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REVIEW ARTICLE

Evolving Role and Translation of Radiomics and
Radiogenomics in Adult and Pediatric Neuro-Oncology

M. Ak, S.A. Toll, K.Z. Hein, R.R. Colen, and S. Khatua

ABSTRACT

SUMMARY: Exponential technologic advancements in imaging, high-performance computing, and artificial intelligence, in addition
to increasing access to vast amounts of diverse data, have revolutionized the role of imaging in medicine. Radiomics is defined as a
high-throughput feature-extraction method that unlocks microscale quantitative data hidden within standard-of-care medical imag-
ing. Radiogenomics is defined as the linkage between imaging and genomics information. Multiple radiomics and radiogenomics
studies performed on conventional and advanced neuro-oncology image modalities show that they have the potential to differen-
tiate pseudoprogression from true progression, classify tumor subgroups, and predict recurrence, survival, and mutation status with
high accuracy. In this article, we outline the technical steps involved in radiomics and radiogenomics analyses with the use of artifi-
cial intelligence methods and review current applications in adult and pediatric neuro-oncology.

ABBREVIATIONS: AI ¼ artificial intelligence; AUC ¼ area under the curve; DL ¼ deep learning; GBM ¼ glioblastoma; ML ¼ machine learning; SUV ¼ stand-
ardized uptake value

In parallel to the growing understanding of the impact of
genomics and epigenomics, marked advances in clinical imaging

and allied computational technologies have occurred during the
past few years. These have facilitated enhanced diagnosis, molecular
stratification, and targeted therapeutic clinical trials. Radiomics and
radiogenomics are rapidly growing fields in imaging and, since their
early inception, have been explored in the field of neuro-oncology.1

Radiomics is a high-throughput computational process that unlocks
microscale quantitative data hidden within conventional imaging,
not otherwise visualized by the naked human eye; radiogenomics is
the linkage between imaging and genomics data.2,3 With use of
radiomics analysis, a patient’s scans are converted into mineable

quantitative data to which machine learning (ML) techniques can
be applied for integrative analysis. This process has enabled the
identification of quantitative imaging markers and signature models
that are reflective of microscopic tumor biology, which has led to
enhanced, biologically relevant classification, tumor grading, sur-
vival prediction, and treatment response in adult and pediatric
brain tumors.4-8 Although studies of radiomics and radiogenomics
have been performed in adult brain tumors, their application and
use in pediatric neuro-oncology are evolving.5,9,10 Initial studies
showed promising ability to distinguish posterior fossa tumors like
ependymoma and pilocytic astrocytoma.9 Recent studies using a
combination of radiomics and ML were able to distinguish patho-
logic subtypes of pediatric brain tumors.10 This article reviews the
basics of radiomics, radiogenomics, and their clinical application;
their evolving role in adult neuro-oncology; and their recent trans-
lation and application in pediatric neuro-oncology.

Search Criteria
Details of this review article were based on a PubMed search of
categories of radiomics, adult brain tumors, and pediatric neuro-
oncology. The search was limited to malignant brain tumors
(excluding neurologic and benign lesions of the brain).

Technologic Methods and Computational Process
Overview of Radiomics Workflow. The radiomics processes can
be structured into multiple phases, and they are the same in pedi-
atric and adult patients: 1) image acquisition and data selection,
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2) image registration and segmentation, 3) image preprocessing,
4) radiomics feature extraction, and 5) feature selection and mod-
eling to predict the outcomes of interest (Fig 1).

Image Acquisition and Data Selection. Image acquisition and
data selection are considered the initial steps in the workflow. For
radiomics and radiogenomics studies in neuro-oncology, MR
imaging and PET are generally used.

Image Registration and Segmentation. Image registration refers
to the spatial alignment of the various imaging sequences into the
same geometric/anatomic space (Fig 2A).11 Tumor segmentation
refers to contour delineation of the volumes of interest (3D) or
ROIs (2D) (Fig 3). Manual segmentation or semiautomated and
automated segmentation with superimposed manual segmentation
is the criterion standard. Complete manual segmentation is tedious
and time-consuming and requires contouring of the tumor section
by section; furthermore, it is prone to interobserver and intraob-
server variability.12 Semiautomated and automated segmentation
methods have been explored in various studies to reduce manual
labor and improve consistency and reproducibility to overcome
these challenges.12-14 Although promising, semiautomated and
automated methods are not entirely accurate and typically require
editing by a radiologist to ensure more precise borders.13

Image Preprocessing. Skull stripping: Because high-resolution
structural images include a significant amount of nonbrain tissue

such as bone, skin, and eyeballs, these can affect the radiomics anal-
ysis (Fig 2B). The FSL Brain Extraction Tool (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/BET) and Robust Brain Extraction (https://www.nitrc.
org/projects/robex) are the commonly used algorithms for skull
stripping.15 Intensity normalization: During MR imaging acquisi-
tion, the use of different scanner types and scanning parameters can
result in large intensity variations. These variations can weaken the
performance of subsequent radiomics analysis. It is an essential pro-
cess of mapping intensities to a standard reference scale in MR
imaging to account for variations between patients and longitudinal
studies and to increase radiomics reproducibility. The algorithm
generated by Nyúl and Udupa,16 which involves the matching of
histograms, is the most commonly used normalization method.
Noise reduction: Noise suggests that the pixels in the image show
distinct intensity values instead of actual pixel values that are
achieved from the image.17 Rician noise decreases the quality of MR
imaging and makes quantitative feature extraction difficult.17

Gaussian convolution and neighborhood filter are the most com-
monly used noise-reduction algorithms.17 Bias field correction: The
bias field signal is nonuniform low-frequency intensities that cor-
rupt MR imaging.18 The bias field is a potential confounder for
radiomics analysis, and it should be corrected. The N4 bias field cor-
rection algorithm is the most commonly used approach for inho-
mogeneity correction.18

Radiomics Feature Extraction.After segmentation and preprocess-
ing, extraction of radiomics features is then performed. Radiomics

FIG 1. Radiomics pipeline for brain tumors. Upper line: Segmentation of the 3 imaging phenotypes: necrosis (left), enhancing tumor (middle), and
edema/invasion (right).Middle and lower lines: Radiomics feature extraction, normalization, and volume-dependent feature generation are fol-
lowed by feature selection and predictive modeling for outcomes.
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features can be categorized as first-
order, second-order, and high-order
features. First-order features describe
the distribution of individual voxel val-
ues without concern for spatial associa-
tions between neighboring voxels.17

Second-order features calculate the sta-
tistical interrelationships between adja-
cent voxels. Second-order features give
a measure of the spatial alignment of
the voxel intensities and intralesion het-
erogeneity. There are multiple different
ways of quantifying spatial association
among pixels: Gray-level co-occurrence
matrix is a most commonly used
second-order statistical texture-analysis
technique, which analyzes the spatial
relationship among pixels and defines
how frequently voxel pairs are present
in different directions.17 Gray-level run
length matrix, another commonly
used second-order feature, quantifies
consequent voxels that have the same
gray-level value along a fixed direc-
tion.17 High-order features involve
performing filters or mathematic
transforms to the images before the
feature-extraction process.19 These
features aim to detect repetitive or
nonrepetitive patterns, remove noise,
or highlight details. The wavelet
transform–based method is a very
popular approach in which the image
is decomposed in multiple scales and
used for texture analysis.19 Laplacian
transforms of the Gaussian filter
identify areas of rapid intensity
change (edges) in images.20,21

FIG 2. A, Registration of T1-postcontrast MR imaging and FLAIR MR imaging. B, Skull stripping.

FIG 3. Segmentation and 3D volume extraction of a diffuse intrinsic pontine glioma.

794 Ak Jun 2022 www.ajnr.org



Artificial Intelligence Applied to Imaging: Feature
Selection and Statistical Modeling
Machine Learning.ML is a branch of artificial intelligence (AI) in
which computers are given the capability of learning like humans
by feeding data and information without being explicitly pro-
grammed (Fig 4).22 Fundamental to ML is that classification,
regression, prediction, clustering, and association models are pro-
vided. ML methods are categorized into supervised, unsuper-
vised, and semi-supervised learning.

Supervised Machine Learning. In supervised learning, a model is
able to predict target clinical outcomes with the help of a labeled
clinical dataset.22 The supervised learning model includes 2 steps:
training and testing. Model training consists of inputs paired with
the corresponding outputs to train the model. During training, the
algorithms search for patterns in the data that relate to outcomes.
Model testing is the process of predictive performance evaluation of
the trained model on the test dataset. Support vector machine,8 ran-
dom forests,8 and eXtreme Gradient Boosting (XGBoost; https://
xgboost.ai/)23,24 are the most commonly used supervised machine
learning methods in radiomics.

Unsupervised Machine Learning. Unsupervised learning meth-
ods can classify radiomic features into subgroups using clustering
algorithms such as k-means clustering,25 fuzzy clustering,26 or
consensus clustering.27 Next, the relationships of the various fea-
tures within their groups are compared. Subsequently, the

capability of various subgroups to predict clinical output can be
compared; however, labeled data are not used for the initial
model development. Radiomics features can also be used to pro-
vide new subclasses that may more closely align with the underly-
ing biology of CNS tumors by using unsupervised machine
learning methods.

Deep Learning. Deep learning (DL), also known as deep neural
network, is a subfield of machine learning in AI that has multiple
neural-like networks (Fig 5).28 The artificial neural networks are
capable of learning from data that are unstructured or unlabeled.
The most significant difference between DL and conventional
ML algorithms is that DL does not need any human interference
such as radiomics, feature extraction, and segmentation to learn
the connection between the input and the corresponding output.
Some of the known deep learning algorithms are the recurrent
neural network, restricted Boltzmann machine, and convolu-
tional neural network.28 The convolutional neural network is
most commonly used and is popular in radiomics studies.28

Feature Selection. Feature selection is the process of selecting a
subset of the most relevant and significant discriminatory fea-
tures associated with the specific outcome. These are then used
for building radiomics models. Feature selection helps in clarify-
ing the data by revealing, in an individual, the important features
and how they are related to each other and to the image itself.
There are several commonly used methods for radiomics feature

selection such as Least Absolute
Shrinkage and Selection Operator,8

Minimum Redundancy Maximum
Relevance,24,29 and Generalized Linear
Models with Elastic Net Penalties.30

Modeling. Radiomics uses prediction
models for predicting outcomes, includ-
ing clinical or demographic, genomic,
survival, response, and resistance mod-
els.31-35 AI, specifically ML and DL, pro-
vides several approaches to achieve this
aim.31 The support vector machine uses
a hyperplane, which distinctly classifies
the data points into 2 classes.31

Generalizability and the possibility of

FIG 5. A deep learning–based model for predicting outcomes.

FIG 4. AI, ML, and DL.
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achieving probabilistic outputs are its advantages.31 XGBoost is a de-
cision tree–based ensemble algorithm that uses a gradient boost-
ing.31,36 It enables cross-validation, regularization, missing-value
imputation, and flexibility.36 The choice of modeling technique has
been demonstrated to affect prediction performance in a radiomics
study.29

Validation. The most effective approach for validation is the use
of prospective independent external validation. In cases for which
no such prospective or independent external data are available,
internal validation techniques can be performed. K-fold, leave-
one-out cross-validation, and hold-out are the most commonly
used internal validation approaches.37

Clinical Applications of Radiomics in Neuro-Oncology:
Adults
Most research in radiomics was initially performed in lung cancer.38

Radiogenomics, however, was initially performed in adult brain
cancer, specifically glioblastoma (GBM).39 Since then, numerous
studies have focused on the use of radiomics and radiogenomics in
various adult CNS tumors (Online Supplemental Data).4,7,40-47

With increasing computing speed and the availability of computer-
ized algorithms, large numbers of radiomics features can be
extracted rapidly fromMRIs and used to generate specific signature
models. These have aided in noninvasively identifying histologic
and molecular profiles of tumors,48,49 predicting response,35 differ-
entiating pseudoprogression from true progressive disease,24 and
delineating oncogenic markers in the microenvironment of brain
tumors.50

Radiomics as a Diagnostic Marker. The most recent 2016 World
Health Organization classification demonstrated the importance of
integrating phenotype-genotype characteristics of CNS tumors, en-
abling newer subclassifications of tumor groups.51 This landmark
article led to seminal studies44,52,53 that showed that brain tumors
could be directly related to a specific set of genomics, helping to
preoperatively predict tumor genotype. GBM is the most common
malignant brain tumor in adults, with poor survival outcome and
a median survival of 15months.54 Discernment of the intratumoral
genetic heterogeneity of GBMs has important implications in opti-
mizing targeted therapy to improve survival and in understanding
the mechanisms of therapeutic resistance.54,55 GBMs have multiple
genetically distinct clonal populations driving oncogenesis and
thus have distinct therapeutic sensitivities and habitats of resist-
ance.54 Biopsy and surgery cannot capture such spatially extensive
tumor heterogeneity because both comprise samples that represent
a small and static molecular “snapshot” of the entire tumor, which
is very heterogeneous; furthermore, these procedures are invasive.

Radiomics and radiogenomics have been shown to potentially
complement biopsy by capturing regional genetic heterogeneity
and by noninvasively evaluating various driver genes and prog-
nostic markers at diagnosis.43,44,47,56-58 Recent studies have
shown that radiomics models can preoperatively predict O6-
methylguanine-DNA methyltransferase (MGMT) methylation,
epidermal growth factor (EGFR) amplification, and EGFR variant
III status in GBM.48,58-60 Zhang et al46 demonstrated that ML
algorithms generated from preoperative MR imaging and clinical
features of 120 patients with grade III and IV gliomas predicted

isocitrate dehydrogenase (IDH) 1/2 status with accuracies of 86%
and 89% in the training and validation cohorts, respectively.
Similarly, Chang et al61 showed the feasibility of a DL, convolu-
tional neural network approach for the classification of genetic
mutations of both low- and high-grade gliomas. They used 259
patients with either low- or high-grade gliomas to classify IDH1
mutation, 1p/19q codeletion, and MGMT methylation status.
Their classification demonstrated that the convolutional neural
network is capable of learning significant imaging components
without prior feature selection or human-directed training with
high accuracy: IDH1 mutation status, 94%; 1p/19q codeletion,
92%; andMGMTmethylation status, 83%.

In a recent study, Hu et al50 built a radiomics model to preop-
eratively identify 6 important driver genes (EGFR, PDGFRA,
PTEN, CDKN2A, RB1, and TP53) in primary GBM. The authors
evaluated 48 biopsies from the regions of enhancing and nonen-
hancing parenchyma of 13 patients with GBM and identified sig-
nificant imaging correlations for these 6 genes. They achieved
accuracies ranging from 68% to 87.5% for PDGFRA, EGFR,
CDKN2A, PTEN, and RB1 prediction models, whereas the accu-
racy for the TP53 prediction model was 37%. Similarly, Zinn et
al62 showed that there are distinct MR imaging radiomics features
associated with the TP53-PTEN-EGFR mutational landscape and
that radiomics is approaching the complexity of whole-genome
microarray expression data. Additionally, recent studies demon-
strated that MR imaging–based radiomics models predicted 1p/
19q codeletion status in histopathologically diagnosed glio-
mas.43,47 The latter is a predictor of better prognosis and a dura-
ble response to therapy.63 These results provide proof of concept
and reaffirm that genomics-based biomarkers can be correlated
and/or predicted noninvasively by radiomics, facilitating the eval-
uation of intratumoral genetic heterogeneity; and if prospectively
validated, can be translated to the clinic as a noninvasive, cost-
effective genomic test approach and advance individualized
patient management.

Tumor Type and Tumor Grading Prediction. Noninvasive diag-
nosis of brain tumors is clinically challenging but necessary
because various treatment strategies are needed depending on the
tumor type. Conventional or advanced MR imaging techniques are
often challenging in their ability to differentiate GBM from meta-
static brain tumors and lymphoma. All these tumors can show
enhancement on T1-weighted images with gadolinium and hyper-
intensity on FLAIR.64,65 Although advanced MR imaging (MR
spectroscopy and PWI) has shown promising results in the evalua-
tion of brain tumors, further work is needed for a transition to the
clinic as part of routine brain tumor management.64,65 Radiomics-
based ML techniques have demonstrated potential in differentiat-
ing GBM from metastatic brain tumors.66 Another study showed
that a radiomics model generated by features obtained from diffu-
sion MR imaging yielded a better diagnostic performance than a
radiomics model created by features acquired from conventional
MR imaging in differentiating atypical primary CNS lymphoma,
which often mimics GBM.67 Similarly, Kong et al68 showed that
radiomics features obtained from the PET images have the poten-
tial to distinguish primary CNS lymphoma from GBM. They gen-
erated 3 groups of maps: a standardized uptake value (SUV) map,
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an SUV map calibrated with the normal contralateral cortex activ-
ity, and an SUV map calibrated with the normal brain mean activ-
ity; a total of 107 radiomics features were extracted from each SUV
map. Their areas under the curve (AUCs) for differentiating CNS
lymphoma and GBM ranged from 0.644 to 0.999. In addition, a
recently published study determined the capability of radiomics
analysis to identify the primary origin of brain metastases despite
neuropathologic procedures and imaging evaluations often failing
to identify the primary tumor site and leading to delayed diagnosis
and treatment.69 However, further studies are needed to validate
and reproduce these findings.

High-grade gliomas, including GBMs, are biologically elusive,
due to their genetic heterogeneity and complex imaging pheno-
types.54,55 Previous studies have shown that radiomics can predict
the pathologic behavior of gliomas, histologic/molecular subtypes/
grading, and the proliferative index.49,70,71 This finding could facili-
tate the presurgical evaluation of tumor behavior, determine the
extent of surgical resection, and enable optimal clinical treatment
decision-making in patients with various grades of gliomas.
Histologic grade and the Ki-67 labeling index are used to help pre-
dict biologic behavior and prognosis of gliomas.72 A recently pub-
lished study has demonstrated that radiomics features based on T2
FLAIR images have been shown to preoperatively correlate and
predict multiple immunohistochemical features of gliomas such as
Ki-67, S-100, vimentin, and CD34 expression.49 These insights are
expected to enhance the personalized treatment of patients with
gliomas.49 Furthermore, radiomics-based ML techniques have
shown potential in differentiating GBM from anaplastic oligoden-
droglioma.42 Although the AUCs of the models used were.0.900,
more studies in a larger cohort of patients are required to further
validate these revelations.

Risk Stratification and Prognostication of Tumors. The 2016
World Health Organization classification considers the genomics
heterogeneity of diffuse gliomas, necessitating effective risk stratifi-
cation for optimizing therapy.51 The invasiveness of existing meth-
ods to identify histopathologic/molecular profiles and the difficulty
of replicating results demonstrated the need to identify noninva-
sive methods to complement and solidify the diagnostic armamen-
tarium. Development of radiomics profiles and comprehensive
analysis of radiogenomics phenotypes using multiomics molecular
approaches have been successful in risk stratification and survival
estimation of diffuse gliomas.6,32,33,35,41,73,74 A study using MR
imaging radiomics features of patients with de novo GBM deter-
mined the imaging signatures associated with poor prognosis.75

In another cohort of 82 patients with de novo GBM, analysis of
5 texture features from preoperative MR images predicted molecu-
lar subtypes and 12-month survival status (overall survival at
12months indicating whether the patient was alive).32 Another
radiomics study evaluating CBV and ADC in 119 patients with
newly diagnosed GBM demonstrated that radiomics-based classifi-
cation allows noninvasive prediction of survival and stratification of
patients with GBM with better accuracy than that determined with
established conventional clinical (age and Karnofsky Performance
Scale score) or radiologic risk models (Gaussian normalized relative
CBV and ADC).6 These methods and tools could guide planning of
surgical resection, define radiation treatment margins, and optimize

the intensity of chemotherapy. The evolving and molecular profile
of lower-grade gliomas, including the favorable outcome associated
with IDH1 and 1p/19q codeletion mutation status, now partially
explains the heterogeneous survival outcomes; recent studies have
shown that radiomics phenotyping using ML techniques can iden-
tify these genomic markers43,47 and predict overall survival with
better accuracy than with the use of nonimaging markers (clinical
features and genomic data).41 Identification of the ATRX mutation
or loss of ATRX expression is a potential biomarker in gliomas and
has been associated with favorable survival outcome; in a recently
published article, the authors showed that radiomics could identify
this genotype at diagnosis.56 This could be an important addition to
the noninvasive detection of pivotal biomarkers such as IDH1 and
MGMT in gliomas.44,46,47,58,59

Predicting Treatment-Related Surrogate End Points. A few stud-
ies have robustly defined the biologic heterogeneity of the peritu-
moral brain zone and its interaction with the microenvironment in
brain tumors.55 This heterogeneity contributes to therapeutic resist-
ance and poor survival in infiltrating tumors such as GBM.55 Nearly
90% of recurrences in GBM occur in the peritumoral brain zone,
which is usually the nonenhancing component.55 Interrogating 10
radiomics peritumoral features from the peritumoral brain zone on
routine preoperative MR imaging in patients with GBMwas predic-
tive of long-term (.18months) versus short-term (,7months)
survival.33 In addition, a model generated by 6 imaging features for
CD3 infiltration prediction in GBM achieved high accuracies of
97.1% and 76.5% in the training and testing sets, respectively.76 The
role of radiomics is being used increasingly to improve characteriza-
tion and understanding of the tumor microenvironment.70,76 This
will have important clinical relevance in optimizing a targeted thera-
peutic approach.77

