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The Role of Neural Networks in Improving the Accuracy
of MR Spectroscopy for the Diagnosis of Head and Neck

Squamous Cell Carcinoma

Ronald J. Gerstle, Stephen R. Aylward, Sharon Kromhout-Schiro, and Suresh K. Mukherji

BACKGROUND AND PURPOSE: MR Spectroscopy (MRS) has the unique ability to analyze
tissue at the molecular level noninvasively. The purpose of this study was to determine if peak
heights revealed by proton MRS (1H-MRS) signals showed that neural networks (NN) provided
better accuracy than linear discriminant analysis (LDA) in differentiating head and neck squa-
mous cell carcinoma (SCCA) from muscle

METHODS: In vitro 11-T 1H-MR spectra were obtained on SCCA tissue samples (n 5 16)
and muscle (n 5 12). The peak heights at seven metabolite resonances were measured: olefinic
acids at 5.3 ppm, inositol at 3.5 ppm, taurine at 3.4 ppm, choline (Cho) at 3.2 ppm, creatine
(Cr) at 3.0 ppm, sialic acid at 2.2 ppm, and methyl at 0.9 ppm. Using leave-one-out experimental
design and receiver operating characteristic curve analysis, the ability of NN and LDA classi-
fiers to distinguish SCCA from muscle were compared (given equal weighting of false-negative
and false-positive errors). These classifiers were also compared with an existing method that
forms a diagnosis by using LDA of the Cho/Cr peak area ratio.

RESULTS: NN classifiers, which were identified using height data, achieved better sensitivity
and specificity rates in distinguishing SCAA from muscle than did LDA using height or area
data. Sensitivity/specificity for the NN analysis of the seven metabolite peak heights were 87.5%
and 83.3%, respectively, for a one-hidden-node network and 81.2% and 91.7%, respectively,
for a two-hidden-node network. Additional nodes did not improve accuracy. The sensitivity
and specificity were 81.2% and 50%, respectively, for LDA of the seven peak heights, and 68%
and 83%, respectively, for LDA of the Cho/Cr peak area ratio.

CONCLUSION: NN classifiers with peak height data were superior to LDA of the peak
heights and LDA of the Cho/Cr peak area ratio for differentiating SCCA from normal muscle.
These results show neural network analysis can improve the diagnostic accuracy of 1H-MRS
in differentiating muscle from malignant tissue. Further studies are necessary to confirm our
initial findings.

MR spectroscopy (MRS) has the unique ability to
analyze tissue at the molecular level noninvasively.
MRS has been used in the diagnosis of tumors of
the brain (1–3), head and neck (4), lung (5), pros-
tate (6), thyroid (7), and breast (8, 9), with good
success.

There are numerous metabolite peaks that can be
identified on high-resolution in vitro proton (1H)
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MR spectra (Fig 1); however, most investigators
who have used 1H-MRS to differentiate between
different tissue types have compared relatively few
peak height or peak area ratios. The classifier most
commonly applied to 1H-MRS in differentiating
benign from malignant tissue is linear discriminant
analysis (LDA) (2, 4, 5, 8, 10). LDA, as conceived
by Fisher (11), is a classifier that computes a linear
boundary to separate two classes. This method
commonly uses the assumption of a normal distri-
bution to position that boundary (Fig 2).

Originally conceived in the late 1950s, neural
networks (NN) were initially viewed as a way to
model the workings of the human central nervous
system (12). As with the human central nervous
system, NNs are collections of simple processing
elements called ‘‘nodes.’’ Each node is capable
only of the most basic decision making (eg, yes/
no), but when interconnected, they are capable of
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FIG 1. Examples 1H-MR spectra of normal muscle (A) and SCCA (B). Peaks measured in this study were olefinic acids (5.3 ppm),
inositol (3.5 ppm), taurine (3.4ppm), Cho (3.2 ppm), Cr (3.0 ppm), sialic acid (2.2 ppm), and methyl (0.9 ppm). The height of the methylene
(1.3 ppm) peak was used as an internal standard. (curved arrow indicates Cho resonance) nodes. Through training, a collection of
nodes can adjust their interconnections so as to make complex decisions in consideration of a large number of inputs. This capability
makes this ideally suited for the analysis of spectral resonanaces.

