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ORIGINAL RESEARCH
ADULT BRAIN

Clinical Profiles and Patterns of Neurodegeneration in
Amyotrophic Lateral Sclerosis: A Cluster-Based Approach

Based on MR Imaging Metrics
G. Milella, A. Introna, D.M. Mezzapesa, E. D’Errico, A. Fraddosio, M. Ucci, S. Zoccolella, and I.L. Simone

ABSTRACT

BACKGROUND AND PURPOSE: The previous studies described phenotype-associated imaging findings in amyotrophic lateral sclero-
sis (ALS) with a prior categorization of patients based on clinical characteristics. We investigated the natural segregation of patients
through a radiologic cluster-based approach without a priori patient categorization using 3 well-known prognostic MR imaging bio-
markers in ALS, namely bilateral precentral and paracentral gyrus cortical thickness and medulla oblongata volume. We aimed to
identify clinical/prognostic features that are cluster-associated.

MATERIALS AND METHODS: Bilateral precentral and paracentral gyri and medulla oblongata volume were calculated using
FreeSurfer in 90 patients with amyotrophic lateral sclerosis and 25 healthy controls. A 2-step cluster analysis was performed using
precentral and paracentral gyri (averaged pair-wise) and medulla oblongata volume.

RESULTS:We identified 3 radiologic clusters: 28 (31%) patients belonged to “cluster-1”; 51 (57%), to “cluster 2”; and 11 (12%), to “clus-
ter 3.” Patients in cluster 1 showed statistically significant cortical thinning of the analyzed cortical areas and lower medulla oblon-
gata volume compared with subjects in cluster 2 and cluster 3, respectively. Patients in cluster 3 exhibited significant cortical
thinning of both paracentral and precentral gyri versus those in cluster 2, and this latter cluster showed lower medulla oblongata
volume than cluster 3. Patients in cluster 1 were characterized by older age, higher female prevalence, greater disease severity,
higher progression rate, and lower survival compared with patients in clusters 2 and 3.

CONCLUSIONS: Patients with amyotrophic lateral sclerosis spontaneously segregate according to age and sex-specific patterns of
neurodegeneration. Some patients with amyotrophic lateral sclerosis showed an early higher impairment of cortical motor neurons
with relative sparing of bulbar motor neurons (cluster 3), while others expressed an opposite pattern (cluster 2). Moreover, 31% of
patients showed an early simultaneous impairment of cortical and bulbar motor neurons (cluster 1), and they were characterized by
higher disease severity and lower survival.

ABBREVIATIONS: ALS ¼ amyotrophic lateral sclerosis; ALSFRS-r ¼ ALS Functional Rating Scale-Revised; CS ¼ control subjects; IQR ¼ interquartile range;
MOv ¼ medulla oblongata volume; ODI ¼ onset-to-diagnosis interval; ParaCT ¼ paracentral gyrus; PreCT ¼ precentral gyrus

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenera-
tive disease known for its extremely heterogeneous natural

course.1 Early identification of patients characterized by a faster
disease progression rate is one of the primary goals in the field of
motor neuron diseases to provide correct information about prog-
nosis, care needs, and support services.

Several staging systems were previously proposed to stratify
patients according to the phase of the disease and cognitive

profiles and to identify prognostic factors.2-7 The feasibility of

these staging systems has been proved in both trials and the clini-

cal setting, by successfully allocating patients into specific disease

categories. Several standard procedures have been proposed to

guarantee interrater reliability in assessing the correct staging.8,9

However, until now, clinical staging still requires the careful con-

sideration of observed clinical parameters and relies invariably on

the interpretation of reported symptoms and other potentially

subjective factors. Therefore, several quantitative biomarkers,10,11

beyond clinical parameters, have been proposed to correctly dis-

tinguish subgroups of patients according to different prognoses.
Among different “dry biomarkers,”12 MR imaging has pro-

gressively acquired greater relevance to assess in vivo the extent of
CNS damage in patients with ALS, given its accessibility and non-
invasiveness. A recent review stated that the most disease-sensitive
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MR imaging patterns are located in motor regions.13 Specifically,
disease severity (expressed as ALS Functional Rating Scale-
Revised [ALSFRS-r] score) and progression rate correlated with
the mean cortical thickness of the motor area,14-18 extramotor
areas (eg, paracentral lobules),17,19 and medulla oblongata volume
(MOv).19-21 These MR imaging metrics have also been proposed
as predictive biomarkers of survival.20,22

Nonetheless, most imaging studies validated MR imaging
metrics by describing phenotype-, genotype-, or stage-associated
radiologic profiles23-25 in a priori selected clinical categorizations
(eg, spinal or bulbar onset, fast and slow progressors, prevalent
upper or lower motor neuron impairment). An alternative inter-
esting approach was recently performed by Bede et al,26 which
used cluster analysis of pooled imaging data and subsequent anal-
ysis of cluster-associated clinical characteristics. Using a large
unsegregated MR imaging data set and 74 MR imaging metrics,
the authors found that patients with ALS spontaneously segre-
gated in 2 clusters mainly according to 3 specific areas, namely
superior lateral temporal and superior and inferior frontal gyri.
The 2 clusters exhibited different frontotemporal impairment on
MR imaging and the prevalence of C9orf72 mutation carriers. In
line with this study, Tan et al27 found that patients with ALS
could be divided into 3 subgroups (pure motor neuron; orbito-
frontal and temporal involvement; posterior cingulate cortex, pa-
rietal white matter temporal operculum and cerebellum) using a
connectome-based clustering algorithm among 68 cortical
regions, 15 subcortical structures, and all the white matter tracts
between these latter regions.

Different from these latter studies, we restricted our cluster-
based analysis to MR imaging metrics identified as core features
of disease severity and survival in ALS by previous reports,
namely cortical thickness of the precentral gyrus (PreCT)22 and
paracentral gyrus (ParaCT)22 and MOv.20 Thus, we aimed to
identify the clinical and prognostic features of the different radio-
logic clusters.

MATERIALS AND METHODS
Ethics Approval
We confirm that we have read AJNR’s position on issues involved
in ethical publication and affirm that this report is consistent with
those guidelines. Ethics approval was waived by the local ethics
committee, considering that all the procedures being performed
were part of the routine care (study No. 6778).

Population
A total of 90 incident patients with ALS referred to our ALS terti-
ary center between 2018 and 2020 were consecutively recruited at
the time of diagnosis. A careful diagnostic work-up was per-
formed to exclude ALS-mimicking diseases. All patients met the
criteria for clinically definite, probable, or possible ALS according
to the El Escorial-revised criteria.4 Exclusion criteria included
prior cerebrovascular events, traumatic brain injury, neurosurgi-
cal procedures, as well as neoplastic, paraneoplastic, or neuroin-
flammatory comorbidities.

None of the patients fulfilled the criteria for ALS and fronto-
temporal dementia according to the Strong criteria.5

Demographic characteristics and clinical data have been regis-
tered and collected by experienced neurologists of the ALS team.
We recorded the following demographic and clinical variables:
age at symptom onset, sex, onset-to-diagnosis interval (ODI), age
at diagnosis (corresponding to the first neurologic clinical evalua-
tion), site of symptom onset, and clinical phenotype.1

All patients were functionally evaluated using the ALSFRS-r.28

The progression rate was calculated using the following formula:
(48 – ALSFRS-r) / disease durations (months).29

Longitudinal clinical evaluations were performed at 4- to 6-
month intervals, and data regarding death or tracheostomy were
recorded. The censoring date was set at March 31, 2022.
Tracheostomy or death (if it occurred) were considered as a
composite outcome.

Control subjects (CS) consisted of 25 subjects, not affected by
inflammatory, autoimmune, and vascular or neurodegenerative
diseases, without a family history of ALS and without abnormal
findings on brain MR imaging.

MR Imaging Acquisitions
All participants underwent MR imaging on a 1.5T MR imaging
scanner (Philips) at Azienda Ospedaliero Universitaria Policlinico of
Bari. Specifically, patients with ALS underwent MR imaging at the
time of diagnosis, concurrent with their first neurologic evaluation.
Routine T1-, T2-weighted, and FLAIR sequences were performed to
exclude other causes of focal or diffuse brain damage, including
lacunar and extensive cerebrovascular lesions. 3D structural MR
imaging was acquired using a T1-weighted MPRAGE sequence
(TR/TE/flip angle ¼ 25.00 ms/4.60 ms/30.00°, FOV ¼ 240mm,
matrix¼ 256� 256, voxel size¼ 0.93� 0.93� 1.0 mm3).

Cortical Thickness Analysis and Volumetric Analysis
FreeSurfer software, Version 7.1 (http://surfer.nmr.mgh.harvard.
edu) was used to assess cortical thickness. Processing steps included
correction for magnetic field inhomogeneity, alignment to a specific
atlas,30 skull removal, and segmentation of voxels into GM, WM,
and CSF. Cortical thickness was then calculated on the basis of the
shortest distance of 2 surfaces: the interface between GM and WM
and the pial surface. The anatomic labels of the Desikan–Killiany
atlas31 were used to calculate average cortical thickness in the pre-
central and paracentral cortical regions in the left and right cerebral
hemispheres separately.

MOv was obtained using the FreeSurfer tool “segmentBS.
sh.”32 Segmentation (https://surfer.nmr.mgh.harvard.edu/fswiki/
BrainstemSubstructures) was conducted using a robust and accu-
rate Bayesian algorithm, relying on a probabilistic atlas of the
brainstem and neighboring anatomic structures implemented in
FreeSurfer.32 Additionally, from each preprocessed T1-weighted
data set, total intracranial volume was calculated using
FreeSurfer. Raw volumetric values of the medulla oblongata were
corrected for the total intracranial volume using the residual
method.33

Statistical Analysis. The bilateral PreCT and ParaCT were aver-
aged pair-wise and, together with MOv, were included in the
2-step cluster analysis. The choice of using the left and right pre-
central and paracentral cortical thicknesses averaged pair-wise is
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consistent with previous studies that showed that cortical atrophy
in these latter regions occurred early and bilaterally, especially in
patients with ALS with bulbar-onset34 and, irrespective of the side
of first limb weakness, in patients with ALS with spinal onset.35

Furthermore, because interhemispheric asymmetry was found in
healthy subjects,36 the inclusion of MR imaging metrics belonging
to both the right and left hemispheres could have biased the entire
analysis by finding clusters that are subject-related and not dis-
ease-related. Therefore, we included the pair-wise average precen-
tral and paracentral cortical thickness, to provide an overall
measure of cortical atrophy, as performed elsewhere.22,26

Both cortical thickness and volumetric measures were mini-
mum-maximum normalized to a 0–1 scale, to account for different
measurements scales. The 2-step cluster analysis was performed
using the Euclidean distance measure. The number of clusters was
not fixed a priori, and the Bayesian information criterion was used
to determine the number of clusters. On the basis of cluster mem-
bership of individual patients, cluster sizes were determined and
silhouette analyses were run using the STATS CLUS SIL extension
of SPSS (IBM).26

ANCOVA was performed to evaluate differences in MR imag-
ing metrics between the following groups: first, between CS and
each radiologic ALS cluster and then among patients with ALS
belonging to different clusters. In the analysis, PreCT and ParaCT
and MOv were included as dependent variables, and study groups
as categoric independent variables. Age at the first neurologic eval-
uation (time of diagnosis) and sex were considered potential con-
founding factors,37 and they were used as covariates.

Demographic and clinical variables of the entire ALS popula-
tion and of each cluster patient were reported as median (along
with interquartile range [IQR]) or frequencies (percentages) for
continuous and categoric variables, respectively. Group differen-
ces in the demographic and clinical variables were evaluated
using a Mann-Whitney U test for continuous variables and the
x 2 or Fisher exact test for categoric variables.

To evaluate the different prognoses of each cluster, we dicho-
tomized all patients with ALS into long and short survivors using
the 2-step cluster analysis.38 Categoric variables (reaching or not
reaching the end point) and continuous variables (time elapsed
between symptoms onset and censoring date or end points) were
included in the model. Logistic regression was used to test the dif-
ferent percentages of short and long survivors in each cluster.
The results were reported as OR and 95% CI. Last, Kaplan-Meier
survival curves were used to illustrate the distribution of survival,
and log-rank tests were used to test for differences among differ-
ent radiologic clusters.

RESULTS
Clinical and Demographic Characteristics of the ALS
Population and CS
The median age at symptom onset was 57 years, and the median
ODI was 10months. The spinal onset of disease was more fre-
quent than bulbar onset (74% and 26%, respectively). Sixty-eight
patients (76%) were classified as classic ALS phenotypes.1 Twenty-
two (24%) patients were classified as having “definite ALS”
according to the El Escorial-revised criteria.4 Sixty-five (72%)
patients reached the composite outcome (tracheostomy or death)

at the censoring date. The estimated median survival time from
symptom onset to combined outcome was 47months (Table).

CS were sex- and age-matched to patients with ALS with a
median age of 54 years (IQR ¼ 45–57 years) and a male-to-
female ratio of 14:11 (56%male and 44% female).

MR Imaging Metrics
Two-step cluster analysis identified 3 distinct clusters of anatomic
disease burden distribution: among all patients with ALS, 28
(31%) belonged to cluster 1; 51 (57%), to cluster 2; and 11, (12%)
to cluster 3. The silhouette coefficient of 0.6 indicates reasonable
cohesion and separation according to Kaufman and Rousseeuw.39

In comparison with CS, patients with ALS in cluster 1 exhib-
ited significantly lower values of both PreCT and ParaCT and
MOv (P, .001 for all). Patients with ALS in cluster 2 had lower
values of MOv compared with CS (P, .001), whereas patients
with ALS in cluster 3 showed significantly lower PreCT and
ParaCT values (P¼ .001), but no differences in MOv (Fig 1).

Patients with ALS in cluster 1 showed significantly lower
PreCT and ParaCT values compared with those in cluster 2
(P, .001 for both), but not patients in cluster 3. Furthermore,
the patients with ALS in cluster 1 had lower MOv values than
those in cluster 3 (P, .001), but not patients in cluster 2. On the
other hand, patients with ALS in cluster 2 exhibited significantly
lower values of MOv (P, .001) compared with those in cluster
3, and in turn, this latter cluster had lower values of both PreCT
and ParaCT than cluster 2 (P¼ .001 for both) (Fig 1).

Clinical and Demographic Features of the 3 Clusters
The Table shows the cluster-associated ALS clinical and demo-
graphic features.

The 3 clusters differed in age and sex: specifically, patients
with ALS in cluster 1 were older than those in cluster 2 and cluster
3 (P ¼ .045 and P ¼ .001, respectively), while no differences were
found between these latter 2 groups (Table). Male prevalence was
57% and 82% in clusters 2 and 3, respectively, while female preva-
lence was 68% in cluster 1 (P¼ .035 and P¼ .005, respectively).

No statistically significant differences were found in the ODI
among the 3 groups. A spinal onset of the disease was found in
all patients with ALS in cluster 3 and in about 70% of patients
with ALS in both clusters 1 and 2. Patients with ALS in cluster 1
also had a higher diagnostic certainty, expressed by a higher per-
centage of “definite ALS” according to the El Escorial-revised cri-
teria, compared with those in cluster 2 (43% versus 16%,
P, .001) and cluster 3 (43% versus 18%, P¼ .017).

Patients with ALS in cluster 1 had an overall higher disease
severity, expressed by lower ALSFRS-r scores than patients in
both cluster 2 and cluster 3 (P ¼ .001 and P, .001, respec-
tively), while no differences were found between these latter 2
groups. Furthermore, patients with ALS in cluster 1 showed a
higher progression rate compared with those in cluster 2 and
cluster 3 (P¼ .002 and P ¼ .02, respectively).

Survival Analysis
Among our study cohort, 26 patients were included in the long
survivors’ group with a median time of observation of 57months
(IQR¼ 45–80 months), and none of them reached the composite
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outcome at the censoring date (Table). The short survivors’ group
was characterized by 64 patients with a median time of observa-
tion of 36 months (IQR ¼ 24–52 months), and all of them
reached the composite outcome. Patients in cluster 1 showed a 4-
and 10-fold risk of belonging to the short survivors’ group com-
pared with those in clusters 2 and 3, respectively (P ¼ .036 with
hazard risk: 4.17 and a 95% CI, 1.11–15.87 and P¼ .007 with haz-
ard risk: 10 and a 95% CI, 1.85–52.63, respectively).

Kaplan-Meyer survival curves revealed that patients with ALS
in cluster 1 showed a worse prognosis compared with patients in
cluster 2 (log-rank: 4.10, P ¼ .043) and cluster 3 (log-rank: 8.22
P ¼ .004). No significant differences in overall survival from the
onset of symptoms were detected between patients in these latter
2 groups (Table and Fig 2).

DISCUSSION
In the present study, we performed a data-driven analysis to
identify the radiologic clustering of newly diagnosed patients
with ALS, in relation to 3 well-known neuroanatomic loci
involved in ALS disease, namely the PreCT22 and ParaCT22 and
the medulla oblongata.20 Our data suggested that already at the
time of diagnosis, patients with ALS showed specific patterns of
neurodegeneration, with a prevalent impairment of the motor

and extramotor cortex, cluster 3; MOv, cluster 2; or all 3 MR
imaging measures, cluster 1. This latter group of patients was
characterized by older age, higher female prevalence, greater
disease severity expressed by lower ALSFRS-r scores, a higher
progression rate, and lower median survival.

MR imaging data-driven approaches potentially have several
advantages in clinical practice because they do not require a pre-
vious integration of clinical data. Unlike in interesting previous
studies that first applied this approach,26,27 we focused our clus-
ter-based analysis on CNS-selected areas that are already found
to be associated with survival20,22 and disease severity.17,21,40

Restricting the cluster-based analysis to the motor cortical areas
and medulla oblongata, we first found that a considerable propor-
tion (57%) of patients with ALS (belonging to cluster 2) showed
greater involvement of the medulla already at the time of diagno-
sis. Second, a small subgroup of the ALS cohort (cluster 3, 12%)
had early involvement of the motor and extramotor cortices with
relative preservation of the medulla oblongata. Finally, 31% of
those with ALS (cluster 1) showed wider and more prominent
involvement of both cortical regions and medulla oblongata
volume. These results appear in line with previous neuropatho-

logic and neuroradiologic studies. Indeed, the earlier brainstem

involvement found in 88% of our patients (clusters 1 and 2)

Association between MR imaging clusters and clinical features in patients with ALSa

ALS Population
(n = 90)

Cluster 1
(n = 28)

Cluster 2
(n = 51)

Cluster 3
(n = 11) P Value

Age at onset (median) (IQR) (yr) 57 (50–65) 67 (62–70) 41 (44–54) 46 (45–54) P ¼ .045b

P ¼ .001c

P ¼ nsd

Sex (No. of patients) (male/female) 47:43 9:19 29:22 9:2 P ¼ .035b

P ¼ .005c

P ¼ nsd

Site of onset (spinal/bulbar)
(No. of patients)

67/23 20/8 36/15 11/0 P ¼ nsb

P ¼ .047c

P ¼ .039d

ALS phenotypes: classic/bulbar/flail
arm/flail leg/pyramidal/respiratory/
PLMN/PUMN (No. of patients)

68/7/0/0/0/0/
15/0

25/2/0/0/0/
0/1/0

34/5//0/0/0/
0/12/0

9/0//0/0/0/
0/2/0

P ¼ nsb

P ¼ nsc

P ¼ nsd

El Escorial-revised, categories: definite/
probable/possible (No. of patients)

22/36/32 12/14/2 8/18/25 2/4/5 P, .001b

P ¼ .017c

P ¼ nsd

ODI (median) (IQR) (mo) 10.07 (6.08–19.27) 9.18 (6.08–14.32) 11.73 (6.23–19.53) 8.97 (4.07–19.27) P ¼ nsb

P ¼ nsc

P ¼ nsd

ALSFRS-r (median score) (IQR) 38 (34–42) 34 (31–37) 40 (35–43) 40 (38–43) P ¼ .001b

P, .001c

P ¼ nsd

Progression rate (median) (IQR) 0.83 (0.45–1.38) 1.26 (0.68–2.84) 0.70 (0.29–1,20) 0.80 (0.45–1.12) P ¼ .002b

P ¼ .022c

P ¼ nsd

Long/short survivors (No. of patients) 26/64 3/25 17/34 6/5 P ¼ .032b

P ¼ .008c

P ¼ nsd

Survival time from symptom onset to
composite outcome (median)
(estimated median) (95% CI) (mo)

46.63 (37.95–55.31) 34.5 (22.39 �46.6) 46.63 (35.4–57.87) 72.73 (42.98–102.47) P ¼ .043b

P ¼ .004c

P ¼ nsd

Note:—ns indicates not significant; PLMN, prevalent lower motor neuron; PUMN, prevalent upper motor neuron.
a Group differences in the demographic and clinical variables were evaluated using a Mann-Whitney U test for continuous variables and x 2 tests for discrete variables.
Log-rank tests were used to test for differences in survival between different radiologic clusters.
b Cluster 1 versus cluster 2.
c Cluster 1 versus cluster 3.
d Cluster 2 versus cluster 3.
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agrees with the findings of Brettschneider et al,41 who reported
that brainstem involvement represents “stage 1” in ALS pathol-
ogy. Nonetheless, the early involvement of cortical motor neu-
rons with subsequent spread along contiguous neuroanatomic
regions in fewer patients (43% belonging to clusters 1 and 3) may
support the role of these brain regions in the onset of ALS disease,
as recently postulated by a radiologic study of Schito et al.42

Finally, to explain the simultaneous and early involvement of
both cortical regions and the medulla oblongata volume in patients
with ALS in cluster 1, we referred to the most accredited model of
ALS disease propagation reported in the literature.43 Indeed, also in
these latter patients, the onset of the disease could have been focal
in the cortical and/or the brainstem motor neurons, as postulated
by Ravits,43 but a rapid spread of the disease along the neuroaxis
would not allow us to detect the first neuroanatomic region
involved, even at the onset of the disease in these patients.
Alternatively, the onset of disease could have been due to “multi-
focal hits” with simultaneous involvement of cortical and brain-
stem motor neurons as recently postulated and demonstrated
through an elegant neurophysiologic study by Sekiguchi et al.44

In addition, we observed that patients
with ALS with wider impairment of both
cortical and medulla oblongata regions
(cluster 1) were characterized by an older
age at onset and higher female preva-
lence. The effect of both age at onset and
sex on MR imaging metrics was previ-
ously and extensively reported.37,45-47

On the basis of previous literature data,
older age at symptom onset might pro-
vide a vulnerable substrate for faster and
more severe disease propagation,45 while
ALS sex-related brain functional and
structural changes have been reported
with controversial results.37,48

According to a very recent study,
there is increasing evidence that ALS
disease follows different patterns of
neurodegeneration that are age- and
sex-specific. Tan et al27 found a cluster
of patients with ALS characterized by
predominant involvement of the
PreCT, younger age, and higher male
prevalence. In addition, the authors
described another cluster characterized
by female prevalence and older age with
wide posterior cingulate, parietal, cere-
bellar motor, temporal, and corpus
medullare neurodegeneration.27 Overall,
all these findings agreed with a previous
population-based study that reported
the interaction between age and female
sex, with women more affected than
men at older ages.49

The most intriguing findings of our
study were the clinical consequences of
the radiologic clustering of patients

with ALS. Indeed, patients with ALS in cluster 1 with a wider
impairment of both cortical and medulla oblongata regions were
characterized by overall higher disease severity (expressed as lower
scores of the total ALSFRS-r score), higher progression rate, and
worse outcome, compared with patients in clusters 2 and 3. As
stated above, several previous studies have underlined how
PreCT, ParaCT and MOv could be used singularly as indicators of
ALS disease aggressiveness.14,17,20,21,40 Nevertheless, these latter
approaches relied invariably on the interpretation of clinical data
that could somehow be misleading. An example of this limitation
was recently aroused by Ferrea et al,25 who demonstrated through
a discriminant analysis that patients with ALS with prevalent
upper and lower motor neuron impairment could be differenti-
ated by specific MR imaging metrics of the motor and extramotor
regions. However, the same authors reported that the clinical dis-
tinction between ALS phenotypes (prevalent upper and prevalent
lower motor neurons and classic ALS) is somewhat heterogene-
ous; therefore, they included this concept as a limit of their
study.25 Instead, using a cluster-based approach without a priori
clinical categorization of patients with ALS, we overcame the

FIG 1. Estimated marginal means with SDs of the PreCT (A), ParaCT (B), and MOv (C) are plotted
for each radiologic cluster adjusted for age and sex. Estimated marginal means and SDs of the CS
are reported in the black dotted lines. The asterisk indicates P, .001.
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intrinsic limitation of investigating the correlation between clinical
characteristics and each neuroanatomic structure, and we demon-
strated that both the impairment of cortical and medullar regions
corresponded simultaneously with the severity, rate of progres-
sion, and survival in ALS disease. Furthermore, a data-driven
analysis could also overcome the potentially subjective interpreta-
tion of reported symptoms, which could be biased by “recall
error,” especially in patients with a long-lasting disease.

The main limitation of our study is the lack of a longitudinal
MR imaging analysis, which, instead, would have better defined
the trajectories of the disease burden and the rate of decline of
MR imaging metrics according to different clusters. Another li-
mitation is the lack of neuropsychological assessment, which
would guarantee a better characterization of cognitive profiles
among radiologic clusters. Last, in our study, we included only
patients with a definite, probable, or possible diagnosis of ALS.
The inclusion of patients with ALS with pure lower motor neuron
impairment, as well as progressive muscular atrophy or progres-
sive lateral sclerosis, may be of potential interest to evaluate
whether these subtypes segregate from ALS on the basis of their
radiologic profiles.50,51

CONCLUSIONS
We demonstrated that radiologic clustering of newly diagnosed
patients with ALS could have clinical and prognostic implica-
tions and could unravel some aspects of the extreme phenotypic
heterogeneity of ALS disease. Patients with undoubtedly more
advanced and extended disease burdens (cluster 1) should be
carefully evaluated to propose therapeutic interventions, such as
timely positioning of percutaneous endoscopic gastrostomy or
tracheostomy.
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