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COMMENTARY

An Introduction to Kurtosis Fractional Anisotropy

Neuroradiology and imaging-based diagnostics in general
have a dire need for scan techniques with improved micro-

structural sensitivity for detection of subtle tissue alterations in
early disease phases or for diagnostics of diseases that are cur-
rently simply radiologically invisible. Diseases in which this need
is most outspoken are often neurodegenerative diseases such as
Alzheimer’s disease, multiple sclerosis, and Parkinson’s disease
but examples also include (mild, repetitive) trauma, addiction,
and stroke. Less frequently reported but important nevertheless is
the need for sensitive methods for diagnosis and monitoring of
patients exposed to poisonous substances. In the industrialized
parts of the world, the leading cause of poisoning is carbon mon-
oxide (CO).1 In the study by Zhang et al2 in the present issue of
the American Journal of Neuroradiology (AJNR), brain micro-
structure in CO-poisoned patients is assessed at 3 time points
using diffusional kurtosis imaging (DKI) and is correlated to
patient cognitive performance. It concluded that DKI metrics
provide important information about the damage to the brain
due to CO, and supplement cognitive scores. As a first, the study
found kurtosis fractional anisotropy (KFA) to have the best diag-
nostic efficiency based on a standard area under the curve mea-
sure. Because this parameter is likely to be somewhat new to
many working in the field of neuroradiology, this commentary
aims to recapitulate the basis of KFA and what it might indicate
about tissue microstructure.

Diffusion MR Imaging and Diffusional Kurtosis Imaging
Water is abundant in the brain, and the water molecules are ther-
mally driven to move ceaselessly and randomly. The local envi-
ronment of a water molecule determines its mobility. Therefore,
water ensemble properties such as mean diffusivity, diffusion ani-
sotropy, and diffusion distribution shape vary among tissues with
different compositions. In neural tissue, diffusion variations are
seen among tissue microdomains at the subcellular level,3 the
intra- or extracellular space, among cell types,4 and therefore
also on a coarser scale between gray and white matter tissue.5

Noninvasive MR imaging–based measurements of brain-water
diffusion, therefore, in principle, contain abundant information
about the cellular-level tissue composition. Initially, the diffusion
MR imaging (dMRI) signal description was based on a Gaussian

(normal) diffusion probability distribution,6 forming the basis for
the familiar diffusion tensor imaging technique. In biologic tissue,
however, the overall diffusion behavior observed from an MR
imaging voxel is not Gaussian under clinically relevant measure-
ment conditions. To account for non-Gaussian diffusion, a kurto-
sis term is added to the DTI signal equation, producing the
diffusion DKI framework:7

1) log Sðb; n̂Þ ¼ �bDðn̂Þ þ 1
6
b2 �D2Wðn̂Þ:

Equation 1 describes the behavior of the (log of the) normal-
ized dMRI signal from tissue with diffusion described by a 3 �
3 diffusion tensor D, and kurtosis is described by the 4D tensor
W. As written here, the signal is measured along a direction n̂
with diffusion weighting b. The first term on the right-hand
side is the DTI signal term, so DTI is fully contained (and
actually improved8) in DKI. The second term on the right-hand
side of Equation 1 is the kurtosis term, with the kurtosis tensor
W describing the non-Gaussian properties of the diffusion,
which are not contained in D. As written here, Dðn̂Þis the appa-
rent diffusivity and Wðn̂Þ is the apparent kurtosis, both
observed along the diffusion gradient direction n̂. Note that
sometimes the apparent kurtosis is referred to as Kðn̂Þ, where
Kðn̂Þ ¼ Wðn̂Þ�D2

=Dðn̂Þ2 (�D is mean diffusivity, see below).
Simply put, the kurtosis term accounts for the signal deviation
from log-linear DTI behavior along the diffusion-encoding
direction n̂.

The wealth of information available from DTI and DKI is con-
tained in the diffusion tensor D and the kurtosis tensor W. From
D, a number of parameters are available, with typical reported
metrics being the apparent diffusion coefficient, ADC ¼ Dðn̂Þ;
mean diffusivity (�D � TrðDÞ=3 ¼ ðl1 þ l2 þ l3Þ=3, where
l 1�3 is the diffusion tensor eigenvalues—that is, Dðx̂0Þ; Dðŷ0Þ;
Dðẑ 0Þ in the tensor eigenframe); radial and axial diffusivities; and
fractional anisotropy (FA).9 In white matter, the direction with
the highest diffusivity (axial diffusivity) largely identifies the main
fiber direction.10-12 The pronounced anisotropy of brain white
matter is due to the myelin sheath, the axonal membrane itself,
and the cytoskeleton inside the axon,13 which collectively cause
WM FA to be high (typically .0.6, however see the example
below). In DKI, D and W are used together to provide more

1638 Commentary Oct 2019 www.ajnr.org



parameters. These tensors will behave very differently: For exam-
ple, in a single fiber system, the observed diffusion is high along
the fiber direction and low across the fiber direction. In contrast,
the kurtosis would be higher across than along the fiber direction,
mostly due to restriction effects. This added information improves
the capability of dMRI to detect changes in brain and body organ
microstructure.14,15 From DKI, typically reported metrics are
analogously the mean kurtosis (MK) and radial and axial kurtosis,
and, for very aligned WM, a set of biomarkers from the WM tract
integrity framework.16 More recently, the KFA has been intro-
duced.17,18 These parameters, their estimation, and varying defini-
tions are reviewed in Hansen and Jespersen.19

A comprehensive review of DKI in neuroimaging is outside
the scope of this commentary, but to illustrate the potential of
DKI, we list key neurologic disorders and neuroradiologic areas
where DKI has already proved useful: addiction,20 stroke,21-23

Alzheimer’s disease,24 multiple sclerosis,25 Parkinson’s disease,26-29

brain cancer (gliomas),30,31 and head trauma/concussion.32-36

While DKI is increasingly used, so far the relatively new KFA
has not been given much attention in preclinical and clinical
studies. It is, therefore, noteworthy that KFA features promi-
nently in the article of Zhang et al.2 Thus, KFA and its inter-
pretation are the main focus of the remainder of this
commentary.

dMRI Anisotropy Measures: FA and KFA
The DKI framework produces 2 scalar anisotropy
measures: the FA from the diffusion tensor D and the
KFA from the kurtosis tensorW. The FA is defined as

2) FA¼
ffiffiffi
3
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1� �Dð Þ2þ l2� �Dð Þ2þ l3� �Dð Þ2

l 2
1þl 2

2þl 2
3

� �
s

¼
ffiffiffi
3
2

r
k� �DIk
kDk ;

where double bars denote the Euclidean tensor norm
(the Frobenius norm), I is the 3 � 3 identity matrix,
and the remaining parameters are defined above. The
numeric front factor ensures that that the FA assumes
values in the range from 0 (completely isotropic diffu-
sion) to 1 (fully anisotropic, unidirectional diffusion).
Although a few alternative definitions of the kurtosis
anisotropy have been proposed (notably the one in
Poot et al37), the agreed upon definition today is the
one introduced in Hansen et al:18

3) KFA ¼ kW� �W Ik
kWk ;

where W is the kurtosis tensor, �W is the kurtosis ten-
sor mean,18,38,39 and I is the fully symmetric rank 4 iso-
tropic tensor. Conveniently, this definition of KFA is
analogous to the FA definition in Equation 2, with the
only difference being due to tensor dimensions. We
note the absence of a numeric front factor in Equation
3; KFA naturally assumes values in the 0–1 range.
Interested readers are referred to early explorations of

KFA in Hansen and Jespersen17 and Glenn et al.40 In these stud-
ies, simulations and experiments were used to investigate the in-
formation contained in the KFA. It was found that KFA contrast
supplements the FA in important ways. This feature is illustrated
in the Figure showing side-by-side maps of FA and KFA in the
same image plane position in normal human brain (Fig 1A).

The red arrow points to a dark band in the FA map inside the
WM. This band is seen in both hemispheres (note the symmetry).
In each hemisphere, this band comprises voxels with low FA val-
ues, though the voxels are located in anatomic WM. Conversely,
in the KFA map on the right in Fig 1A, we see that KFA in WM
is high and notably retains its high value in the regions where FA
fails as a reporter of anisotropy. These WM voxels assume low
FA values because they contain a crossing-fiber arrangement in
which WM fibers along 3 orthogonal directions weave between
each other. This effectively produces the situation illustrated in
the schematic in Fig 1B, which shows 3 separate WM fiber bun-
dles that intersect at right angles. In this example, we ignore
extra-axonal diffusion. We see that if diffusivities in the 3 fibers
are similar (as they are likely to be), the mean diffusivity will be
the same as the eigenvalues (ie, the diffusivities along 3 fiber
directions �D ¼ ðl1 þ l2 þ l3Þ=3 � l1�3) causing the FA to
vanish because, in this case, each term in the numerator in the
middle expression in Equation 2 will be approximately zero. This

FIGURE. A, Maps of FA and KFA in the same section position in the normal
human brain. The color bar on the right applies to both parameter maps. In the
FA map in A, a band of low FA values is seen as a dark band in both hemispheres.
The red arrow points to this feature. The same white matter region is seen to
have KFA values similar to those of the surrounding white matter. B, The fiber
arrangement causing this FA behavior is illustrated in a simplified thought experi-
ment. Figure adapted with permission from Hansen and Jespersen.17
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happens despite the diffusivity in this fiber arrangement being
highly anisotropic. Although not particularly complex, the anisot-
ropy in this fiber arrangement cannot be described by the diffu-
sion tensor, resulting in the low FA constituting the dark band in
this WM region.

In the interpretation of these metrics, it is crucial to remember
that FA and KFA report on different features of the diffusion pro-
cess. We, therefore, stress that FA summarizes the spatial varia-
tion of diffusion rates, whereas KFA summarizes the directional
variation in the degree of non-Gaussian diffusion. Loosely speak-
ing, another difference is that the KFA stems from the kurtosis
tensor, which is a 4D tensor with much more “room” to capture,
in detail, the spatial variation in kurtosis. Collectively, these fac-
tors contribute to the demonstrated behavior in which KFA con-
tinues to provide contrast in areas where FA does not. Both
metrics can be difficult to interpret in strict terms of tissue prop-
erties, but on the basis of the simple example above, we can cau-
tiously state that KFA reflects tissue-diffusion complexity. In the
example above, we saw that the 2D diffusion tensor cannot
resolve anisotropy in voxels with complex fiber composition.
However, we also saw that areas with complex fiber arrangements
may be distinguished from genuine low-anisotropy regions using
FA and KFA in combination: If FA is low and KFA is high, then
likely the diffusion is, in fact, anisotropic but the fiber arrange-
ment is too complex to be captured by the diffusion tensor. Thus,
the KFA is a good parameter to include in studies in which subtle
remodeling is expected in complex tissue regions. While KFA
may therefore prove to be a valuable marker of tissue microstruc-
ture, we nevertheless stress that no DKI parameter is specifically
bound to a particular microscopic tissue component.

Discussion and Future Perspectives
DKI is sometimes omitted from clinical protocols due to longer
acquisition and parameter estimation times than a simple DTI
protocol. While strategies exist for fast estimation of most DKI
parameters,18,19,38-44 robust estimation of KFA still requires the
full kurtosis tensor W to be determined by fitting on a pixel-by-
pixel basis.17 This requires multishell dMRI data with typically 30
directions and 2–3 nonzero b-values. With modern dMRI techni-
ques, this is possible in clinically feasible scan times.45 From such
datasets, DKI parameter estimation is possible using any one of
the many software packages that exist for dMRI data analysis
such as MUSC’s DKE software package (https://medicine.musc.
edu/departments/centers/cbi/dki/dki-data-processing), which
also computes the KFA as defined in Equation 3. As noted above,
interpretation of DKI findings in terms of biophysical tissue
properties is a difficult problem. In preclinical work, subsequent
histology may be used to interpret DKI findings,15,46,47 and
insights gained from such efforts may aid in interpretation of
clinical DKI.

In the discussion of the example in the Figure, we noted that
KFA somehow reflects the diffusion anisotropy below the voxel
level. Other techniques achieve similar sensitivity48,49 but require
nonstandard pulse sequences. Until such techniques reach the
clinic in earnest, the KFA may serve as an indicator of the diag-
nostic potential of such sensitivity.

CONCLUSIONS
Imaging techniques with improved sensitivity to microstructure
have utility in many areas of neuroimaging, including diagnosis
and monitoring of patients exposed to toxic or poisonous sub-
stances. The study by Zhang et al2 uses the microstructurally sen-
sitive DKI framework to assess cerebral damage in CO-poisoned
subjects. From DKI, the authors obtain measures of mean diffu-
sivity, FA, MK, and the less explored KFA. These measures are
then correlated to neuropsychiatric scores. The work presents a
timely contribution to 2 avenues of neuroradiology: 1) the explo-
ration of DKI and KFA in clinical practice, and 2) identification
of sensitive markers for diagnostics of CO-intoxicated patients.
Insights gained from this study may also benefit and inspire
many other areas of neuroimaging where the same techniques
could be used. With this commentary, we hope that the KFA will
have become more familiar to readers of AJNR so that investiga-
tors will consider it a parameter of interest in their future work.
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