FIG 2. A 2D example of LDA. A, Two fea-
tures (F1 and F2 axes) describe two clas-
ses (black and white dots). B, Using the
assumption of a normal distribution for
each of the classes. LDA computes a lin-
ear boundary (dotted line) in the 2D space
to separate the two classes completely.

FIG 3. Schematic of a node, the fundamental unit of an NN. A
node weights its input to make a simple yes/no decision. An NN
is trained by adjusting the weights used by its nodes. Through
training, a collection of nodes can adjust their interconnections
so as to make complex decisions in consideration of a large num-
ber of inputs. This capability makes this ideally suited for the
analysis of spectral resonanaces.

complex decisions in consideration of a large num-
ber of inputs. In these experiments, we evaluated
one type of NN classifier called the multilayered
perceptron in which the nodes are arranged in lay-
ers (Fig 3). The input layer merely passes the input
data to the second, ‘‘hidden’’ layer. Each node in
the hidden layer sees every input value, indepen-
dently weights the importance of each input, and
thereby produces a single vote that is passed to ev-

ery node in the output layer. Each node in the out-
put layer independently weights the votes of the
hidden layer nodes and then casts its own vote. The
strength of NNs comes from their ability to be
trained iteratively. During training, input/output
pairs are repeatedly presented to the network and
used to adjust how the output layer weights the
hidden nodes’ votes and how the hidden nodes
weight the input values (training actually occurs in
this output-to-input reverse flow and is therefore
termed ‘‘backpropagation’’). Because of their com-
plex decision-making capabilities and their ability
to be trained, NNs have been applied in fields rang-
ing from handwriting (13) and human face recog-
nition (14) to prediction of patient outcomes in co-
lorectal carcinoma (15), and recently, MRS (3, 16).

The purpose of this investigation was to deter-
mine if neural network analysis of multiple peak
heights could improve, compared with LDA, the
ability of 1H-MRS to distinguish normal muscle
from SCCA in vitro. We believe that the use of
peak heights at multiple resonances provides ad-
ditional information that can improve the diagnos-
tic accuracy of 1H-MRS and potentially create a
tumor profile for SCCA.
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Methods

Tissue Samples

This study was an in vitro prospective analysis of one-di-
mensional 1H-MRS of muscle and SCCA of the extracranial
head and neck performed under controlled conditions. SCCA
samples (n 5 16) were obtained from patients undergoing ex-
cisional biopsy of clinically suspicious masses. Normal sam-
ples (n 5 12) were obtained from incidentally excised normal
muscle, typically laryngeal strap muscles. Faculty pathologists
at our institution made the histologic diagnosis of SCCA or
normal muscle, and this was considered the standard by which
our classifiers were judged. The institutional review board at
our institution approved this tissue procurement protocol.

Specimens were placed in plastic vials and frozen in liquid
nitrogen; they were then stored in a 2808 C freezer until 1H-
MRS analysis was performed. Before performing 1H-MRS,
samples were thawed to room temperature, minced, and
washed with D2O phosphate buffered saline (3 3) to remove
as much residual water as possible. The samples were then
placed on D2O-saturated glass wool plugs in 5-mm nuclear
MR tubes. Mincing improved the uniformity of the sample and
the homogeneity of the magnetic field across the sample. Dur-
ing spectral acquisition, we maintained the temperature of the
sample at 378 C.

1HMRS Technique

One-dimensional 1H-MR spectra were obtained with a Carr-
Purcell-Meiboon-Gill sequence with data acquired at 2000/136
(TR/TE) over a width of 7042.25 Hz (14.0806 ppm) using
8192 data points, 128 averages, and an acquisition time of
0.582 seconds. The TE of 136 msec was chosen because this
is the TE most commonly used for localized clinical MRS at
our institution. An exponential line broadening of 5.00 Hz was
applied to a one-dimensional time domain data prior to Fourier
transformation. The spectra obtained were phase corrected
(zero-order phase correction) to obtain the final spectra for
analysis.

Spectral Measurements

Peak height measurements were obtained for methyl
(0.9 ppm), sialic acid (2.2 ppm), creatine (Cr) (3.0 ppm), cho-
line (Cho) (3.2 ppm), taurine (3.4 ppm), inositol (3.5 ppm),
and olefinic acid (5.3 ppm) for both tumor and muscle. The
baseline of each spectrum was determined by visual inspection
after phase correction. Because no external standard was avail-
able, the heights of all the peaks for a sample were scaled to
the height of that sample’s methylene peak and then peak
heights underwent log transformation. Log transformation
made the assumption of normal distributions more appropriate
(4). The NN and the LDA classifications that we used operated
directly on this scaled data: ie, no additional input scaling was
performed.

Peak areas under the Cho and Cr resonances were estimated
as the product of the peak height (PH) and the feature width
at half-maximum height (FWHM), as described by Mukherji
et al (4). The ratio of Cho to Cr peak areas can then be ex-
pressed as: R 5 (PHCho 3 FWHMCho)/(PHCr 3 FWHMCr).
These calculations were performed for the one-dimensional
1H-MRS spectra of tumor and normal tissue samples. All mea-
surements were made by a single observer who was aware of
the origin of the spectra.

Peak areas could not be computed on the other metabolite
resonances because of the relatively low levels of these me-
tabolites within the tissue samples and the close proximity of
many of these peaks to adjacent resonances. These factors pre-
vented an accurate measurement of the FWHM.

Statistical Classifiers

Linear Discriminant Analysis.—LDA with Fisher’s linear
discriminant (11) was applied to distinguish SCCA from mus-
cle by using the combination of the peak heights from the 1H-
MRS. Using the assumption of a normal distribution for SCCA
and muscle, we computed decision boundaries to separate
SCCA from muscle.

LDA was tested using leave-one-out (LOO) analysis (17).
This testing method selects one sample (SCCA or normal mus-
cle) as the test sample. The remaining samples are used as the
training set. After the first analysis, the ‘‘training’’ is repeated
with a different sample (SCCA or normal muscle) left out. This
process is repeated until all samples have been left out once.
The total number of correct and incorrect responses provides
an unbiased estimate of the classifier’s performance.

Because the 1H-MRS-derived Cho/Cr peak area ratio pro-
duces a single value, LDA reduces to choosing a single thresh-
old; any value above that threshold is interpreted as positive.
The method used to select that threshold and to measure sen-
sitivity and specificity given that threshold is discussed in Mu-
kherji et al’s previously cited article (4).

Neural Networks.—NNs were used to determine the ability
of peak heights derived from 1H-MRS to distinguish between
SCCA and muscle. NNs come in several varieties. We chose
the multilayer perceptron; it is easy to implement and generally
performs well as a classifier. The types of layers were: 1) an
input layer, 2) an output layer, and 3) one or more intermediate
(or ‘‘hidden’’) layers. The size of the hidden layer determines
the behavior of the network as a classifier (Fig 4).

Our network had three layers: an input layer containing sev-
en nodes (the number of metabolite peaks), an output layer
with two nodes (tumor and nontumor), and one hidden layer
(Fig 5). The number of nodes in the hidden layer was varied
to attain the best performance.

NN analysis was performed using short stopping and LOO
analysis. Short stopping reserves one fifth of the training data
as an intermediate ‘‘test set’’ to prevent overfitting the training
data. Training the network was done using the resilient back-
propogation algorithm (18) (See Appendix).

For each of the classifiers listed above (Cho/Cr, peak height
LDA, and NN classifiers), we computed receiver operating
characteristic (ROC) curves. These were computed using the
binormal method (19). For NNs and LDA, equal weighting of
false-positive and false-negative errors was affected by using
approximately equal numbers of samples from each class for
training.

Results
The number of nodes in the hidden layer report-

ed in our series was one (‘‘one-hidden-node’’) and
two (‘‘two-hidden-node’’). We also evaluated NN
paradigms that had more nodes within the hidden
layer (three, four, eight, and 10); however, there
was no improvement in the sensitivity or specificity
through the use of these more complex architec-
tures. Further increases in the number of hidden
nodes increased training time without increasing
accuracy.

The sensitivities and specificities of LDA, NNs,
and Cho/Cr area ratios used to distinguish tumor
from muscle are summarized in the Table. ROC
curves for each of the classifiers are shown in Fig-
ure 6. These results demonstrate that NN analysis
of the seven metabolite peak heights improved the
ability of 1H-MRS to differentiate SCCA from
muscle compared with LDA of Cho/Cr area ratios
and LDA of the seven metabolic peak heights.
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FIG 4. A 2D example shows the effect of the configuration of the NN on the
boundary. Two features (F1 and F2 axes) describe two classes (black and white
dots) (A). In this example, the boundary is not linear. Boundaries (dotted lines)
and schematics of NNs that would create them are shown for networks with one
(B), two (C), and three (D) hidden nodes.

Discussion
NNs are especially adept at nonlinear pattern

recognition (3), and the analysis of multiple spec-
tral resonances for tissue characterization is a form
of multivariate problem solving that is well suited
for NN. Although LDA is a useful classifier, it is
a parametric classifier and is able only to compute
linear boundaries (Fig 2). The simultaneous anal-
ysis of multiple peaks produces a nonlinear multi-
variate problem that can be analyzed better by a
classifier that is capable of making decisions based
on iteratively computed, nonlinear boundaries (Fig
4). The findings of our investigation demonstrate
that the diagnostic accuracy of 1H-MRS in distin-
guishing SCCA from muscle is improved by the
use of NN compared with standard LDA.

We postulated that the heights of multiple me-
tabolite resonances would provide further infor-
mation about a sample’s identity. The choice of the
resonances evaluated in our investigation was
based on prior studies that had suggested that cer-
tain metabolite levels could differentiate benign
from malignant tissue (4, 20, 21).

In our investigation, NN analysis was performed
on peak height measurements. Peak area is known
to correspond to the quantity of metabolites present
in a sample (22); however, both peak height and

peak area ratios have been used to evaluate spectral
differences between tumors and normal tissue (4,
20, 21, 23–26). We believe this was a valid meth-
odology, as there was negligible spectral broaden-
ing because our study was an in vitro investigation
performed at 11 T (Fig 1).

Other authors have investigated the role of NNs
in the analysis of 1H-MRS (3, 7, 16). Somorjai et
al included NNs in a suite of computerized diag-
nosis algorithms applied to diagnosis of thyroid
neoplasms in vivo. Their methods had an overall
sensitivity of 100% and a specificity of 98% (7).
Usenius et al used NNs to predict characteristics of
brain tumors in vivo, and attained a diagnostic ac-
curacy of 82% (16).

The results of our initial investigation demon-
strate that NNs were superior to LDA for tumor
discrimination. Although the difference was not
statistically significant, these results demonstrate a
definite trend that is consistent with other investi-
gators. (3, 16) Previous studies have shown that
NNs can improve the diagnostic accuracy of 1H-
MRS by permitting analysis of multiple metabolic
resonances, which standard LDA lacks (3, 16). The
lack of statistical significance was likely due to
sample size. This study was part of a prospective
investigation approved by the institutional review
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FIG 5. A schematic of a two-hidden-node NN used for the analysis of multiple peak height data. Seven peak heights for a sample
serve as input to the nodes of the input layer. The computations propagate through the network, and the classification as tumor or
nontumor is read from the nodes of the output layer.

FIG 6. ROC curves, computed using the binormal method, for each classifier tested (NN-25two-node NN, NN-15one-node NN, LDA-
Cho/Cr5LDA for Cho/Cr area ratio, LDA-Heights5LDA for Cho/Cr peak height ratio). TPR5true-positive rate (sensitivity); FPR5false-
positive rate (1-specificity). ROC analysis demonstrates that NN analysis outperfoms linear discriminant analysis for measuring the
diagnostic accuracy of 1H-MR in attempting to differentiate SCCA from muscle.

Sensitivity and specificity of the various statistical classifiers for dif-
ferentiating head and neck squamous cell carcinoma from muscle

Method Sensitivity Specificity

LDA Cho/Cr area ratio
LDA of peak heights
One-hidden-node NN
Two-hidden-node NN

68%
81.2%
87.5%
81.2%

83%
50%
83.3%
91.7%

Note.—LDA 5 linear discriminant analysis; NN 5 neural network;
Cho 5 choline; and Cr 5 creatine.

board at our university. This study has been com-
pleted and further samples cannot be obtained. A
larger number of samples would likely confirm the
ability of NNs to improve the ability of 1H-MRS
to characterize tissue compared to LDA signifi-
cantly. Additionally, improvements in diagnostic
accuracy would arise from further training NNs,
and this training is accomplished by providing the
NN with more known tissue samples. We feel that
confirmation of these findings is warranted by fu-
ture investigations.

Our results suggest NNs may have a broader role
in future 1H-MRS investigations performed for in
vivo tissue characterization. Current in vivo inves-
tigations have been limited to metabolites detect-
able on 1.5-T clinical units. The majority of these
studies have evaluated the relative levels of Cho,
Cr, lactate, N-acetylaspartate, myo-inositol, gluta-
mate, and glutamine. It is possible that a technique
that allows simultaneous analysis of multiple peaks
will enhance the diagnostic capabilities of 1H-
MRS.

The emergence of higher-field clinical 1H-MRS
units (3-T) permit identification of metabolites that
were not previously detectable on images produced
by 1.5-T units. The additional spectral information
combined with the advanced capabilities of NNs

has potential for substantially enhancing the tissue
characterization properties of 1H-MRS.

In summary, our results demonstrate that the use
of NNs increases the tissue characterization ability
of 1H-MRS in the extracranial head and neck. We
hope our results from our controlled in vitro inves-
tigations will help expand the role of these impor-
tant classifiers in future investigations.
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Appendix
The NN’s operation is divided into testing and training phas-

es. During a training phase, the training data are repeatedly
presented as input to the network. The network’s classification
of a sample as tumor or nontumor is compared with the sam-
ple’s known identity, the difference is the classification error,
and the connection weights are updated based on this error.
During a testing phase, the test samples are presented at the
input layer; the classification error is calculated, but the con-
nection weights are not changed.

The exact method to update the connection weights during
training is the subject of much research. Many different meth-
ods have been proposed, and all of them involve small changes
in the internodal connections to decrease the overall error seen
at the output layer. The original method, known as backpro-
pagation (27), remains one of the most efficient methods de-
spite challenges from multiple algorithms. Recently, however,
an algorithm known as ‘‘rprop’’ (for resilient backpropagation)
has been shown to be more efficient than backpropagation
(18). For this reason, we chose to use the rprop algorithm for
updating the connection weights.

A major concern when training an NN is ‘‘overfitting’’ the
training data. The network is, in effect, memorizing the train-
ing samples so that the error associated with the training set
approaches zero. This occurs at the expense of generalizability,
and the network begins losing its ability to classify samples
not in the training set. This problem is particularly important
given few samples and multiple inputs. This problem, however,
is addressed through the technique of short stopping. Short
stopping begins with reserving a fraction of the training data
as an ‘‘intrinsic test’’ set. These samples are not included in
the training of the network; ie, they are not used to modify
connection weights. Instead, they are used to test the network
repeatedly, and training is stopped when the error associated
with this set begins to rise.


