebral infarction have been well
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documented [92-95]. Usually, no enhancement is seen in
the first few days [96] but 60%-93% of infarcts show
enhancement at 7-30 days [92, 93, 96]. After 3—-4 months,
50% show enhancement [95, 96] and it has been observed
as late as 6 months [97, 98]. The pattern of enhancement
is variable. It may be heterogenous with a fingerlike pattern,
particularly in the cortical area (fig. 10), or homogenous
over the entire low density area demonstrated in the pre-
contrast series [99]. Sometimes, localized enhancement is
noticed in an area apparently isodense on the precontrast
scan [99].

Close inspection of a postcontrast scan obtained soon
after injection shows enhancement corresponding to the
irregular peripheral margin, and the normal dense bands
inside the area of low density of the precontrast scan,
corresponding exactly to the gray matter of the cortical
mantle and basal ganglia (fig. 11) [70, 96]. On the other
hand, delayed scans 3 hr after contrast administration show
a diffuse spreading of contrast material in a pattern thought
to indicate spread of the extravasated contrast media in the
extracellular space [70, 95]. The pathophysiologic basis of
enhancement in cerebral infarction still remains speculative,
but destruction or increased permeability of the BBB [100,
101], luxury perfusion [102], and new capillary growth [96,
101] all play a part. Hayman et al. [70] recently investigated
enhanced CT patterns after cerebral arterial embolization in
baboons. No enhancement was demonstrated in the total
absence of perfusion. Slow flow was associated with a
transient focal cortical blush, and luxury perfusion at the
margin of the infarct resulted in enhancement. However,
disturbance of the BBB was thought to be the major factor.
Usually, enhancement due to increased permeability of the
BBB obscured enhancement due to luxury perfusion or slow
flow. Therefore, delayed contrast scans are necessary to
distinguish BBB damage, associated with progressively in-
creasing enhancement, from flow abnormalities, character-
ized by transient enhancement.

Inflammatory Diseases

In pyogenic meningitis, bacteria multiply within the CSF
or meninges. The blood vessels of the subarachnoid space
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A B

Fig. 12.—Cerebral abscess in parietal region. A, Plain study. B, After
contrast. Typical rim enhancement (arrow) within area of edema in plain
study due to inflammation and capsule neovascularity.

are involved in the inflammatory reaction, and migration of
the leukocytes across cerebral vessels is accompanied by
increased transport of substances like albumin, mannitol,
and antibiotics [103, 104]. Protein in the CSF is elevated
because of this barrier damage. The inflammatory process
may spread into the brain parenchyma, but the increased
barrier permeability appears to be limited to the blood-CSF
barrier as it is usually not possible to demonstrate any brain
enhancement on CT or radionuclide scans [105]. On the
other hand, a heterogenous appearance with vaguely de-
fined hyperdense areas after contrast administration has
been described [106]. In tuberculous meningitis, the effect
on the BBB is also poorly understood and various CT
appearances have been described [105, 106].

The CT appearance of brain abscesses has been thor-
oughly investigated [105-110]. Enhancement is thought to
be uncommon in the cerebritis stage prior to capsule for-
mation [108, 109]. However, recently in experimental ab-
scess evolution, ring enhancement was seen in the cerebri-
tis stage prior to capsule formation [110]. In fact, maximum
ring enhancement correlated best with the area of cerebritis,
particularly with delayed scans; the diameter of the ring of
enhancement decreased as cerebritis receded. Typical ring
enhancement is seen is most cases, with some variation in
configuration (fig. 12). In the acute phase, such enhance-
ment is thought to represent inflammatory neovascularity,
although, later, increased blood flow through the capsule
may be a factor. With healing, brain abscesses show regres-
sion of the BBB disruption [108]. An increase in enhance-
ment after withdrawal of steroids has been observed, per-
haps illustrating the protective effect of the steroids on the
BBB [108].

Much work has been done on the effect of viral enceph-
alitis on the BBB [2]. Experimental encephalomyelitis has
been shown to increase the BBB permeability to various
markers, including vital dyes and horseradish peroxidase
[111].

In uncomplicated cases of viral encephalitis, perivascular
cuffs of lymphocytes surround the blood vessels but appar-
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Fig. 13.—Follow-up study after radiotherapy for glioma of left frontal lobe.
Plain (A) and enhanced (B) scans. Significant mass effect, edema, and
intense enhancement of left frontal lobe. At craniotomy there was no obvious
tumor recurrence but extensive radiation necrosis was found.

ently do not damage the brain or interfere with function.
However, in more fulminating infections, lymphocytes pen-
etrate deeply into the brain parenchyma where they destroy
myelin sheaths on direct contact and provoke an inflam-
matory reaction [112, 113]. BBB permeability increases
either just before or at the same time as the lymphocyte
migration across cerebral vessels [111].

Radiation

Various forms of ionizing radiation have been shown to
increase the permeability of the BBB [3]. Large doses of
photon and alpha particle irradiation will break down the
barrier within 72 hr and produce a severe white matter
edema [114]. The total x-ray dose needed to produce acute
breakdown of the BBB is large, being about 10,000 rad
(1,000 Gy) [115].

Lower experimental and clinical doses of radiation may
not produce an acute effect on the BBB permeability
[116]. However, they initiate changes that result in BBB
breakdown 1 month to 5 years after exposure, and delayed
necrosis of the brain after exposure to high doses of radia-
tionis well recognized [117-121]. Brain edema may develop
in conjunction with this increased permeability and lead to
swelling of the involved tissues and, therefore, increased
pressure [121, 122].

Recently, the CT appearance of such necrosis has been
described [121, 122]. A low density mass is demonstrated
that shows enhancement after contrast administration (fig.
13), even when the original tumor showed no contrast
enhancement before radiation therapy. In the absence of
tumor regrowth, radiation necrosis alone may result in sig-
nificant mass effect (fig. 13)[121, 122]. Presumably, the CT
appearance is explained by an increased permeability of
capillaries leading to enhancement, while a mass effect
results from edema due to this increased permeability. It
was suggested recently that BBB function may be altered
by cranial radiation to allow increased permeability to
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chemotherapeutic such as  methotrexate

[123, 124].

agents

Brain Trauma and Cerebral Edema

Cerebral edema may be intracellular, extracellular, or a
combination of the two. Mechanisms of formation have been
considered cytotoxic and vasogenic [125, 126]. Cytotoxic
edema is conceived when the primary lesion and accumu-
lation of fluids is in the parenchymatous cells, neurons, and
glia, as in hypoxic and ischemic damage. Therefore, BBB
breakdown is unusual and occurs late, if at all. Most other
types of edema are vasogenic and are due to excessive
exudation of fluid from the cerebral capillaries [13]. Most
insults that rupture the barrier will cause cerebral edema if
applied with sufficient intensity [22, 31]. Direct injury to the
brain, such as a stab wound, results in local destruction of
the brain cells and blood vessels [127]. The damaged en-
dothelial cells separate from each other, rupturing tight
junctions and leaving gaps in capillary linings, while pino-
cytosis increases in the remaining cells [2]. During this
stage, therefore, some enhancement on CT would be ex-
pected. With healing, phagocytes remove destroyed tissue
while proliferating astrocytes lead to the formation of a glial
scar. After 1 month, the region is invaded by new normal
capillaries with normal barrier properties [13, 128, 129].
Therefore, in the healed phase, such injuries would not
show enhancement.

Miscellaneous Causes of Changes in the Permeability of
the BBB

Multiple Sclerosis

Computed tomography has demonstrated a spectrum of
abnormalities in patients with multiple sclerosis, including
small focal areas of contrast enhancement [130-133]. The
contrast-enhancing lesions, typically periventricular in dis-
tribution, are usually demonstrated in the presence of acute,
active, or exacerbating disease [130, 131, 133] and repre-
sent areas of active demyelination. This association has
been proven pathologically [133-135].

Such enhancement presumably results from changes in
the integrity of the BBB produced by acute demyelination,
which allows extravasation of contrast medium [136]. This
is supported by the fact that such lesions are better visual-
ized by the use of an expanded dose of contrast medium
[136, 137] and also delayed contrast examinations [130,
136]. With clinical improvement, contrast-enhancing lesions
become isodense [130, 131] while corticosteroids may also
reduce enhancement [138], presumably by reestablishing
the integrity of the BBB [130, 132, 138].

Epilepsy

Using vital dyes and radioactive tracers, increased perme-
ability or breakdown of the BBB has been demonstrated
after induced convulsions [3, 139, 140]. The increase in
permeability correlates with the duration of seizure activity
[3], while experimentally low blood pressure, pentobarbitone
[141], and glucocorticoids [142] have a protective effect.
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The degree of neuronal activity [143] and vasodilation [3]
may play a part in the extent of these temporary barrier
alterations. All changes are reversible within 1 hr after
cessation of the convulsions [3, 144]. Structural abnormal-
ities have been identified on enhanced CT in one-half of
epileptic foci identified by electroencephalography and clin-
ical evaluation, while further lateralization is possible using
the region of interest technique [145].

Seizures induced by intravenous contrast media for en-
hanced CT have been described [146], particularly in the
presence of metastases. This may be due to the direct effect
of the contrast media itself. The underlying lesion may alter
the BBB and allow contrast media to leak into the brain
parenchyma [147].

Disturbance of Normal Autoregulation

Experimentally induced severe hypertension leads to in-
creased permeability of the BBB [148], susceptibility being
increased by irradiation [149] and reduced by dexametha-
sone [150]. In hypertensive encephalopathy, characterized
by an acute rise in blood pressure above 200 mm Hg,
increased BBB permeability and clinical disorders of the
nervous system have been described [2].

Other conditions including hypercapnia, profound meta-
bolic and respiratory acidosis, cerebral concussion, and
intracranial hypertension may also alter normal autoregula-
tion [2]. Increased luminal pressure results in capillary dila-
tation and this may widen intercellular tight junctions leading
to increased BBB permeability and brain edema. When
autoregulation is restored, changes are reversible.

Similarly, certain other metabolic disturbances may alter
the permeability of the BBB in experimental animals, includ-
ing thiamine deficiency [151] and portocaval anastomosis
[152], while clinically, heavy metal poisoning such as lead,
may lead to an encephalopathy characterized by increased
BBB permeability [3].

Hypertonic Solutions, Including Contrast Media

Various hypertonic solutions of electrolytes and nonelec-
trolytes have been shown to disrupt or increase the perme-
ability of the BBB, often in a reversible fashion [153-159].
Recent studies of intravenous hypertonic mannitol suggest
that reversible osmotic BBB disruption may increase mark-
edly the delivery of chemotherapeutic agents to the cerebral
parenchyma [155].

Increased permeability of the BBB after carotid injection
of various contrast media has been well documented [160-
165], and the neurotoxicity of such media is probably related
to this. The osmolality of contrast media is a definite factor
in neurotoxicity [166, 167]. However, hypertonic glucose
and sodium chloride solutions produce similar but less pro-
nounced effects [168] on the BBB so that toxicity cannot be
explained by osmotic action alone. The actual molecular
structure of various contrast media is important and, hence,
sodium salts of a particular contrast medium cause a greater
disruption of the BBB and greater neurotoxicity then equiv-
alent solutions of methylglucamine salts [160, 163, 167-
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169]. Recently developed nonionic contrast media, such as
metrizamide, appear to have a less toxic effect on the BBB
than equivalent ionic methylglucamine salts [170].
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