Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in
  • Log out

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in
  • Log out

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleNeurointervention
Open Access

3D Computational Fluid Dynamics of a Treated Vertebrobasilar Giant Aneurysm: A Multistage Analysis

F. Graziano, V.M. Russo, W. Wang, D. Khismatullin and A.J. Ulm
American Journal of Neuroradiology July 2013, 34 (7) 1387-1394; DOI: https://doi.org/10.3174/ajnr.A3373
F. Graziano
aFrom the Clinica Neurochirurgica (F.G., V.M.R.), AOU “G. Rodolico” Universita' degli Studi di Catania, Italy
bDepartment of Neurosurgery (F.G., V.M.R., A.J.U. III), Louisiana State University, New Orleans, Louisiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V.M. Russo
aFrom the Clinica Neurochirurgica (F.G., V.M.R.), AOU “G. Rodolico” Universita' degli Studi di Catania, Italy
bDepartment of Neurosurgery (F.G., V.M.R., A.J.U. III), Louisiana State University, New Orleans, Louisiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W. Wang
cDepartments of Chemical and Biomolecular Engineering (W.W.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. Khismatullin
dBiomedical Engineering (D.K.), Tulane University, New Orleans, Louisiana.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.J. Ulm III
bDepartment of Neurosurgery (F.G., V.M.R., A.J.U. III), Louisiana State University, New Orleans, Louisiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

Abstract

BACKGROUND AND PURPOSE: The treatment of giant aneurysms of the vertebrobasilar junction remains a challenging task in neurosurgical practice, and the reference standard therapy is still under debate. Through a detailed postmortem study, we analyzed the hemodynamic factors underlying the formation and recanalization of an aneurysm located at this particular site and its anatomic configuration.

METHODS: An adult fixed cadaveric specimen with a known VBJ GA, characterized radiographically and treated with endovascular embolization, was studied. 3D computational fluid dynamic models were built based on the specific angioarchitecture of the specimen, and each step of the endovascular treatment was simulated.

RESULTS: The 3D CFD study showed an area of hemodynamic stress (high wall shear stress, high static pressure, high flow velocity) at the neck region of the aneurysm, matching the site of recanalization seen during the treatment period.

CONCLUSIONS: Aneurysm morphologic features, location, and patient-specific angioarchitecture are the principal factors to be considered in the management of VBJ giant aneurysms. The 3D CFD study has suggested that, in the treatment of giant aneurysms, the intra-aneurysmal environment induced by partial coil or Onyx embolization may lead to hemodynamic stress at the neck region, potentially favoring recanalization of the aneurysm.

ABBREVIATIONS:

CFD
computational fluid dynamics
GA
giant aneurysm
VA
vertebral artery
VBJ
vertebrobasilar junction
WSS
wall shear stress
  • © 2013 by American Journal of Neuroradiology

Indicates open access to non-subscribers at www.ajnr.org

View Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 34 (7)
American Journal of Neuroradiology
Vol. 34, Issue 7
1 Jul 2013
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
3D Computational Fluid Dynamics of a Treated Vertebrobasilar Giant Aneurysm: A Multistage Analysis
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
F. Graziano, V.M. Russo, W. Wang, D. Khismatullin, A.J. Ulm
3D Computational Fluid Dynamics of a Treated Vertebrobasilar Giant Aneurysm: A Multistage Analysis
American Journal of Neuroradiology Jul 2013, 34 (7) 1387-1394; DOI: 10.3174/ajnr.A3373

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
3D Computational Fluid Dynamics of a Treated Vertebrobasilar Giant Aneurysm: A Multistage Analysis
F. Graziano, V.M. Russo, W. Wang, D. Khismatullin, A.J. Ulm
American Journal of Neuroradiology Jul 2013, 34 (7) 1387-1394; DOI: 10.3174/ajnr.A3373
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Hemodynamic characteristics of stable and unstable vertebrobasilar dolichoectatic and fusiform aneurysms
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • A Retrospective Study in Tentorial DAVFs
  • Proximal Protection Devices for Carotid Stenting
  • Rescue Reentry in Carotid Near-Occlusion
Show more NEUROINTERVENTION

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire