Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBrain
Open Access

A Stable Focal Cerebral Ischemia Injury Model in Adult Mice: Assessment Using 7T MR Imaging

F. Zhang, R.-M. Guo, M. Yang, X.-H. Wen and J. Shen
American Journal of Neuroradiology May 2012, 33 (5) 935-939; DOI: https://doi.org/10.3174/ajnr.A2887
F. Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.-M. Guo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Yang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
X.-H. Wen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Shen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

Abstract

BACKGROUND AND PURPOSE: A stable stroke experimental model is highly desirable for performing longitudinal studies using MR imaging. The purpose of this study is to establish a stable focal cerebral ischemia model with a high survival rate in adult mice.

MATERIALS AND METHODS: One hundred twenty adult mice were randomly divided into 10 groups of 12 each to respectively undergo intraluminal suture occlusion, with suture insertion depths from 0.8 cm to maximum; thromboembolic occlusion; and hypoxic-ischemic injury with hypoxia exposure times from 30–120 minutes. Coronal brain T2-weighted images were obtained on a 7T scanner. The induced infarct volume and location were assessed and correlated with histologic TTC staining. One-day and 7-day survival rates were recorded.

RESULTS: The infarct location was highly variable in the thromboembolic model, while it showed a cortex predominance in the intraluminal model with the suture insertion depth ≥1.4 cm, and the HI model with hypoxia exposure times ≥60 minutes (P = .001). The infarct volume in the intraluminal model with suture depths ≥1.4 cm (29.7 ± 3.3%, 35.4 ± 4.3%) and the HI model with the hypoxia exposure times ≥90 minutes (26.3 ± 4.1%, 33.4 ± 2.8%) were larger than other groups (9.7 ± 3.3%–20.9 ± 9.3%; P < .05). The HI group (72.5%) had higher 7-day survival rate than the intraluminal suture occlusion (28%) and thromboembolic occlusion groups (20%; P = .001).

CONCLUSIONS: The HI injury model with a reproducible ishemia and high survival rate can be used for a longitudinal study of brain ischemia in adult mice.

ABBREVIATIONS:

CCA
common carotid artery
ECA
external carotid artery
HI
hypoxia-ischemia
MCAO
middle cerebral artery occlusion
PBS
phosphate buffered saline
PPA
pterygopalatine artery
TTC
2, 3, 5-triphenyltetrazolium chloride staining
  • © 2012 by American Journal of Neuroradiology

Indicates open access to non-subscribers at www.ajnr.org

View Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 33 (5)
American Journal of Neuroradiology
Vol. 33, Issue 5
1 May 2012
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Stable Focal Cerebral Ischemia Injury Model in Adult Mice: Assessment Using 7T MR Imaging
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
F. Zhang, R.-M. Guo, M. Yang, X.-H. Wen, J. Shen
A Stable Focal Cerebral Ischemia Injury Model in Adult Mice: Assessment Using 7T MR Imaging
American Journal of Neuroradiology May 2012, 33 (5) 935-939; DOI: 10.3174/ajnr.A2887

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
A Stable Focal Cerebral Ischemia Injury Model in Adult Mice: Assessment Using 7T MR Imaging
F. Zhang, R.-M. Guo, M. Yang, X.-H. Wen, J. Shen
American Journal of Neuroradiology May 2012, 33 (5) 935-939; DOI: 10.3174/ajnr.A2887
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Optimal MRI Sequence for Identifying Occlusion Location in Acute Stroke: Which Value of Time-Resolved Contrast-Enhanced MRA?
  • Evaluating the Effects of White Matter Multiple Sclerosis Lesions on the Volume Estimation of 6 Brain Tissue Segmentation Methods
  • Quiet PROPELLER MRI Techniques Match the Quality of Conventional PROPELLER Brain Imaging Techniques
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire