Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleResearch Perspectives
Open Access

MR−Based Molecular Imaging of the Brain: The Next Frontier

M.E. de Backer, R.J.A. Nabuurs, M.A. van Buchem and L. van der Weerd
American Journal of Neuroradiology October 2010, 31 (9) 1577-1583; DOI: https://doi.org/10.3174/ajnr.A2264
M.E. de Backer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.J.A. Nabuurs
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.A. van Buchem
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. van der Weerd
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

Abstract

SUMMARY: In the foreseeable future, the MI field could greatly assist neuroradiologists. Reporter molecules provide information on specific molecular or cellular events that could not only aid diagnosis but potentially differentiate stages of disorders and treatments. To accomplish this, reporter molecules literally need to pass a barrier, the BBB, which is designed to repel nonessential molecules from the brain. Although this is not a trivial task, several transport systems could be tricked into guiding molecules into the brain. The noninvasive nature in conjunction with a wide availability makes MR imaging particularly suitable for longitudinal neurologic imaging studies. This review explains the principles of MR imaging contrast, delineates different types of reporter molecules, and describes strategies to transport reporters into the brain. It also discusses recent advances in MR imaging hardware, pulse sequences, the development of targeted reporter probes, and future directions of the MR neuroimaging field.

Abbreviations

AD
Alzheimer disease
BBB
blood-brain barrier
CA
contrast agent
CEST
chemical exchange saturation transfer
CLIO
cross-linked iron oxide
CNS
central nervous system
DMSO
dimethyl sulfoxide
Eu-DOTA
europium tetra-azacyclododecane tetraacetic acid
18F
fluorine-18
19F
fluorine-19
FDG
fluorodeoxyglucose
Gd
gadolinium
Gd3+
gadolinium 3+
1H-MR imaging
proton MR imaging
LRP
lysine rich protein
MI
molecular imaging
MION
monocrystalline iron oxide nanoparticle
Mn2+
manganese 2+
MRS
magnetic resonance spectroscopy
MW
molecular weight
31P
phosphorus-31
PARACEST
chemical exchange saturation transfer using paramagnetic ions
PEG
polyethylene glycol
PET
positron-emission tomography
RNA
ribonucleic acid
SPIO
superparamagnetic iron oxide
T1
longitudinal relaxation time
T2
transverse relaxation time due to spin-spin interactions (irreversible effect)
T2*
transverse relaxation time due to spin-spin interactions and local inhomogeneities (partly reversible)
USPIO
ultrasmall superparamagnetic iron oxide
  • Copyright © American Society of Neuroradiology

Indicates open access to non-subscribers at www.ajnr.org

View Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 31 (9)
American Journal of Neuroradiology
Vol. 31, Issue 9
1 Oct 2010
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
MR−Based Molecular Imaging of the Brain: The Next Frontier
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
M.E. de Backer, R.J.A. Nabuurs, M.A. van Buchem, L. van der Weerd
MR−Based Molecular Imaging of the Brain: The Next Frontier
American Journal of Neuroradiology Oct 2010, 31 (9) 1577-1583; DOI: 10.3174/ajnr.A2264

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
MR−Based Molecular Imaging of the Brain: The Next Frontier
M.E. de Backer, R.J.A. Nabuurs, M.A. van Buchem, L. van der Weerd
American Journal of Neuroradiology Oct 2010, 31 (9) 1577-1583; DOI: 10.3174/ajnr.A2264
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Abbreviations
    • Brain Targeting
    • Generating MR Imaging Contrast
    • Reporter Systems
    • Detecting Molecules
    • Detecting Cells
    • Reporter Genes
    • Current Developments
    • Outlook
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • MR Imaging Features of High-Grade Gliomas in Murine Models: How They Compare with Human Disease, Reflect Tumor Biology, and Play a Role in Preclinical Trials
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Hot Topics in Research: Preventive Neuroradiology in Brain Aging and Cognitive Decline
  • Evidence Levels for Neuroradiology Articles: Low Agreement among Raters
  • Imaging Biomarkers in Ischemic Stroke Clinical Trials: An Opportunity for Rigor
Show more Research Perspectives

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire