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ABSTRACT

BACKGROUND AND PURPOSE: Malignant melanoma is an aggressive skin cancer in which brain metastases are common. Our aim
was to establish and evaluate a deep learning model for fully automated detection and segmentation of brain metastases in
patients with malignant melanoma using clinical routine MR imaging.

MATERIALS ANDMETHODS: Sixty-nine patients with melanoma with a total of 135 brain metastases at initial diagnosis and available multi-
parametric MR imaging datasets (T1-/T2-weighted, T1-weighted gadolinium contrast-enhanced, FLAIR) were included. A previously established
deep learning model architecture (3D convolutional neural network; DeepMedic) simultaneously operating on the aforementioned MR
images was trained on a cohort of 55 patients with 103 metastases using 5-fold cross-validation. The efficacy of the deep learning model
was evaluated using an independent test set consisting of 14 patients with 32 metastases. Manual segmentations of metastases in a voxel-
wise manner (T1-weighted gadolinium contrast-enhanced imaging) performed by 2 radiologists in consensus served as the ground truth.

RESULTS: After training, the deep learning model detected 28 of 32 brain metastases (mean volume, 1.0 [SD, 2.4] cm3) in the test
cohort correctly (sensitivity of 88%), while false-positive findings of 0.71 per scan were observed. Compared with the ground truth,
automated segmentations achieved a median Dice similarity coefficient of 0.75.

CONCLUSIONS: Deep learning–based automated detection and segmentation of brain metastases in malignant melanoma yields
high detection and segmentation accuracy with false-positive findings of ,1 per scan.

ABBREVIATIONS: CNN ¼ convolutional neural network; DLM ¼ deep learning model; GT ¼ ground truth

Malignant melanoma is an aggressive skin cancer associated
with high mortality and morbidity rates.1,2 Brain metasta-

ses are common in malignant melanoma,3,4 subsequently causing
potential severe neurologic impairment and worsened outcome.
Therefore, it is recommended that melanoma patients with an
advanced stage undergo MR imaging of the head for screening
purposes to detect metastases.5-8

Owing to an increased workload of radiologists, repetitive
evaluation of MR imaging scans can be tiresome, hence bearing

an inherent risk of missed diagnosis for subtle lesions, with satis-
faction of search effects leading to decreased sensitivity for addi-
tional lesions.9,10 Automatization of detection could serve as an
adjunct tool for lesion preselection that can support image evalu-
ation by radiologists and clinicians.11,12 Furthermore, automated
segmentations may be used as a parameter to evaluate therapy
response in oncologic follow-up imaging.13,14 Additionally, exact
lesion determination and delineation of size are required for ste-
reotactic radiosurgery.15,16 In clinical routine, brain lesions have
to be segmented manually by the radiosurgeon. This task proves
to be time-consuming, in particular if multiple metastases are
present. Furthermore, manual segmentation is potentially ham-
pered by interreader variabilities with reduced reproducibility,
hence resulting in inaccuracies of lesion delineation.17,18 In this
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context, accurate objective and automated segmentations of brain
metastases would be highly beneficial.17-19

Recently, deep learning models (DLMs) have shown great
potential in detection, segmentation and classification tasks in
medical image analysis while having the potential to improve
clinical workflow.20-25 The models apply multiple processing
layers that result in deep convolutional neural networks (CNNs).
Training data are used to create complex feature hierarchies.26-28

In general, a DLM includes different layers for convolution, pool-
ing, and classification.28 The required training data are supplied
by manual segmentations, which usually serve as the segmenta-
tion criterion standard.18,28,29

Previous studies on brain metastases from different tumor
entities have demonstrated promising results, reporting a sensi-
tivity for automated deep learning–based detection of lesions of
around 80% or higher.17,30-32 However, the often reported rela-
tively high number of false-positive findings questions their
applicability in clinical routine.17,30

The purpose of this study was to develop and evaluate a DLM
for automated detection and segmentation of brain metastases in
patients with malignant melanoma using heterogeneous MR
imaging data frommultiple vendors and study centers.

MATERIALS AND METHODS
The local institutional review board (Ethikkommission,
Medizinische Fakultät der Universität zu Köln) approved this
retrospective, single-center study (reference No: 19–1208) and
waived the requirement for written informed patient consent.

Patient Population
MR imaging of patients treated for malignant melanoma at our
tertiary care university hospital between May 2013 and October
2019 was reviewed using our institutional image archiving system.
Ninety-two patients could be identified by applying the following
inclusion criteria: 1) MR imaging scans at primary diagnosis of
brain metastases; 2) distinct therapy following diagnosis of brain
metastases, eg, stereotactic radiosurgery, resection, extended bi-
opsy, targeted chemotherapy; and 3) a complete MR image set,
being defined as T1-/T2-weighted, T1-weighted gadolinium con-
trast-enhanced imaging, and T2-weighted FLAIR. Patients with
unclear lesions in which follow-up imaging could not confirm
metastatic spread to the brain were not included (n¼ 11).

We applied the following exclusion criteria: 1) the presence of
a second malignant tumor (n ¼ 3); 2) large intracranial extrale-
sional bleeding (the definition of extralesional bleeding was based
on reviewing prior/follow-up imaging, n ¼ 3); 3) acute ischemic
stroke (n¼ 1) impeding delineation of brain metastases; 4) severe
MR imaging artifacts impairing image quality (n ¼ 3); and 5)
insufficient contrast media application (n¼ 2).

The 69 enrolled patients were randomly split into a training
cohort consisting of 55 patients and a test cohort with 14 patients,
ensuring that there was no overlap of data between the 2 cohorts.
The training cohort was used for training and performing 5-fold
cross-validation of the DLM. On the contrary, the test cohort was
used for independent testing of the DLM. MR images were ano-
nymized and exported to IntelliSpace Discovery (ISD, Version
3.0; Philips Healthcare).

Image Acquisition
MR images were acquired on different scanners from our (n ¼
48) and referring institutions (n ¼ 21), ranging between 1T and
3T. Detailed MR imaging parameters are given in the Online
Supplemental Data. The imaging protocol of our institution
included intravenous administration of gadolinium (gadoterate
meglumine, Dotarem; Guerbet; 0.5mmol/mL, 1mL ¼ 279.3mg
of gadoteric acid ¼ 78.6mg of gadolinium) with a concentration
of 0.1mmol/kg of body weight. Contrast medium application at
referring institutions was not standardized.

Ground Truth
To establish the reference standard and lesion count, 2 radiol-
ogists (each with at least 3 years of experience in neuro-onco-
logic imaging) confirmed all metastases. A board-certified
neuroradiologist with 13 years of experience in neuro-onco-
logic imaging was consulted when uncertainties occurred.
They conducted a review of the original radiology report and
double-reviewed the included MR imaging scans as well as
prior/follow-up imaging.

By assessing unenhanced T1- and T2-weighted, T1-weighted
gadolinium contrast-enhanced imaging, and FLAIR images on
ISD, the 2 radiologists performed manual segmentations of
lesions on T1-weighted gadolinium contrast-enhanced imaging
in a voxelwise manner in consensus, which served as the ground
truth (GT). First, initial segmentations of the metastases were
performed by 1 radiologist and then presented to/discussed with
the second radiologist to define the final segmentations of the
lesions in consensus.

Deep Learning Model
Before passing the sequences (T1/T2-weighted, T1-weighted gad-
olinium contrast-enhanced imaging, and FLAIR) to the DLM, we
performed preprocessing of data, which included the following:
bias field correction of all 4 sequences, coregistration of T1/T2-
weighted and FLAIR to T1-weighted gadolinium contrast-
enhanced imaging, skull-stripping, resampling to an isotropic re-
solution of 1� 1� 1 mm3, and z score normalization.24

In this study, a 3D CNN based on DeepMedic (Biomedical
Image Analysis Group, Department of Computing, Imperial
College London) was used. In recent studies, the DeepMedic
architecture has demonstrated encouraging results for detection
and segmentation of different brain tumors.24,33

The network consists of a deep 3D CNN architecture with 2
identical pathways. 3D image patches provide input to the 2 path-
ways. For the first pathway, original isotropic patches are used.
For the second pathway, the patches are down-sampled to a third
of their original size. This approach helps to capture higher con-
textual information. The deep CNN model comprises 11 layers
with size 33 kernels. The model consists of residual connections
for layers 4, 6, and 8. Each layer is followed by batch normaliza-
tion and a parametric rectified linear unit as the activation func-
tion. Layers 9 and 10 are fully connected. The last prediction
layer has a kernel size of 13 and uses sigmoid as the activation
function.34

For training of the DLM, multichannel GT 3D image patches
with a size of 253 were fed to the 3D CNN. These image patches
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were extracted with a distribution of 50% between background and
metastases, ensuring class balance. To increase the number of
training samples, image augmentation was used by randomly flip-
ping the image patches along their axes. The Dice similarity coeffi-
cient was used as the loss function, and root mean square
propagation, as the optimizer. An adaptive learning rate schedule
was used, in which the initial learning rate was halved every time
the accuracy did not improve for .3 epochs. The training batch
size was set to 10, and the number of training epochs was set to 35.

Training was performed on the training set (n ¼ 55) using a
5-fold cross-validation approach using an 80%–20% training-val-
idation split without overlapping data, which resulted in 5 trained
models.

During inference on the independent test set (n ¼ 14), 3D
image patches of 453 in size are extracted. Larger patch sizes
reduced the time spent during inference. The 5 individual models
from the 5-fold cross-validation training were applied to the inde-
pendent test data. The segmentation results from each of the 5
DLMs were fused using a majority voting scheme to reduce false
lesion detections.35 By default, automatically detected lesions of
,0.003 cm3 (2 voxels on average) during inference of both the
training and test sets were regarded as image noise and discarded.
This threshold was based on the resolution of T1 -weighted gado-
linium contrast-enhanced sequences (in which a volume of
0.003 cm3 is approximately 2 voxels) and is determined by refer-
ring to the smallest annotated metastases on training (0.0035 cm3)
and test (0.0041 cm3) sets. Due to limitation of scan resolution,
lesions smaller than this volume cannot be accurately detected or
segmented by image readers.

Including image preprocessing, the average time needed to
run a complete pipeline on a dataset is about 8minutes: ,1 sec-
ond for bias field correction, 7minutes for coregistration and
skull-stripping,,1minute for image standardization, and around
10 seconds to run the inference (using a Tesla-P100 GPU card
(NVIDIA).

Statistical Analysis
Statistical analysis was performed using JMP Software (Release
12; SAS Institute). Tumor volumes are displayed as mean [SD],
and Dice similarity coefficients are reported as median with a 10–
90 percentile range. The Wilcoxon rank sum test was applied for
determination of a statistical difference with statistical signifi-
cance being set to P, .05. To determine the detection accuracy
of the metastases, we computed sensitivity (recall), precision
(positive predictive value), and F1 score. Because no scans

without metastases were included, a true specificity could not be
determined; hence, precision was calculated.

To evaluate the segmentation accuracy of the DLM on a vox-
elwise basis, we compared automatically obtained segmentations
with the GT annotations with overlap measures between the seg-
mentations being computed using the Dice similarity coeffi-
cient.23,24,35 For quantitative volumetric measurements, the
Pearson correlation coefficient (r) was calculated.

RESULTS
Patient Characteristics
The 69 enrolled patients (mean age, 61.5 [SD, 13.4] years; 30
women) had a total of 135 brain metastases on MR imaging, of
which 45 patients presented a single brain metastasis. Most
(n ¼ 48) patients received stereotactic radiosurgery using the
CyberKnife System (Accuray). The Online Supplemental Data
provide detailed patient information, including distribution of
brain metastases and treatment received.

Evaluation of the DLM on the Training Cohort
In the training cohort, 103 metastases with a mean volume of 2.6
[SD, 8.1] cm3 were identified as the GT.

Using 5-fold cross-validation, the DLM achieved a sensitivity
of 87% with a median corresponding Dice similarity coefficient
of 0.75 (range, 0.19–0.93). The DLM missed 13 metastases, yield-
ing a mean volume of 0.06 [SD, 0.1] cm3. On average, the DLM
produced 4 false-positive lesions per scan with a mean volume of
0.05 [SD, 0.17] cm3.

Evaluation of the DLM on the Independent Test Cohort
In the test cohort, 32 metastases with a mean volume of 1.0 [SD,
2.4] cm3 were identified as the GT, being smaller than in the
training cohort, though without a significant difference (P. .05).
The 5 DLMs from the 5-fold cross-validation as well as their
fusion using the majority voting scheme were tested on the inde-
pendent test cohort. Detailed results of the DLM on the test set
are given in the Table.

After we applied the majority voting scheme, the fused DLM
detected 28 of 32 brain metastases correctly and missed 4, corre-
sponding to a sensitivity of 88% and an F1 score of 0.80 (Figs 1 and
2 and Online Supplemental Data depict examples of true-positive
findings of the DLM). Missed brain metastases were small and
yielded a volume between 0.004 and 0.16 cm3 (Fig 3 provides the
metastases, which were missed by the DLM). Compared with
manual segmentations, the fused DLM provided a median Dice

Detection and segmentation accuracy on the independent test cohort

Majority Voting Scheme First Fold Second Fold Third Fold Fourth Fold Fifth Fold
Detection
Sensitivity 88% 88% 88% 81% 91% 91%
Precision 74% 49% 35% 40% 41% 51%
F1 score 0.80 0.63 0.50 0.53 0.57 0.65
Missed 4 4 4 6 3 3

FPs/scan 0.71 2.1 3.8 2.9 2.9 2.0
Segmentation
Dice coefficient 0.75 0.78 0.73 0.73 0.76 0.78

Note:—Missed indicates missed brain metastases in the test cohort; FPs/scan, false-positive lesion findings per patient; Dice coefficient, similarity score reported as me-
dian; Majority Voting Scheme, fusion of the 5 deep learning models from the 5-fold cross-validation; First Fold, first deep learning model from the 5-fold cross-validation.
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similarity coefficient of 0.75 (range, 0.09–0.93) and a volumetric cor-
relation of r¼ 0.97. The Online Supplemental Data display the rela-
tionship between obtained Dice similarity coefficients and the
volume of the metastases.

Figure 4A depicts a histogram demonstrating the volume of me-
tastases in the training and test groups as well as the size of missed
metastases and false-positive lesions. Figure 4B shows a boxplot
comparing Dice similarity coefficients, false-positives, and false-neg-
atives for the 5 different DLMs using the 5-fold cross-validation and
the combined DLMs, applying the majority voting scheme. Figure
4C provides the volumetric correlation between automated detec-
tion of metastases using the fused DLM and the GT.

In addition, the fusion of all 5 DLMs reduced the number of
false-positive lesions to 0.71 per scan (compared with 3.8 of the
second fold, as seen in the Table) and increased the precision
(74%). Examples of false-positive detections by the DLM are pro-
vided in Figs 3 and 4D, which show a free-response receiver oper-
ating characteristic curve displaying the relationship between the
lesion-detection sensitivity and the average number of false-posi-
tive lesions per scan.

DISCUSSION
In this study, we developed and trained a dedicated DLM for
automated detection and segmentation of brain metastases in

malignant melanoma and evaluated its performance on an inde-
pendent test set. On heterogeneous scanner data, the proposed
DLM provided a detection rate of 88%, while producing an error
of ,1 false-positive lesion per scan. Furthermore, a high overlap
between automated and manual segmentations was observed
(Dice similarity coefficient = 0.75).

Recent studies investigating automated detection of brain me-
tastases have not focused on a certain underlying pathology and
reported lesion sizes between 1.3 and 1.9 cm3 (Bousabarah et al32)
and 2.4 cm3 (Charron et al17) for various primary tumors, which
are comparable with the average tumor sizes in our training (2.6
[SD, 8.1] cm3) and test cohorts (1.0 [SD, 2.4] cm3). Despite the
small lesion size, the DLM provided a high detection sensitivity
(88%), similar to that in the aforementioned studies.16,17,30-32

Compared with the GT, the DLM obtained a median Dice simi-
larity coefficient of 0.75, which is in line with recent studies,

FIG 2. A 67-year-old male patient with malignant melanoma. The
DLM (turquoise) detects the metastases (yellow arrows) of the left
frontal lobe (A), the left temporal lobe (B), and the right parietal lobe
(C) accurately and provides manual segmentations (red) comparable
to segmentation performance.

