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Differentiation between Brain Glioblastoma
Multiforme and Solitary Metastasis: Qualitative
and Quantitative Analysis Based on Routine MR

ORIGINAL )
RESeArcH | Imaging
X.Z. Chen BACKGROUND AND PURPOSE: The differentiation between cerebral GBM and solitary MET is clinically
X.M. Yin important and may be radiologically challenging. Our hypothesis is that routine MR imaging with
L Ai qualitative and quantitative analysis is helpful for this differentiation.
Q. Chen MATERIALS AND METHODS: Forty-five GBM and 21 solitary metastases were retrospectively identi-
SW. Li fied, with their preoperative routine MR imaging analyzed. According to the comparison of the area of
U ' peritumoral T2 prolongation with that of the lesion, the tumors were classified into grade | (prolonga-
J.P. Dai tion area = tumor area) and grade Il (prolongation area > tumor area). The signal intensities of

peritumoral T2 prolongation were measured on T2WI and normalized to the values of the contralateral
EDITOR'S normal regions by calculating the ratios. The ratio (nSl) of both types of tumors was compared in grade
crorces I, grade Il, and in tumors without grading. The best cutoff values to optimize the sensitivity and
specificity were determined for optimal differentiation.

RESULTS: The nSl of GBM was significantly higher than that of MET without T2 prolongation grading
(P<.001), resulting in AUC = 0.725. The difference was significant (P = .014) in grade | tumors (GBM,
38; MET, 9), with AUC = 0.741, and in grade Il tumors (GBM, 7; MET, 12), with AUC = 0.869 (P =
.017). Both types of tumors showed a different propensity in T2 prolongation grading (x> = 12.079, P =
.001).

CONCLUSIONS: Combined with qualitative and quantitative analysis of peritumoral T2 prolongation,

routine MR imaging can help in the differentiation between brain GBM and solitary MET.

ABBREVIATIONS: AUC = area under the ROC curve; GBM = glioblastoma multiforme; MET =
metastasis; nSI = normalized signal intensity; ROC = receiver operating characteristic; WHO =

World Health Organization

D ifferentiation between cerebral solitary MET and GBM is
very important because of their vast differences in clinical
staging, surgical planning, and therapeutic decisions." On
routine MR imaging scans (precontrast TIWI and T2WI and
postcontrast images), the 2 types of tumors usually demon-
strate similar radiologic appearance: an obviously necrotic
mass, with strong peritumoral T2 prolongation on unen-
hanced images, and ringlike enhancement on postcontrast im-
ages.>” Therefore, it is thought to be very difficult to distin-
guish between these 2 types of tumors with routine MR
imaging alone.*® Many studies have focused on other ad-
vanced MR imaging modalities, such as DTL>>”® DWL,>'°
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PWL®''"'® and MR spectroscopy,'” to explore the differenti-
ating characteristics.

In DTI studies, the metrics of mean diffusivity, fractional
anisotropy, linear anisotropy coefficients, and planar anisot-
ropy coefficients showed significant differences between the 2
types of tumors.>>® DWI research demonstrated that the
mean minimum ADC values and mean ADC ratios in the peri-
tumoral regions of GBM were significantly higher than those
in MET."® With PWT, most of the studies showed that the CBV
of GBM was significantly higher than in MET, either in the
peritumoral region''""? or in the enhanced region."* An MR
spectroscopy study indicated that lipid and macromolecule
signals were significantly different between the 2 types of
tumors.'”

Opverall, all of the advanced MR imaging modalities used
semiquantitative or quantitative analysis for this differentia-
tion, while routine MR imaging is commonly based on mor-
phologic appearance alone. Thus, our hypothesis is that rou-
tine MR imaging with qualitative and quantitative analysis is
helpful for this differentiation.

Materials and Methods
Written informed consent was waived, and the institutional review
committee approved this study.

