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Automated Method for Generating the Arterial
Input Function on Perfusion-Weighted MR
Imaging: Validation in Patients with Stroke

Michael Mlynash, Irina Eyngorn, Roland Bammer, Michael Moseley, and David C. Tong

BACKGROUND AND PURPOSE: The choice of arterial input function (AIF) can have a
profound effect on the blood flow maps generated on perfusion-weighted MR imaging (PWI).
Automation of this process could substantially reduce operator dependency, increase consis-
tency, and accelerate PWI analysis. We created an automated AIF identification program
(auto-AIF) and validated its performance against conventional manual methods.

METHODS: We compared the auto-AIF against manually derived AIFs from multisection
PWIs of 22 patients with stroke. Time to peak, curve width, curve height, and voxel location
determined with both techniques were compared. The time to maximum of the tissue residue
function (Tmax) and cerebral blood flow (CBF) were computed on a per-pixel basis for each
AIF. Spatial patterns of 528 map pairs were compared by computing Pearson correlation
coefficients between maps generated with each method.

RESULTS: All auto-AIF–derived PWI map parameters, including bolus peak, width, and
height, were consistently superior to manually derived ones. Reproducibility of the auto-AIF–
based Tmax maps was excellent (r � 1.0). Paired Tmax maps and CBF maps from both
techniques were well correlated (r � 0.82). Time to identify the AIF was significantly shorter
with the auto-AIF method than with the manual technique (mean difference, 72 seconds; 95%
confidence interval: 54, 89 seconds).

CONCLUSION: An automated program that identifies the AIF is feasible and can create
reliably reproducible and accurate Tmax and CBF maps. Automation of this process could
reduce PWI analysis time and increase consistency and may allow for more effective use of PWI
in the evaluation of acute stroke.

Perfusion-weighted MR imaging (PWI) was developed
in the late 1980s to study disorders of blood flow (1–8).
In dynamic susceptibility contrast imaging, paramag-
netic contrast agent passes through the vessels, dephas-
ing protons and altering T2* relaxation in the surround-
ing tissues proportional to the amount of perfusion. By
measuring the corresponding changes in the signal in-
tensity, rapid imaging methods, such as echo-planar

imaging, can be used to track a bolus of contrast agent
through the entire brain and calculate a time–signal
intensity curve for each tissue voxel (9–12). The con-
centration of the tracer is approximately proportional to
the change in the relaxation rate, which in turn is a
nonlinear function of the change in signal intensity (13).
However, quantification of clinically important param-
eters, such as mean transit time, time to the maximum
of the tissue residual function (Tmax), and cerebral
blood flow (CBF), is computationally intensive and re-
quires rather complex analysis.

Ostergaard et al (14, 15) and Wirestam et al (16)
reported that it is possible to determine relative CBF
accurately by means of mathematical deconvolution of a
tissue concentration curve with the arterial input func-
tion (AIF) reflecting the concentration of contrast agent
entering the region of interest. However, quantitative
PWI is difficult and prone to errors. The deconvolution
method assumes that the AIF into each tissue voxel is
known, when in fact most AIFs are approximated by
measuring the AIF from the major cerebral arteries to
minimize the error from partial-volume effects. Al-
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though estimation of AIF takes care of the delay and
spread of the bolus from the site of injection to the site
of measurement, any delays and dispersion of the bolus
from the site of AIF to the region of interest can intro-
duce an error (17). Choosing the AIF close to the tissue
of interest could minimize this error; however, this may
not be possible in cases with stenosis or occlusion, in
which the AIF from the contralateral side should be
used. In addition, for such cases, extra bolus dispersion
occurs when an ipsilateral AIF is used instead of a
contralateral one (18). Also, PWI lesion volumes deter-
mined with an AIF from the contralateral middle cere-
bral artery (MCA) are better associated with follow-up
lesion volume than those determined with an AIF from
the ipsilateral MCA (19). Hence, quantifying dynamic
susceptibility contrast imaging is often unreliable and in
turn complicates data analysis (20).

The choice of AIF is critical for accurate genera-
tion of CBF maps. Several groups have reported dif-
ferences in bolus shape depending on the site chosen
(18, 21). Small changes to the AIF location can have
a profound effect on the maps generated. Delays and
dispersion of the bolus occurring during its passage
from the estimated location of AIF to the region of
interest can cause underestimation of CBF and/or
overestimation of mean transit time in the region of
interest (22). Differences in the amount of delay and
dispersion in various locations cause the changes in
these errors that not always can be corrected. How-
ever, current analytical techniques are based on an
AIF that the investigator subjectively chooses. This
can lead to substantial variations in the AIFs used,
with resultant high variability in the blood flow maps
derived. Moreover, this process is subjective, incon-
sistent, and time consuming, and it requires special-
ized training.

One solution to this problem is to choose the AIF
automatically by using a computerized algorithm.
This should result in more objective and reliable iden-
tification of the appropriate AIF. Coupled with an
automated PWI-calculation process, this should also
generate blood flow maps far faster than manual
methods, substantially improving the speed and accu-
racy of PWI analysis. Such rapid evaluation is of
particular importance in acute stroke, for which time
is a critical factor that affects the viability of neural
tissue and for which early treatment is associated with
improved neurologic outcomes.

To achieve this objective, we developed a computer
program to identify AIFs automatically (auto AIF)
and generate PWI blood flow maps. The purpose of
this study was to compare the AIFs and blood flow
maps generated by using this automated technique
with those obtained with manual methods and deter-
mine whether the automated method provided tech-
nically adequate results for accurate and reproducible
generation of PWI maps. In addition, such automated
methods, if reliable, should expedite the processing
time, an important consideration if this technology is
to be clinically useful.

Methods

Study Group
We reviewed records of all 253 patients derived from the

data base of our stroke center. All patients were referred for
MR imaging as part of an ongoing research project evaluating
the utility of diffusion-weighted imaging in acute stroke. Our
institutional review board had approved the project, and in-
formed consent had been obtained in all patients. Stroke was
diagnosed in 163 patients, 86 of whom underwent PWI. We
included all 22 consecutive patients with symptoms of ischemic
stroke in the anterior circulation who successfully underwent
PWI within 24 hours of the onset of symptoms.

Image Acquisition
Twelve contiguous PWI sections per patient were acquired

by using a 1.5-T unit equipped with enhanced gradients (Signa
Horizon LX2; GE Medical Systems, Milwaukee, WI). Images
were acquired with gradient recall–echo, echo-planar PWI with
a TR/TE of 2000/60, flip angle of 60°, matrix of 128 � 128, field
of view of 24 cm, section thickness of 5 mm, gap of 2 mm, 12
sections, and 40 phases. Forty multisection imaging phases
were obtained during the bolus injection of gadolinium-based
contrast agent (single dose of 0.1 mmol/kg given at a rate of 3
mL/s followed by a 20-mL saline flush) by using 14 baseline
points.

These time-series images were subsequently converted to
concentration-time curves and served as input data for the
deconvolution algorithm that Ostergaard et al (14, 15) origi-
nally proposed to create CBF maps (mean transit time, rCBF,
Tmax). Assuming a linear relationship between the concentra-
tion of a contrast agent and change in transverse relaxation
(�R2*), we characterized the concentration-time curve as fol-
lows (Eq 1):

1) �R2* � �
1

TE
ln

S�t�
S�0�

,

where S(t) is the signal intensity at the time t, and S (0) is the
preinjection baseline signal intensity. Data were processed and
analyzed by using a modified program (MBA diffusion/perfu-
sion analysis program; UCLA Stroke Center, Los Angeles, CA,
and Stanford Stroke Center, Palo Alto, CA) and interactive
data language (IDL, version 5.5; Research Systems, Inc., Boul-
der, CO) on a 1.2-GHz Micronpc.com Millenia personal com-
puter (MPC Computers LLC, Nampa, ID), Microsoft Windows
2000 Professional operating system (Microsoft, Redmond,
WA).