FIG 1. A 55-year-old male patient with malignant melanoma. The
DLM (turquoise) detects and segments the metastases of the left
frontal lobe (yellow arrows, A and B) comparable to the manual seg-
mentations (red).

658 Pennig Apr 2021 www.ajnr.org



which reported Dice similarity coefficients between 0.67 and
0.79.16,30 The high number of false-positive lesions poses a com-
mon drawback in automated detection of brain metastases, which
have been reported to be around 7–8 per scan.17,30 By combining
5 DLMs using a majority voting scheme, false-positive findings of
,1 per patient were obtained in the present study, as could also
recently be achieved by Bousabarah et al.32

Given the high risk of metastatic spread, screening exami-
nations are warranted in patients with malignant melanoma
and are suggested according to current guidelines.5,7,8 For lung
cancer, regular screening has also been proposed recently.36

However, when diagnosed at an early stage in an asymptom-
atic patient, metastases are often small and more difficult to
detect, even by experienced radiologists.1,2,5,6 Despite the small
size of the metastases in the test set, the trained DLM yielded a
sensitivity of 88%. Of note, the metastases in the test set were
smaller compared with those in the training cohort without
reaching a statistical significance. In part, this difference could
be explained by the higher number of patients treated by sur-
gery in the training cohort (18.2% versus 14.0%), who usually
present with larger metastases.37

Brain metastases screening examinations are increasing in
number, making evaluation tiresome while bearing an inherent
risk of missed diagnoses, in particular for subtle lesions.9,38 In
this context, our DLM can provide assistance for detection of
brain metastases in malignant melanoma. Compared with a
human reader, the DLM is not impaired by “satisfaction of
search,” which means that the physician may miss a second

metastasis when a first one has been found.9,10,38 Additionally,
automation of brain metastasis segmentation by a DLM could
serve as an accurate mechanism of lesion preselection, in particu-
lar when the number of false-positive lesions is ,1 per scan, as
obtained by the DLM of the present study.16,17,30,31 Automated
segmentation may also provide assistance in evaluating treatment
response during oncologic follow-up and may support radiolog-
ists in coping with an increased number of image readings, while
maintaining high diagnostic accuracy.

Compared with manual segmentations, the proposed DLM
achieved a high volumetric correlation despite the small size of the
metastases. Automated segmentation of brain tumors such as me-
tastases, being possible with the DLM of the current study, has sev-
eral applications to potentially improve patient care. For instance,
volumetric assessment proves to be a promising tool for quantifica-
tion of tumor burden.14,39,40 Furthermore, volumetric assessment
has advantages over user-dependent conventional linear measure-
ments because metastatic lesions are not entirely spherical.18

Stereotactic radiosurgery requires reliable and objective lesion
segmentation.15,16 Manual segmentation of multiple lesions
proves to be time-consuming and is impeded by inter- and intra-
reader variabilities. Next to increased efficiency, higher reprodu-
cibility of lesion delineation potentially boosts reliability of
radiation therapy while improving patient outcome.17

Regarding automatic detection and segmentation of brain
metastases, one must consider the following challenges: 1)
multifocal lesion occurrence; 2) very small and subtle lesions;
3) more complex tumor structures when lesions enlarge

FIG 3. False-negative findings of the DLM (A–D, white arrows) as shown in a 67-year-old male patient (A, same patient as in Fig 2; metastasis vol-
ume: 0.004 cm3), a 56-year-old male patient (B and C, metastases volume: 0.008 and 0.01 cm3), and a 62-year-old male patient (E, metastasis vol-
ume: 0.016 cm3) with malignant melanoma. As demonstrated, the DLM missed small metastases. Examples of false-positive findings of the DLM
(E–I, white arrows) as shown in a 50-year-old female patient (E), a 67-year-old male patient (F, same patient as in Fig 2), a 55-year-old male patient
(G and H, same patient as in Fig 1), and a 62-year-old female patient (I) with malignant melanoma. False-positive findings (turquoise) were related
to blood vessels (E, developmental venous anomaly), variations in brain tissue contrast (F and G), and the choroid plexus (H and I).
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(contrast-enhancing tumor, necrosis, bleeding, and edema);
4) variations in patient anatomy; and 5) heterogeneous imag-
ing data due to varying vendors, MR imaging manufacturers,
scanner generations, scan parameters, and unstandardized
contrast media application.16,17,25,28,30,34,41,42 In the present
study, our DLM provides high detection accuracy on hetero-
geneous scanner data as reflected by a large number of scans
from referring institutions and examinations performed over
a wide range of field strengths.