Patients
The MR imaging examinations of 66 consecutive patients (43 men, 23

women; age range 21-74 years; mean age 51.6 = 11.6 years) with a
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Table 1: nSI from 2 radiologists

1st 2nd Pearson
Tumor Measurement Measurement Correlative Analysis
GBM 3.1 +048 31505 P<.001, r= 894
MET 273%+03 274 =035 P<.001, r= 918
Total 2.98 = 0.46 3.02 £ 045 P<.001, r= 912

diagnosis of GBM or solitary MET were evaluated retrospectively. All
patients had a previously untreated solitary enhancing brain tumor
and peritumoral T2 prolonged signals, and had undergone routine
brain MR examination before surgical resection at our institution
between May 2009 and November 2010. Their tumors fulfilled the
2007 WHO histopathologic criteria for the diagnosis.'® Patients with
hemorrhagic tumors were not included in the study because intratu-
moral hemorrhage may affect peritumoral T2 prolonged signals. Tu-
mors with minimal peritumoral T2 prolongation (area <1/4 tumor
area on the axial section where the tumor showed maximal diameter)
were excluded.

The final diagnosis was based on intraoperative observations and
histopathologic findings. Of the 66 patients, WHO grade IV GBM was
diagnosed in 45 cases (30 men, 15 women; mean age 50.5 * 12.4
years; range 21-72 years) and solitary MET was diagnosed in 21 cases
(13 men, 8 women; mean age 54 * 9.6 years; range 36—74 years).
Metastatic brain tumors included carcinomas from lung (n = 10),
thyroid (n = 1), ovary (n = 1), rectum (n = 1), endometrium (n = 1),
and unknown origin (n = 7).

MR Imaging and Processing

All MR imaging examinations were performed within 7 days before
surgery. The protocol included unenhanced and enhanced sequences.
The precontrast sequence consisted of axial TIWI, T2WI, and sagittal
TIWI. Once the precontrast imaging was completed, 0.2 mL/kg gado-
pentetate dimeglumine (Magnevist; BayerHealthCare Pharmaceuti-
cals, Wayne, New Jersey) was administered manually via the antecu-
bital vein by a registered nurse. Postcontrast images, including the
axial, sagittal, and coronal images, were obtained immediately after
the administration of contrast media. Thirty patients were scanned on
a Genesis Signa 3T scanner (GE Healthcare, Milwaukee, Wisconsin).
A T1-weighted sequence (TR/TE, 2031/19) and FSE T2WI (TR/TE,
4900/117) were performed with the same field of view (240 mm) and
matrix (512 X 512). Thirty-six patients underwent MR imaging on
another 3T superconducting MR scanner (Magnetom, Trio; Siemens,
Erlangen, Germany). A T1-weighted turbo inversion recovery se-
quence (TR/TE, 2000/9.8) and T2-weighted turbo spin-echo scan
(TR/TE, 4500/84) were obtained. The section thickness and gap were
5 mm and 6 mm, respectively, regardless of the scanner used.

Peritumoral T2 prolongation was defined as an area clearly out-
side the well-defined enhancing solid portion of the tumor that con-
tained absolutely no enhancement and showed high signal intensity
on T2WI. For internal control, normal-appearing mirrored regions
were located on the contralateral hemisphere that contained no en-
hancement and showed normal signal intensity on T2WI.

To determine the peritumoral signal intensity, ROIs were placed
in the regions of peritumoral T2 prolongation surrounding each tu-
mor using the software Neusoft PACS (downloaded from http://
www.neusoft.com). For each ROI in the peritumoral T2 prolonga-
tion, a mirror ROI was placed in the same anatomic region on the
contralateral normal-appearing hemisphere. The placement of the
mirror ROI avoided areas of necrotic tissue, cysts, and large vessels, as
much as possible.
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After placement of each RO], the signal intensity on T2WI was
automatically measured by the software. First, we selected all contin-
uous sections that included the peritumoral T2 prolongation. To ac-
count for the heterogeneity of the prolongation, 4 uniformly round or
ovoid ROIs (area 10—12 mm?) were carefully placed in different re-
gions of the peritumoral T2 prolongation by visual inspection. To
avoid a transverse partial volume effect, the locations of ROIs were
3—4 mm away from the outer margins of the prolongation and the
enhancing margin of the tumor, with reference to the same section on
enhanced T1WI. To avoid longitudinal partial volume averaging, the
chosen sections were covered by at least 1 section with T2 prolonga-
tion inferiorly and superiorly.

For each peritumoral ROI and its mirror counterpart, the nSI was
calculated by dividing the signal intensity value of the ROI on the
affected hemisphere by that of the mirror ROI on the contralateral
hemisphere, similar to the previously published method."' For each
tumor, the nSI was defined as the mean ratio of the 4 pairs of ROIs and
mirror ROIs. These measurements and calculations were performed
independently by 2 experienced radiologists. The averaged nSI from
the 2 observers was considered as the final nSI for the statistical
analysis.

A subjective grading system for the peritumoral T2 prolongation,
similar to what has been reported,19 was used—for grade I, the area of
peritumoral T2 prolongation = the area of the tumor on the section
where the tumor showed maximal diameter; for grade II, the area of
peritumoral T2 prolongation > the area of the enhancing tumor.

The ROI positioning, nSI calculation, and T2 grading were con-
ducted by 2 radiologists (Q.C., 16 years of experience, and S.W.L., 16
years of experience) independently. They were blinded to each other
and to the clinical and pathologic information. Discrepancies of T2
prolongation grading were resolved by consensus.

Statistical Analysis

A 1-sample Kolmogorov-Smirnow test was used to determine
whether the data were in normal distribution. To compare the differ-
ences between the patient age, sex, and the nSI in different T2 prolon-
gation grading, a X test or a t test was used. The nSIs produced by the
2 MR scanners were also compared with the ¢ test to determine
whether the measurement was affected by MR scanners. Correlative
analysis was used to test the consistency of the 2 individual measure-
ments made by the 2 radiologists. ROC analysis was applied to assess
the best cutoff value of the nSI that had the optimal combination of
the sensitivity and specificity in distinguishing between GBM and
solitary MET. A x”* test was also used to test the difference of T2
prolongation grading between the 2 types of tumors.

Statistical analysis was performed on commercial statistical soft-
ware (Statistical Package for the Social Sciences, Version 13.0; SPSS,
Chicago, Illinois). P values < .05 were considered statistically
significant.

Results
The data of patient age and nSI were in normal distribution.
No difference between GBM and solitary MET in patient sex

Table 2: Final nSl of patients scanned by different MR scanners

Tumor Genesis Signa (n) Magnetom Trio (n) P Value
GBM 3.16 £ 0.48(19) 3.1 +0.49(26) 676
MET 2.85 +0.35(11) 2.61 +0.25(10) .098
Total 3.05 + 0.46 (30) 2.97 +0.48(36) 484




Fig 1. GBM with peritumoral T2 prolongation of grade I. Postcontrast axial TIWI shows a heterogeneously enhancing lesion in the right parietal lobe with a maximal diameter of 4.5 cm
(A). On the same section as A, axial T2WI demonstrates medium peritumoral T2 prolongation, which is smaller in area than the tumor (B). Two ROls are placed in the prolonged region
(black ring), with 2 mirror ROls in the contralateral region (white ring). On the section inferior to B, another 2 ROls are positioned in the hyperintense region and, accordingly, 2 mirror ROIs
are placed in the contralateral region (C). For this measurement, the mean value of signal intensity is 852.5 for the prolonged region and 231.5 for the intact contralateral region. Thus,
the nSl is 3.68 (852.5/231.5).

Fig 2. Solitary MET with peritumoral T2 prolongation of grade I. Postcontrast axial T1WI shows a heterogeneously enhancing lesion in the left frontal and anterior parietal lobes with a
maximal diameter of 3.94 ¢cm (A). On the same section as A, axial T2WI demonstrates medium peritumoral T2 prolongation, which is smaller in area than the tumor (B). On this section,
2 ROIs are placed in the prolonged region (black ring), with 2 mirror ROls in the contralateral area (white ring). On the section superior to B, another 2 ROls with 2 mirror ROls are positioned
in the prolongation region and the contralateral region, respectively (C). For this measurement, the mean value of signal intensity is 818.0 for the prolonged region and 280.5 for the intact

contralateral region, respectively. Thus, the nSl is 2.92 (818.0/280.5).

(X* = 0.175, P = .676), or patient age (P = .281) was found.
There was high consistency between the 2 separate measure-
ments from the 2 radiologists (Table 1). The peritumoral sig-
nal intensity was not influenced by different MR scanners (Ta-
ble 2). With regard to the grading of peritumoral T2
prolongation, 47 cases were grade I (GBM, 38; MET, 9; Figs 1
and 2) and 19 cases were grade II (GBM, 7; MET, 12; Figs 3 and
4), showing a significant difference between GBM and MET
(x* = 12.079, P = .001). In addition, the final nSI of GBM was
significantly higher than that of MET in grade I (P = .014) and
grade Il (P = .017), as well as both combined (P < .001; Fig 5).
ROC analysis showed a larger AUC among grade II tumors
(Table 3).

Discussion

In our study, qualitative analysis showed that GBM was more
likely to have a grade I pattern and single MET was more likely
to have a grade IT pattern (x> = 12.079, P = .001); quantitative

analysis indicated that the nSI of GBM was significantly higher
than that of MET (P < .001). Furthermore, ROC analysis
demonstrated that the AUC increased from 0.741 to 0.869 as
the peritumoral T2 prolongation aggravated from grade I to
grade II, indicating that the larger the area of peritumoral T2
prolongation is, the more significant the difference in nSI is.
This may be explained by different mechanisms of peritu-
moral T2 prolongation.

Generally speaking, the peritumoral T2 prolongation of the
2 types of tumors is vasogenic’; however, the detailed mecha-
nism is different. In MET, no histologic evidence of tumors
has been found in the peritumoral region of T2 prolonga-
tion.>>?! The white matter fiber tracts in such regions are com-
pressed and shifted.” These regions are intrinsically normal
brain parenchyma, with purely vasogenic edema caused by the
disruption of the blood-brain barrier and increased interstitial
water contents from leaky capillaries.”>**> Gliomas, however,
are well known for their characteristic infiltration through
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Fig 3. GBM with peritumoral T2 prolongation of grade II. Postcontrast axial T1WI reveals a ringlike enhancing lesion in the left frontal lobe with a maximal diameter of 4.05 ¢cm (A). On
the same section as A, axial T2WI demonstrates obvious peritumoral hyperintensity, which is larger in area than the tumor (B). Two ROIs are placed in the prolonged region (black ring),
with 2 mirror ROIs in the contralateral side (white ring). On the section inferior to B, 2 additional ROls are positioned in the prolonged region and, accordingly, 2 mirror ROls are placed
in the contralateral side (C). The nSl is 4.18 (692.5/165.5).

Fig 4. Solitary MET with peritumoral T2 prolongation of grade II. Postcontrast axial T1WI shows a ringlike enhancing lesion in the right frontal lobe with a maximal diameter of 3.6 cm
(A). On the same section as A, axial T2WI| demonstrates strong peritumoral T2 prolongation, which is larger in area than the tumor (B). On this section, 2 ROls and 2 mirror ROls are placed
in the prolonged region (black ring) and contralateral area (white ring). On the section superior to A, another 2 ROIs with 2 mirror ROIs are positioned in the prolonged region and the

contralateral region, respectively (C). The nSl is 2.75 (603.5/219.5).

white matter fiber tracts.**** Pathologically, GBM has 3 types
of infiltration: infiltration with single cells, with cell nests, and
with demarcation of a relatively sharp border.?® Histologically,
neoplastic cells have been found in the T2 prolonged regions
surrounding GBM.'**” Therefore, the peritumoral T2 prolon-
gation of GBM is caused by a combination of vasogenic edema
and tumoral infiltration simultaneously.”® Further research
demonstrated that the perifocal T2 prolongation of GBM not
only includes invading tumor cells but also is associated with
glial alterations in vital brain tissue.”” These differences in the
mechanism of peritumoral T2 prolongation formation may
explain our finding that the peritumoral nSI of GBM is higher
than that of MET.