Manual AIF Analysis
For manual AIF analysis, the investigator interactively se-

lects an AIF by using a cursor and marks the AIF location on
the MR imaging image while simultaneously viewing the cor-
responding curve of bolus tracer concentration. The investiga-
tor first chooses a MR imaging section containing a region of
interest with the main feeding vessel, such as the MCA. Then,
as the investigator moves the cursor over the PWI, the concen-
tration-time course for the pixel under the cursor is displayed.
The investigator visually determines whether the pixel is lo-
cated in the region of interest and that the curve is ideal. We
used the MCA vascular distribution contralateral to the infarct
as a choice for AIF region of interest because the maps pro-
duced were well correlated with the follow-up lesions (19). An
ideal curve is subjectively defined as a curve with a high am-
plitude, early sharp rise, and fast decay, and small full width at
half maximum. The MBA software allows us to repeat this
procedure up to four times, and it offers the operator the
option to compare the four chosen AIFs and to pick the best
one (Figs 1A and 2A), which is then used in the subsequent
deconvolution process.

1480 MLYNASH AJNR: 26, June/July 2005



Automated AIF
The automated AIF fits a Gaussian model function y � f(x)

to the bolus-tracking MR imaging perfusion data (a nonlinear
least-squares fit to the concentration curve of the bolus tracer)
on a pixel-by-pixel basis, as follows (Eq 2):

2) f� x� � A0 � e�
z2

2 � A3, and z �
x � A1

A2
,

where A0 is the height of exp, A1 is the center of exp, A2 is
sigma (the width), and A3 is the constant term. Gaussian fit
parameters are then extracted for each pixel of the interactively
chosen PWI section containing the MCA.

The algorithm excludes small noise islands and low-intensity
background pixels from the calculation. First, the empirically
chosen minimum-intensity threshold at the value of 140 is
applied. The result is then morphologically opened with a
square shape operator of 3 pixels � 3 pixels by applying the
dilation and erosion operations. To reduce processing time,
only pixels in the anterior brain were included, because it was
assumed that region of interest should be located in this area,
given the inclusion criteria for the study. The program auto-
matically determines the time from the start of the sequence to
the peak of the contrast-agent bolus by identifying a phase with
the lowest overall intensity in the original T2*-weighted data.
This time point is used later to filter out inappropriate AIF

FIG 1. Manual and automated choice of the best AIF.
A, Manual choice, based on visual estimation of the overall shape of the curve, high signal intensity, early peak time, and small width.
B, Automatically computed AIF is identified as the one with the optimal combination of Gaussian-fit parameters (maximum A0

combined with A1 and A2 in the predefined limits) and the one satisfying the goodness-of-fit test.

FIG 2. AIF identified at voxels 24 mm apart.
A, Manual.
B, Automated.
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readings. The maximum contrast concentration (A0, height of
the Gaussian curve), early time to peak (A1, center of the
Gaussian curve), and small width (A2, width of the Gaussian
curve) are the criteria for an optimal AIF that will have mini-
mal overall partial-volume, delay, and dispersion effects. A
Gaussian fit was sufficient for our analysis and yielded more
stable results than did a gamma-variate fit.

Steps to choose the optimal AIF pixel based on Gaussian-fit
parameters are as follows: Voxels with a time to peak later than
the phase with the lowest intensity are excluded as nonoptimal
because they represent areas of late contrast arrival. Next, a
threshold for the curve width is used to exclude noisy spikes.
We used 1.5 seconds as the lower threshold for the width of
candidate AIFs. We analyzed a shape of the AIF curve candi-
date with a Pearson �2 test for a goodness of Gaussian fit, a
statistical measure of the difference between measured (bolus
tracer concentration) and fitted (Gaussian) curves. Pixels with
a goodness-of-fit test result above a threshold are rejected as
nonconforming to the smooth Gaussian shape. Thus, pixels
with high recirculation levels are also rejected as potential
candidates for an AIF. From the remaining pixels, the two
AIFs, one from each hemisphere, having the maximum ampli-
tudes are chosen (Figs 1B and 2B) and presented to the inves-
tigator. The investigator then picks the AIF for the hemisphere
of interest. This AIF is used in the deconvolution process.

Image Processing of PWI Maps
To test the algorithm, AIFs generated by manual inspection

and by using the computer algorithm were compared. PWIs (12
sections over 40 time points) were postprocessed through the
deconvolution of the tissue concentration curve by using both
AIFs individually (14, 15). The residue functions for each pixel
describing the fraction of contrast agent remaining in the re-
gion at the time after the injection of an ideal bolus were
calculated. In each case, a set of 12 Tmax maps and 12 CBF
maps were created from the resulting residue functions. Tmax
maps represent the time when the residue function reaches its
maximum value relative to zero at each pixel, whereas CBF
maps show the flow at each pixel obtained from the residue
function as its value at time t � 0 (initial point of the decon-
volved response curve).

Comparison of AIFs and PWI Maps
The AIFs and maps identified with the manual technique

were compared with the AIFs and maps based on an AIF
automatically chosen by the computer algorithm. All analyses
of the AIFs were performed in a blinded manner. In both
techniques, the concentration curves for the bolus tracer that
served to compute the AIF were fitted to the Gaussian
function.

We compared the AIFs by comparing their height (A0),
width (A2), and time to peak (A1). A narrower AIF curve was
considered less corrupted by dispersion of the bolus from the
site of injection to the site of measurement. An earlier time to
peak was considered to represent less delay of the bolus. In
addition, a higher peak was considered to indicate less partial-
volume averaging (17). We used a Wilcoxon signed-rank test to
determine the significance of differences; however, we substi-
tuted a paired t test when the data passed a normality test.
Significant differences were defined at P � .05. We also com-
pared the locations of pixels used for both automatic and
manual AIFs. To validate the ability to generate reasonable
maps compared with a manual method used as a criterion
standard, we analyzed the correspondence in spatial patterns of
the maps by computing the correlation coefficients between the
paired maps (pixel-by-pixel Pearson correlation of two images)
(Figs 3 and 4 ). Statistical analysis was done by using software
(SigmaStat 2.03 SPSS, Inc., Chicago, IL).

Results

General Characteristics
We examined 22 consecutive patients with acute

stroke (12 men, 10 women; mean age � standard
deviation [SD], 72 � 14 years, age range, 33–90 years)
who underwent both DWI and PWI within 24 hours
(13 � 5 hours; range, 5–24 hours) of symptom onset.
Two patients had no new lesions on DWI or conven-
tional MR imaging, nine patients had one new lesion,
and 11 patients had more than one new lesion.

The manual AIF (identified by D.C.T.) and the
auto-AIF on the hemisphere contralateral to the le-
sion or the expected one were chosen for each patient
on the basis of the PWIs (Figs 1A and 2A). For each
AIF, 12 Tmax and 12 CBF maps (one of each per
section) were created. All maps were considered tech-
nically adequate.

Anatomic Locations of AIF Voxels
A single blinded investigator (D.C.T.) evaluated

the anatomic locations of the optimized AIF. In all
cases, they were considered appropriate (high ampli-
tude, small width, fast decay, and Gaussian-like
shape) and always within the MCA territory, although
they generally did not correspond to the location of
the MCA itself (Figs 1B and 2B). No major venous
sinuses were included in any of these regions of
interest.

Time to Calculate PWI Maps
The total mean time to identify the AIF manually

included the time to identify four appropriate AIFs
and picking the best one from the group. This time
was significantly longer (85 � 40 seconds; range,
45–175 seconds) than that needed to run the program
on a 1.2-GHz personal computer (13 � 2 seconds;
range, 10–16 seconds).

Quantitative Results
Auto-AIF peaks were significantly higher than the

manually derived ones. The mean difference between
the two A0 measurements was 16.16 � 13.49 sec-
onds�1 (P � .001; 95% confidence interval: 10.18,
22.13 seconds�1), with mean values of 51.89 � 10.66
and 35.74 � 9.31 seconds�1. The time to peak iden-
tified with an auto-AIF was also earlier than with a
manual measurement; however, this difference was
not significant (median, 32.22 and 32.50 seconds, re-
spectively; Wilcoxon test statistic W � 46, P � .374).
In addition, the width of auto-AIFs was narrower
than of the manual ones (median, 2.96 and 3.125
seconds, respectively; W � 116, P � .018) (Table).

We also compared, on a pixel-by-pixel basis, the
spatial patterns of manual versus automatically de-
rived Tmax and CBF maps. We performed 528 cross-
correlations of different paired maps. Pixel-by-pixel
Pearson correlation of maps showed high overall cor-
respondence in their spatial patterns: for Tmax, r �
0.82 � 0.11 (range, 0.31–1.00), and for CBF, r �
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0.82 � 0.12 (range, 0.13–1.00). Reliability for the
automatic method in reproducing the AIFs and maps
between repetitive measurements was high (r � 1.0).

The distance between manually and automatically
derived AIF voxels was 17.5 � 13.5 mm, (range,
0.9–44.5 mm). The association between the strength
of correspondence in the manually and automatically
derived maps and the distance between correspond-
ing AIF voxels was weak for Tmax maps (correlation
coefficient r � �0.495, coefficient of determination
R2 � 0.245, P � .0191,) and it was not significant for
CBF maps (r � �0.263, R2 � 0.0691, P � .237).

Discussion
We developed an automated computerized algo-

rithm to identify AIF for use in PWI and demon-
strated that the algorithm can reliably and accurately

identify AIF voxels for perfusion-weighted MR maps.
Automation of this process could dramatically reduce
PWI analysis time and increase the consistency of
PWI analysis, allowing for more practical use of PWI
to evaluate patients with ischemic stroke in clinical
settings.

We compared our computerized algorithm with
conventional manual identification methods to gen-
erate AIF curves. Gaussian parameters, along with
Tmax and CBF maps, were computed and quantita-
tively compared. In all cases, the computer-derived
AIF curve possessed superior characteristics, includ-
ing greater amplitude and smaller width, which sug-
gests fewer partial-volume averaging and bolus dis-
persion artifacts than on the manually identified AIF
curve. In addition, the computer-identified AIF ap-
peared to be localized in the territory of the MCA,
consistent with established vascular anatomy. The

FIG 3. Tmax and CBF maps, created on
the basis of the manual (A, C) and auto-
mated (B, D) AIFs from Figure 1, have
spatial pattern correlations of r � 0.87 and
r � 0.86, respectively. Distance between
corresponding AIF voxels, or d, is 30.6
mm.
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program selects the voxel on the basis of the early
timing and high amplitude of the intensity change.
This should improve the ability of the program to
reject artifacts from venous structures. Consistent
with this, no venous structures were included in the
AIF voxel in the 22 test cases. In addition, we found
no significant association between the strength in
correspondence in paired Tmax and CBF maps ob-
tained with both techniques and the distance between
the corresponding AIF voxels. This finding suggests
that the approach of choosing the AIF on the basis of
the dynamics of the flow of contrast agent into the
voxel did not introduce a systematic error due to its
anatomic proximity to the referenced (manual) AIF
voxel. The AIF program also effectively discriminated

between changes in signal intensity related to the
passage of a contrast-agent bolus from unrelated ar-
tifactual noise. Moreover, reproducibility of measure-
ments was high, which indicates that the algorithm is
robust and reliable. These characteristics are ex-
tremely desirable for producing robust PWI maps.

Carroll et al (23) reported an alternative approach
to this problem. Their method concentrated on tem-
poral intensity changes rather an anatomic location.
With their technique of automated AIF generation, a
single voxel is chosen to represent the AIF on the
basis of the arrival time of contrast medium and
integrated signal-intensity change in the voxel. In con-
trast, our method used timing of the intensity peak as
a discriminatory criterion, which we assumed should

FIG 4. Tmax and CBF maps (A, C) and
(B, D) corresponding to Figure 2 have spa-
tial pattern correlations of r � 0.74 and r �
0.60, respectively.
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represent both the arrival time (proximal flow dy-
namic) and the local flow dynamic from this time
point to the peak. In addition, our approach does not
require analysis of the precontrast points. Carroll et al
used integration of the changes in signal intensity
over several seconds to minimize confounding effect
of transient signal intensity changes due to noise. Our
approach, by using a floor threshold for curve width
in addition to a goodness-of-fit test, worked as
effectively.

Several other groups (24–26) reported different
approaches to the analysis of the AIF curves: estimat-
ing of arterial likelihood metrics, deriving the mean
and SD of the fitted curve parameters, and defining
local input functions. A comprehensive intermethod
validation study would be valuable to compare the
performance of the different algorithms in terms of
sensitivity, specificity, validity, and reliability, as well
as the feasibility of their use in the clinical settings.