Bevacizumab has been widely used to treat patients with
recurrent GBM; however, the data show a lack of sustained long-
term efficacy.78 The therapeutic responses, furthermore, vary
substantially in patients.78 However, quantitative imaging bio-
markers that use radiomics to help identify patients who will ben-
efit from bevacizumab treatment before initiation of therapy have
been researched.35

With the use of immunotherapeutics in brain tumors, transient
increases in tumor size and/or new inflammatory lesions often
appear. These changes, known as pseudoprogression, typically sta-
bilize or decrease with the continuation of treatment, and differen-
tiating them from progressive disease is often difficult and
delayed.79 Conventional imaging using MR perfusion studies has
been used frequently, though specificity and sensitivity remain sub-
optimal.80,81 A multicenter study using an MR perfusion–based
radiomics model was able to distinguish pseudoprogression from
progressive disease with the AUC, sensitivity, and specificity of
90%, 93%, and 89%, respectively.24 These studies highlight the
capability of radiomics to address this important clinical distinc-
tion—an unmet need in neuroimmunotherapy.

Evolving Era of Radiomics in Pediatric Neuro-Oncology
Pediatric CNS tumors have special characteristics in tissues, mor-
phology, molecular subtype, and texture compared with their
adult counterparts.82 With the emerging biologic differences
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between adult and pediatric brain tumors, the need for improved
characterization of CNS tumors in children is imperative.
Although radiomics and radiogenomics are now used in the adult
clinical arena, their translation into clinical practice in pediatric
neuro-oncology is still in its infancy (Online Supplemental Data).
Pediatric brain tumors are the most common solid tumors in
children.83 Unlike adults, in whom we have seen increased use of
noninvasive neuroimaging using multimodal MR imaging com-
bining multiple sequences to enhance tissue characterization, few
studies to date have been reported in pediatrics.5,9,84-87 Similar
noninvasive imaging studies are needed in parallel with the evolv-
ing molecular era in pediatric brain tumors, facilitating improved
tumor classification (histologic and molecular), grading, survival
prediction, and treatment response.

Earlier studies evaluated the role and potential of MR imaging
texture analysis in capturing quantitative information of different
pediatric brain tumors.88 A recent multicenter study was per-
formed within a supervised classification framework on clinical
MR imaging, and a support vector machine was trained with 3D
textural attributes obtained from conventional MR imaging.85

The developed model was very successful in capturing transfera-
ble tumor information, and this study supported the use of 3D
texture analysis on conventional MR imaging to aid in the diag-
nostic classification of various pediatric brain tumors. A recently
published study84 using a combination of radiomics and ML
approaches on 3D multimodal MR imaging was able to build a
radiomics model with multivariable logistic regression. These
models could differentiate pediatric ependymoma and medullo-
blastoma (common malignant brain tumors of the posterior fossa
in children) with an AUC of 0.91. Similarly, Zhou et al87 demon-
strated the capability of radiomics in differentiating the types of
pediatric posterior fossa tumors (medulloblastoma, ependy-
moma, and pilocytic astrocytoma) with an accuracy of 0.85. The
success of this trend needs to be evaluated further in prospective
studies.

Pediatric medulloblastoma has been the most biologically
interrogated malignant CNS tumor in children.89 Its molecular
subtypes with distinct clinical and prognostic differences now
reaffirm the need to tailor therapy accordingly.89 A recent study5

provided proof-of-concept results for the application of radio-
mics and ML approaches for prediction of distinct medulloblas-
toma subgroups. The reproducibility of this finding would be of
immense clinical significance, with noninvasive ability to diag-
nose and biologically subtype these neoplasms. Another research
group published that model based on texture extracted from con-
ventional MR imaging to preoperatively differentiate ependy-
moma and pilocytic astrocytoma and achieved high sensitivity,
specificity, and AUC.9 This could be an invaluable tool because
often these lesions occur in the eloquent areas of the brain both at
diagnosis and recurrence, precluding surgical intervention.

DNA methylation now identifies various molecular subtypes
of aggressive pediatric CNS tumors, and genomics analysis was
able to decipher the intrinsic tumor heterogeneity.90 Noninvasive
imaging that uses radiomics to correlate with these genomic aber-
rations would be a clinically significant addition to diagnosing
these neoplasms and facilitating the design of optimal targeted
therapy.

