Index by author
Nakaji, P.
- FELLOWS' JOURNAL CLUBAdult BrainOpen AccessAccurate Patient-Specific Machine Learning Models of Glioblastoma Invasion Using Transfer LearningL.S. Hu, H. Yoon, J.M. Eschbacher, L.C. Baxter, A.C. Dueck, A. Nespodzany, K.A. Smith, P. Nakaji, Y. Xu, L. Wang, J.P. Karis, A.J. Hawkins-Daarud, K.W. Singleton, P.R. Jackson, B.J. Anderies, B.R. Bendok, R.S. Zimmerman, C. Quarles, A.B. Porter-Umphrey, M.M. Mrugala, A. Sharma, J.M. Hoxworth, M.G. Sattur, N. Sanai, P.E. Koulemberis, C. Krishna, J.R. Mitchell, T. Wu, N.L. Tran, K.R. Swanson and J. LiAmerican Journal of Neuroradiology March 2019, 40 (3) 418-425; DOI: https://doi.org/10.3174/ajnr.A5981
The authors evaluated tumor cell density using a transfer learning method that generates individualized patient models, grounded in the wealth of population data, while also detecting and adjusting for interpatient variabilities based on each patient's own histologic data. They collected 82 image-recorded biopsy samples, from 18 patients with primary GBM. With multivariate modeling, transfer learning improved performance (r = 0.88) compared with one-model-fits-all (r = 0.39). They conclude that transfer learning significantly improves predictive modeling performance for quantifying tumor cell density in glioblastoma.
Nappini, S.
- InterventionalYou have accessFlow-Diversion Treatment of Unruptured Saccular Anterior Communicating Artery Aneurysms: A Systematic Review and Meta-AnalysisF. Cagnazzo, N. Limbucci, S. Nappini, L. Renieri, A. Rosi, A. Laiso, D. Tiziano di Carlo, P. Perrini and S. MangiaficoAmerican Journal of Neuroradiology March 2019, 40 (3) 497-502; DOI: https://doi.org/10.3174/ajnr.A5967
Nespodzany, A.
- FELLOWS' JOURNAL CLUBAdult BrainOpen AccessAccurate Patient-Specific Machine Learning Models of Glioblastoma Invasion Using Transfer LearningL.S. Hu, H. Yoon, J.M. Eschbacher, L.C. Baxter, A.C. Dueck, A. Nespodzany, K.A. Smith, P. Nakaji, Y. Xu, L. Wang, J.P. Karis, A.J. Hawkins-Daarud, K.W. Singleton, P.R. Jackson, B.J. Anderies, B.R. Bendok, R.S. Zimmerman, C. Quarles, A.B. Porter-Umphrey, M.M. Mrugala, A. Sharma, J.M. Hoxworth, M.G. Sattur, N. Sanai, P.E. Koulemberis, C. Krishna, J.R. Mitchell, T. Wu, N.L. Tran, K.R. Swanson and J. LiAmerican Journal of Neuroradiology March 2019, 40 (3) 418-425; DOI: https://doi.org/10.3174/ajnr.A5981
The authors evaluated tumor cell density using a transfer learning method that generates individualized patient models, grounded in the wealth of population data, while also detecting and adjusting for interpatient variabilities based on each patient's own histologic data. They collected 82 image-recorded biopsy samples, from 18 patients with primary GBM. With multivariate modeling, transfer learning improved performance (r = 0.88) compared with one-model-fits-all (r = 0.39). They conclude that transfer learning significantly improves predictive modeling performance for quantifying tumor cell density in glioblastoma.
Niemela, M.
- InterventionalOpen AccessLocal Hemodynamic Conditions Associated with Focal Changes in the Intracranial Aneurysm WallJ.R. Cebral, F. Detmer, B.J. Chung, J. Choque-Velasquez, B. Rezai, H. Lehto, R. Tulamo, J. Hernesniemi, M. Niemela, A. Yu, R. Williamson, K. Aziz, S. Sakur, S. Amin-Hanjani, F. Charbel, Y. Tobe, A. Robertson and J. FrösenAmerican Journal of Neuroradiology March 2019, 40 (3) 510-516; DOI: https://doi.org/10.3174/ajnr.A5970
Ntaios, G.
- Adult BrainYou have accessFocal Hypoperfusion in Acute Ischemic Stroke Perfusion CT: Clinical and Radiologic Predictors and Accuracy for Infarct PredictionO. Bill, N.M. Inácio, D. Lambrou, M. Wintermark, G. Ntaios, V. Dunet and P. MichelAmerican Journal of Neuroradiology March 2019, 40 (3) 483-489; DOI: https://doi.org/10.3174/ajnr.A5984