The use of an automated AIF algorithm may have
substantial value in the evaluation of patients with
acute stroke. It can be used to eliminate off-line
postprocessing of dynamic susceptibility contrast MR
images, eliminating the need for specially trained per-
sonnel and eliminating selection bias. Automation of
the AIF acquisition is an important step toward
achieving a completely automatic process for gener-
ating PWI maps. Such a method could greatly im-
prove the practical use of PWI, particularly in the
acute stroke setting when time is critical.

Visual comparison and cross-correlations of the
manual and automatic Tmax and CBF maps showed
a high degree of spatial pattern correspondence (r �
0.82 � 0.11 and r � 0.82 � 0.12, respectively). How-
ever, further prospective studies are needed to verify
the performance of the algorithm, its usability, and its
robustness in the variety of cases (e.g., severe stenosis,
strokes in different vascular territories), as well as to
analyze and explain the increased discrepancies in the
corresponding maps in terms of sensitivity and spec-
ificity and relative to other clinical findings. In the
future studies, we should not limit regions of interest
to the particular circulation. In addition, performance
for other types of blood flow maps should be tested.
Repetitive manual measurements should be done,
and more than one observer should participate to
estimate and compare intrarater and interrater
reliability.

Our study is subject to a number of limitations.
First, because the technique was tested in limited
number of patients, it requires verification in a larger
sample, ideally one with extremes of PWI changes. In
addition, its reliability in the posterior circulation
must be verified. Last, as with all MR imaging–based
studies, the PWI measured is relative and therefore
subject to inaccuracy in individuals with proximal oc-
clusive disease. However, all of these biases are
present in manually derived MR imaging–based PWI
measurements and intrinsic problems with MR imag-
ing–based techniques.

Comparison of automated and manual AIF parameters

Subject �A0 (sec�1) �A1 (sec) �A2 (sec) d (mm)

Correlation r*

Tmax CBF

1 21.52 0.69 0.34 11.3 0.91 0.94
2 17.09 1.32 �0.17 15.9 0.87 0.92
3 0 0 0 0.9 1.00 1.00
4 19.75 �0.59 �0.37 7.1 0.82 0.66
5 47.48 �2.98 �1.23 11.4 0.70 0.60
6 11.39 0.32 �0.88 32.2 0.82 0.72
7 29.06 �0.39 �1.28 18.9 0.68 0.74
8 37.22 0.57 �0.68 18.2 0.76 0.83
9 12.83 0.12 0.76 6.0 0.75 0.72

10 32.61 1.30 �0.39 18.2 0.81 0.87
11 25.22 �0.79 �0.17 30.6 0.87 0.86
12 �4.32 �2.65 �2.15 35.9 0.81 0.82
13 1.24 �0.24 �0.30 37.8 0.73 0.82
14 27.30 �2.46 �0.24 24.0 0.74 0.60
15 15.26 �0.19 �0.07 3.0 0.85 0.88
16 17.83 0.36 1.36 2.7 0.80 0.77
17 2.71 �5.25 �2.18 35.0 0.54 0.68
18 0 0 0 1.3 1.00 1.00
19 19.27 �0.62 �0.09 16.9 0.87 0.87
20 11.78 0.71 �0.87 44.5 0.82 0.89
21 10.17 �0.19 �0.30 11.6 0.85 0.87
22 0 0 0 1.3 1.00 1.00
Mean 16.16 �0.50 �0.41 17.5 0.82 0.82
SD 13.49 NA NA 13.45 0.11 0.12
P value �0.001 0.374 0.018 NA NA NA

Note.—Differences were computed as the automated AIF parameter � manual AIF parameter. A0 � curve height (maximum concentration of
contrast agent), A1 � curve center (time to peak), A2 � curve width, d � distance between automated and manual AIF pixels, NA � not applicable.

* Between automated and manual maps.
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Conclusion
The results of this validation study suggest that our

algorithm for automatically identifying the AIF can
create reliable and accurate Tmax and CBF maps.
Automation of this process dramatically reduces anal-
ysis time and increases the consistency of PWI anal-
ysis. In clinical settings, the treating physician can
spend less time interacting with the software package
(selecting the correct section where the MCA is lo-
cated) and hence has more time to interact with the
patient or to make early treatment decisions.
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