Diffuse midline gliomas in children are aggressive brain
tumors with 10% overall survival at 18months. MR imaging–
based texture analysis in 32 children with diffuse midline gliomas
was able to stratify patients into poor and good prognostic
groups, with a median survival of 7.5months versus 17.5months,
respectively.74 Diffuse midline gliomas with more homogeneous
texture on diagnostic MR imaging were associated with a worse
prognosis.74 These findings should be further explored and corre-
lated with the evolving molecular subtypes, providing valuable
insight into prognosis and tailored therapy for these tumors.
Profiling an optimal decision tree model with the use of ADC his-
togram analysis and structural MR imaging findings provided the
ability to differentiate 7 histopathologic subtypes of pediatric
CNS tumors, with a nearly 90% accurate classification.34 This de-
cision tree model could preoperatively distinguish, with preci-
sion, 2 biologically different tumors, pilocytic astrocytomas and
atypical teratoid/rhabdoid tumor, in comparison with neuroradi-
ologists. Similar prospective studies evaluating the ability of this
model to correlate with the diverse genomic aberrations would be
a breakthrough in the management of targeted therapy for these
tumors at diagnosis and recurrence. A major success of targeted
therapy in pediatric CNS tumors has been the use of BRAF and
Mek inhibitors in low-grade gliomas. Currently, a biopsy is
needed to identify these molecular aberrations, often not possible
due to the eloquent location of these neoplasms. A recent study
showed the ability of radiomics-based prediction of BRAF status
in pediatric low-grade gliomas before a biopsy, which could have
significant implications in clinical practice.91

Immunology. Use of immunotherapeutic strategies, including
adoptive cell therapy, vaccine therapy, and checkpoint inhibitors,
in pediatric brain tumors has been rapidly evolving.92 However,
therapeutic efficacy is undermined by the low mutational burden
seen in these tumors, precluding targeted therapy. Reviews of
immunotherapy in pediatric brain tumors show some prelimi-
nary promising results, which need to be further explored. In a
recently published study of natural killer cell infusion in children
with recurrent medulloblastoma and ependymoma, a high radio-
mic performance was achieved; accuracy, sensitivity, and specific-
ity were 100%, though it did not attain statistical significance,
likely due to the low number of patients.86,92,93 A few studies in
adults have shown the ability of radiomics models to differentiate
pseudoprogression from early tumor progression in infiltrative
tumors such as GBM.24 The ability to make these distinctions in
pediatric neuro-oncology is important and needs to be pursued.

Limitations
Although radiomics has shown its potential for diagnostic, prog-
nostic, and predictive purposes in multiple neuro-oncology stud-
ies, the translation of radiomics into the clinical settings is slow
because the field is facing several challenges. Most important, the
repeatability, variability, and reproducibility of radiomics are still
issues and often depend on the imaging sequence used, tech-
nique, size of the image, image quality, software used for feature
extraction and reconstruction, as well as motion artifacts and seg-
mentation, which can lead to greater interobserver variations in
addition to the time-consuming nature of manual segmentation.
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DL-based radiomics may overcome these issues because the
features are extracted automatically from the huge data, and a
subset of best-performing features is automatically identified.
The most important pitfall of DL-based radiomics is the high
association between the images and the clinical output data.
Thus, in contrast to feature-based radiomics, large datasets are
needed to identify the most relevant and robust features to over-
come this challenge. DL-based radiomics models must validate
their reliability in prospective large studies.

Another important limitation to the translation of radiomics
models in clinical management is the interpretability of the radio-
mics features and models. Radiomics is perceived as a “black
box,” ie, it is very difficult to clinically interpret the developed
predictions. As an emerging technique, explainable AI is better
understood, trusted, and the results are more efficiently inter-
preted by human-users, in contrast to the “black box” concept in
ML.94

CONCLUSIONS
In this review, we outlined the principles of radiomics analysis in
a step-by-step approach and described how large amounts of
imaging data can be interrogated and analyzed in patients with
brain tumors. We believe that soon, with cumulative develop-
ments in AI and increasing public access to large data bases,
radiomics can be expected to play an important role in clinical
decision-making by answering many clinical questions of diag-
nostic and therapeutic relevance. However, many limitations and
challenges exist, and much work needs to be done to robustly
translate radiomics into the clinical arena.
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