The results of this study indicate that training of an already
established deep-learning architecture initially used for other

tumor entities, ie, glioma and glioblastoma,24,34 can be successfully
applied to other brain tumors16,43,44 but dedicated retraining is
usually warranted.16,32,33 Still, previous studies have also suggested
that dedicated training might be omitted if tumor appearance is
similar, although accuracy will/might be negatively impacted by
the missing dedicated training.23,44 Therefore, our DLM, though
dedicated to patients with melanoma, might also be applied, for
example, to metastases of different origins, which may nurture
further investigations.

The following limitations need to be discussed. The study
has typical drawbacks of a retrospective setting, not allowing

FIG 4. A, Histogram depicting the distribution of metastases volumes in the training and test cohorts. Furthermore, the volumes of missed me-
tastases and false-positive findings in the test group are also depicted, all of which were small (mean missed metastases volume of 0.01 [SD,
0.005] cm3; mean volume of false-positive lesions of 0.02 [SD, 0.02] cm3). To better visualize the small volumes of false-positive and false-nega-
tive findings in the independent test set, we limited the x-axis to 15 cm2. Hence, 5 metastases of the training data larger than this volume are not
shown. B, Performance of the 5 different DLMs obtained using the 5-fold cross-validation training and the combined DLM using the majority
voting scheme on the independent test cohort.Magenta circles represent the number of false-positives (FP) and red circles indicate the num-
ber of false-negatives (FN). DSC indicates the Dice similarity coefficient; CV1–5, the cross-validation folds; and MV, majority voting. C, Volume
correlation of the metastases between the automatically segmented lesions and the ground truth on the independent test set on a lesion level.
D, Free-response receiver operating characteristic (FROC) curve of the DLM on the independent test cohort.

660 Pennig Apr 2021 www.ajnr.org



evaluation if detection and segmentation accuracies are sufficient
for clinical needs. This drawback may be addressed in future
studies with a focus on specified clinical necessities and tasks.
Although almost one-third of included scans were acquired at re-
ferring institutions, the application of the DLM should be investi-
gated in a true multicenter setting. Our relatively small number
of patients, which resulted from focusing exclusively on malig-
nant melanoma, needs to be considered. This is especially impor-
tant regarding our test cohort, which consisted of 14 patients
only. Future studies, preferably including more cases from differ-
ing institutions, are warranted to further validate our DLM. Only
patients with melanoma were included, which potentially limits
the transferability of our DLM to brain metastases of other pri-
mary tumors. In this context, future studies are needed. Because
no posttreatment MR images were included, the performance of
the DLM in this setting is unknown and requires future research.

The applied DLM operates on 4 MR images, ie, FLAIR, T1-/T2-
weighted, and T1-weighted gadolinium contrast-enhanced images.
Consequently, this feature limits the application of the DLM if one
of these sequences is unavailable. Our study included a relevant
amount of imaging data from referring institutions where contrast
media application was different and not standardized with our
application protocol, potentially reflecting more inhomogeneous
imaging data. Because we did not include MR images without any
findings, our study did not capture the proper target population of
interest. This bias might underestimate the false-positive rate in a
true population. For our evaluation, we excluded 10% of initially
identified patients due to, for example, a second cerebral tumor,
strong artifacts, or insufficient contrast media application. Hence,
images of these patients might not be suited to the proposed DLM.

CONCLUSIONS
Despite small lesion size and heterogeneous scanner data, our
DLM detects brain metastases in malignant melanoma on multi-
parametric MR imaging with high detection and segmentation
accuracy, while yielding a low false-positive rate.
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