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F. Arrigoni, K.A. Aldinger, R.J. Leventer, W.B. Dobyns, and K. Mankad

ABSTRACT

BACKGROUND AND PURPOSE: Pathogenic variants in the ACTA2 gene cause a distinctive arterial phenotype that has recently been
described to be associated with brain malformation. Our objective was to further characterize gyral abnormalities in patients with ACTA2 path-
ogenic variants as per the 2020 consensus recommendations for the definition and classification of malformations of cortical development.

MATERIALS AND METHODS: We performed a retrospective, multicentric review of patients with proved ACTA2 pathogenic var-
iants, searching for the presence of malformations of cortical development. A consensus read was performed for all patients, and
the type and location of cortical malformation were noted in each. The presence of the typical ACTA2 arterial phenotype as well
as demographic and relevant clinical data was obtained.

RESULTS: We included 13 patients with ACTA2 pathogenic variants (Arg179His mutation, n¼ 11, and Arg179Cys mutation, n¼ 2).
Ninety-two percent (12/13) of patients had peri-Sylvian dysgyria, 77% (10/13) had frontal dysgyria, and 15% (2/13) had generalized dys-
gyria. The peri-Sylvian location was involved in all patients with dysgyria (12/12). All patients with dysgyria had a characteristic arte-
rial phenotype described in ACTA2 pathogenic variants. One patient did not have dysgyria or the characteristic arterial phenotype.

CONCLUSIONS: Dysgyria is common in patients with ACTA2 pathogenic variants, with a peri-Sylvian and frontal predominance, and
was seen in all our patients who also had the typical ACTA2 arterial phenotype.

ABBREVIATIONS: MCD ¼ malformation of cortical development; PMG ¼ polymicrogyria

Heterozygous, autosomal dominant, pathogenic variants in
the ACTA2 gene encoding a-2 smooth-muscle actin that

replace the arginine at protein position 179 (Arg179) with either
histidine, leucine, cysteine, or serine cause a multisystemic
smooth-muscle dysfunction syndrome (Online Mendelian
Inheritance in Man, 613834; https://www.omim.org). Actin is
found in the contractile apparatus of muscle and the

cytoskeleton. There are 6 distinct isoforms (a-skeletal, a-car-
diac, a-smooth, b -cytoplasmic, g -smooth, g -cytoplasmic
actin) encoded by 6 different genes.1 Alpha smooth-muscle
actin encoded by the ACTA2 gene constitutes the major con-
tractile unit of the vascular smooth muscle expressed by blood
vessels.2,3 As part of this ACTA2 syndrome, a distinctive arterial
phenotype was described by Munot et al,4 with the phenotype
further expanded by D’Arco et al5 to include brain malformative
features such as a radial orientation of frontal lobe gyri, flatten-
ing of the pons, and bending and hypoplasia of the anterior cor-
pus callosum. Following the diagnosis of an unusual
malformation of cortical development (MCD) in our index
patient (Online Supplemental Data, patient 9), we reviewed the
neuroimaging features of patients with ACTA2 pathogenic var-
iants across 4 tertiary pediatric hospitals.
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MATERIALS AND METHODS
Patient Population
This study included all patients with proved ACTA2 pathogenic
variants (n=13) from 4 pediatric hospitals (UPMC Children’s
Hospital of Pittsburgh and Children’s Hospital of Philadelphia;
The Hospital for Sick Children, Toronto, Canada; and the Great
Ormond Street Hospital, London, UK). Appropriate local research
ethics board approval was obtained from each site. Patients were
identified by a keyword (“ACTA2,” “alpha actin,” “MR imaging”)
search in their respective hospital electronic chart systems.
Inclusion criteria were younger than 18 years of age and proved
ACTA2 pathogenic variants. Exclusion criteria were poor-quality
imaging studies, including incomplete image acquisition and
image degradation by artifacts. Patient demographics and clinical
presentation were obtained from hospital electronic charts.

Image Interpretation
MR images of all patients were reviewed in consensus by 6 pediat-
ric neuroradiologists (S.S, A.B, K.M, S.V.S, C.A.P.F.A., and F.A.)
for the presence of MCDs, which were classified according to
recently published international consensus recommendations.6,7 In
particular, dysgyria was diagnosed on T1-weighted and/or T2-
weighted sequences if the cortex showed variable thickness and a
smooth gray-white boundary but with an abnormal gyral pattern
characterized by irregularities of sulcal depth and/or orientation.
The location of the dysgyria was noted in each case. All patients
also had MR angiograms that were used to subjectively note the
presence or absence of a typical ACTA2 arterial phenotype charac-
terized by dilation of the proximal ICAs, abrupt caliber change
with stenosis at the level of terminal ICAs, a straight course of the
intracranial arteries, and absent Moyamoya-like collaterals.

RESULTS
Patient demographics and genetic and imaging findings are sum-
marized in the Table and Online Supplemental Data. The cohort
consisted of 9 females. The ACTA2 pathogenic variants included

the Arg179His mutation (n¼ 11) and
the Arg179Cys mutation (n¼ 2).

Twelve of 13 patients (92%) had
peri-Sylvian dysgyria, with abnormal
bifurcation or trifurcation of the Sylvian
fissure, which was appreciated rostrally
on the sagittal sections (Fig 1A and Fig
2B–E). Ten of 13 patients had frontal
dysgyria, with obliquely oriented supe-
rior frontal sulci, best appreciated in the
axial plane (Fig 1B and Fig 2C–E). Two
of 13 patients had generalized dysgyria
in addition to the above. This was char-
acterized by involvement of the entire
cerebral cortex by an abnormal gyral
pattern with variable sulcal depth and
orientation (Fig 2E). In 10 patients, the
dysgyria was associated with areas of
undulated cortex that did not meet the
criteria for PMG (Fig 3). Patients 3 and
13 developed seizures following a

stroke, yet no other patients had epilepsy. All except 1 patient
(patient 13) had the typical ACTA2 arterial phenotype. This patient
had normal intracranial imaging features (Fig 2F) except for a vari-
able degree of arterial tortuosity.

DISCUSSION
We demonstrate previously under-recognized MCDs in most of
our patients with the ACTA2 pathogenic variants in the form of
peri-Sylvian and frontal dysgyria. In addition, most of our
patients with dysgyria had an undulating appearance of the cor-
tex, which did not meet the criteria for PMG. We term this spec-
trum of malformations “ACTA2-related dysgyria.” The typical
ACTA2 arterial phenotype was noted in all except 1 patient.

The vascular effects of ACTA2 pathogenic variants are attrib-
uted to increased smooth-muscle cell proliferation in smaller-di-
ameter muscular arteries and decreased contractility in larger
elastic arteries.4 Histologic specimens from patients with ACTA2
pathogenic variants have shown large intracerebral arteries with
marked intimal thickening and smooth-muscle cell proliferation;
increased collagen and a relatively milder degree of smooth-mus-
cle cell proliferation in the tunica media; as well as thickened,
split, and fragmented internal elastic lamina, which showed less
folding compared with that in controls.4,8

In the series published by D’Arco et al,5 the abnormally ori-
ented frontal lobe gyri were, at the time, aptly termed “abnormal
radial gyration.” On review of 6 cases from the article by D’Arco
et al, with the addition of a further 7 cases in our series, we have
termed the abnormal gyration “dysgyria,” based on the latest
2020 consensus guidelines,6,7 with this feature not only limited to
the frontal lobes but also involving peri-Sylvian regions in most
of our patients and generalized distribution in a minority. The
peri-Sylvian dysgyria in our series was characterized by an abnor-
mal bifurcation or trifurcation of the Sylvian fissure best appreci-
ated on the sagittal plane. As mentioned earlier, the undulating
appearance of the cortex in regions of dysgyria in our study is dis-
tinct from the appearance of PMG in that these cases lack the

FIG 1. Peri-Sylvian and frontal dysgyria.
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small microgyri at chaotic angles that have been described in clas-
sic PMG. We, therefore, use the term ACTA2-related dysgyria to
describe our spectrum of findings.

The structural brain malformations in patients with an ACTA2
pathogenic variant were initially attributed to either a mechanical
effect from “rigid” vessels or abnormal cross-regulation between dif-
ferent isoforms. Before recent evidence confirming otherwise,9-12 it
was presumed that a-actin was not expressed in the brain paren-
chyma; therefore, it would be unlikely for ACTA2 pathogenic var-
iants to directly influence brain development.5

While rigid vessels may explain some of the features seen in
ACTA2 pathogenic variants, they do not explain the spectrum of
dysgyria that we have described in this study. For instance, histologic

specimens show intimal and medial
thickening with a relatively spared
adventitia,4,8 explaining the luminal ste-
nosis, but they do not explain malfor-
mations of structures extrinsic to the
vascular wall. Recent studies demon-
strating a-actin9-11 and, more specifi-
cally, ACTA212 expression in the brain
parenchyma shed light on potential
alternate hypotheses for the presence of
MCDs in these patients. In 2017,
Moradi et al11 described differing roles
of a-, b -, and g -actin in axon growth,
guidance, arborization, and synaptogen-
esis and demonstrated that all 3 actin
isoforms were expressed in motor neu-

rons, with their respective messenger RNAs localizing within axons.
Alpha-actin, in particular, was highly expressed in the axonal com-
partment and axonal branch points, with depletion of a-actin asso-
ciated with altered filopodia dynamics, reduced filopodia length, and
diminished ability to form axonal collateral branches. Another
recent study demonstrated that ACTA2 was expressed in neural
stem cells of embryonic C57BL/6 mice and played an essential role
in neural stem cell migration.12

Furthermore, several studies have shown that knockout of
specific actin isoforms leads to compensatory upregulation of
other isoforms so that the overall levels of actin are main-
tained.11,13-16 Also, notably, no actin isoform differs from another
by more than 7% at the primary amino acid level;1 therefore,

FIG 2. T1-weighted images showing the spectrum of dysgyria in ACTA2 pathogenic variants. L indicates left; R, right.