Many articles have been published comparing the differences
between GBM and solitary MET via different imaging modalities.
According to the anatomic location being researched, these can
be divided into 3 types. The first type is focused on 2 anatomic
locations: the enhancing portions of the tumor and the peritu-
moral regions with T2 prolongation.>>>*'*!>!> The second
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mainly deals with 1 location: either the enhancing part of the
tumor'*'®'” or the surrounding hyperintense region on the
T2WL'"'? The third type is focused on 3 locations: the enhancing
part of the tumor, regions with peritumoral T2 prolongation, and
the necrotic areas within the tumor.” With regard to the enhanc-
ing part of the tumor, DTT and perfusion metrics showed incon-
sistent conclusions, with some authors believing there was no
difference between the 2 types of tumors,'®'>'® contrary to the
others.*®'*'> As for the peritumoral T2 prolongation, the results
were also controversial. Some articles demonstrated that the re-
gion was helpful in the differentiation between GBM and MET by
DWI, DTIL and PWI metrics,>®!%1>1> which is inconsistent with
other papers.>” In some research, the peritumoral T2 prolonged
region was artificially divided into 2 parts: the proximal edema
and the distal edema, and the results indicated that the proximal
edema was helpful for the differentiation.*>'" In our opinion, to
some extent, the discrepancies may be related to the bias of sec-
tion selection and ROI positioning.

In this study, we focused only on the peritumoral T2 pro-
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Fig 5. Box-and-whisker plots. Thick horizontal line = mean; whiskers = * SD. The final
nSI of peritumoral T2 in GBM is significantly higher than that of solitary MET in grade |

(P = .014), grade Il (P = .017), and tumors as a whole without grading (P < .001).

Table 3: Sensitivity and specificity of final nSl of peritumoral T2
prolongation with high predictive power in differentiating GBM
from solitary MET using ROC analysis

Peritumoral T2 Cutoff

Prolongation Grading Value Sensitivity Specificity AUC
Grade | 244 0.974 0.444 0.741
Grade I 3.085 0.857 0.917 0.869
Total 2.88 0.644 0.762 0.725

longation and took it as a whole, without artificial division.
The largest AUC of 0.869 is smaller than the previously re-
ported observations (0.938% and 0.98'). Considering that this
is from a routine MR examination, an imaging technique that
is the least time-consuming and the most practical in different
medical institutes, and a ROI positioning method that is least
restrictive, we believe that the results of our study are accept-
able and bear practical significance.

Our study has some limitations. As a retrospective study, it
may have a selective bias inherent to clinical case series. An-
other limitation is the use of 2 different MR scanners with
different parameters. This may influence the measurement of
signal intensity to some extent. However, statistical analysis of
data from the different scanners and imaging parameters did
not support this speculation, indicating that our method may
be universally useful. The third limitation is that the peritu-
moral T2 prolongation grading is not completely accurate. It
would be more accurate if we had measured the volumes of the
peritumoral T2 prolongation and tumor with automation by
using software programs. We think, however, this grading sys-
tem from volume calculation is bound to be a time-consum-
ing procedure and may limit wide application in clinical set-
tings. Finally, the number of cases with solitary MET may be
too small to compare the peritumoral T2 prolongation of
MET from different origins.

Conclusions

Combined with qualitative and quantitative analysis of peri-
tumoral T2 prolongation, routine MR imaging can be helpful
in distinguishing GBM from brain solitary MET. Given its

availability and simplicity, we believe this method has practical
significance.
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