FIG 3. Undulating cortex in regions of dysgyria (arrows).
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cross-regulation between actin isoforms, especially when there is
depletion of one isoform and compensatory up-regulation of
other isoforms, may also play a role in ACTA2 pathogenic var-
iants. These observations may, therefore, help classify ACTA2-
related dysgyria as a migrational or postmigrational disorder
involving the processes of neuronal migration and organization,
axonogenesis, and dendritogenesis.

The consistent distribution of dysgyria in the peri-Sylvian
regions and frontal lobes is intriguing. One possible explanation
may be that developing vessels perform scaffolding and a para-
crine signaling function for developing neural cell populations.17

Indeed, whole-brain MR angiography in our index patient

(patient 9) revealed the presence of arterial branches coursing
along the abnormally oriented sulci (Fig 4). Recent genetic
insights have shown that the embryogenesis of the vascular and
nervous systems are closely interlinked and that the axon growth
cone and endothelial tip cell respond to growth and guidance
cues in similar ways.18-22 In addition, there is cross-talk between
neural and vascular cells for the purpose of normal development,
and signals from both neural and vascular tissue can influence
the branching of one another.17,23 For instance, neuronal activity
has been found to influence cerebrovascular density, vessel
branching, and maturation via molecular cues as well as direct
cell-to-cell contact of neural cell types with endothelial cells.17,24

Similarly, CNS vasculature patterning
plays a crucial role in preventing mis-
positioning of neuronal precursor cells
and in providing a scaffold for neuro-
nal migration, axonal projections, and
cell soma arrangements in the devel-
oping brain.25-27 Thus, stiff and non-
compliant ACTA2-mutant arteries
may present a rigid scaffold to the
developing brain, resulting in abnor-
mal gyral patterning. Another factor
that may contribute to dysgyria
includes aberrant tension-induced
growth of white matter, influencing
folding patterns in a viscoelastic model
of the brain, as described in an excel-
lent recent review of the mechanics of
cortical folding.28 Therefore, an inter-
play of various factors during the

Demographics, neuroimaging findings, and clinical presentation

Patient Age Sex Mutation

Dysgyria Undulating
Cortex in
Regions of
Dysgyria

Presenting
Symptom Seizures

Typical
ACTA2
Vascular

Phenotype
Peri-
Sylvian Frontal Generalized

1 5 yr M Arg179His 1 1 1 No Cardiac arrest in
early life

No Yes

2 4 yr F Arg179His 1 1 – No Strokelike
episodes

No Yes

3 6 yr F Arg179His 1 – – Yes Stroke Yes Yes
4 13 wk M Arg179His 1 – – Yes Aniridia No Yes
5 3 yr F Arg179His 1 1 – Yes Cardiac symptoms No Yes
6 4 yr F Arg179His 1 1 – Yes Left hemiparesis No Yes
7 2 mo F Arg179Cys 1 1 – Yes Anisocoria and

cataract
No Yes

8 4 yr M Arg179His 1 1 – No Congenital
mydriasis

No Yes

9 11 yr F Arg179His 1 1 1 Yes Congenital
mydriasis

No Yes

10 17 yr F Arg179His 1 1 – Yes Chronic headaches No Yes
11 8 yr F Arg179His 1 1 – Yes Spastic

quadriplegic
cerebral palsy,
headaches

No Yes

12 11 yr F Arg179His 1 1 – Yes Stroke Yes Yes
13 7 yr M Arg179Cys – – – NA None (screened as

part of family)
No No

Note:— 1 indicates present; –, absent; NA, not applicable.

FIG 4. Anterior cerebral artery branches follow abnormal sulci (arrows).
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stages of neuronal migration, axonogenesis, and vasculogenesis
may each contribute to the patterns of dysgyria that we have
described in this article.

CONCLUSIONS
Dysgyria is common in patients with ACTA2 pathogenic variants
and has a frontal and peri-Sylvian predominance. Although the
underlying mechanisms are yet to be elucidated, recent insights
suggest the potential roles of mutant a-actin in neuronal migra-
tion and axonogenesis, abnormal cross-regulation between actin
isoforms, aberrant neurovascular cross-talk, and an abnormal
vascular scaffold, resulting in these malformations.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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