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ORIGINAL RESEARCH
ADULT BRAIN

Impact of Software Modeling on the Accuracy of Perfusion
MRI in Glioma

L.S. Hu, Z. Kelm, P. Korfiatis, A.C. Dueck, C. Elrod, B.M. Ellingson, T.J. Kaufmann, J.M. Eschbacher, X J.P. Karis, K. Smith, P. Nakaji,
D. Brinkman, D. Pafundi, L.C. Baxter, and B.J. Erickson

ABSTRACT

BACKGROUND AND PURPOSE: Relative cerebral blood volume, as measured by T2*-weighted dynamic susceptibility-weighted con-
trast-enhanced MRI, represents the most robust and widely used perfusion MR imaging metric in neuro-oncology. Our aim was to
determine whether differences in modeling implementation will impact the correction of leakage effects (from blood-brain barrier
disruption) and the accuracy of relative CBV calculations as measured on T2*-weighted dynamic susceptibility-weighted contrast-en-
hanced MR imaging at 3T field strength.

MATERIALS AND METHODS: This study included 52 patients with glioma undergoing DSC MR imaging. Thirty-six patients underwent
both non-preload dose– and preload dose– corrected DSC acquisitions, with 16 patients undergoing preload dose– corrected acquisitions
only. For each acquisition, we generated 2 sets of relative CBV metrics by using 2 separate, widely published, FDA-approved commercial
software packages: IB Neuro and nordicICE. We calculated 4 relative CBV metrics within tumor volumes: mean relative CBV, mode relative
CBV, percentage of voxels with relative CBV � 1.75, and percentage of voxels with relative CBV � 1.0 (fractional tumor burden). We
determined Pearson (r) and Spearman (�) correlations between non-preload dose– and preload dose– corrected metrics. In a subset of
patients with recurrent glioblastoma (n � 25), we determined receiver operating characteristic area under the curve for fractional tumor
burden accuracy to predict the tissue diagnosis of tumor recurrence versus posttreatment effect. We also determined correlations
between rCBV and microvessel area from stereotactic biopsies (n � 29) in 12 patients.

RESULTS: With IB Neuro, relative CBV metrics correlated highly between non-preload dose– and preload dose– corrected conditions for
fractional tumor burden (r � 0.96, � � 0.94), percentage � 1.75 (r � 0.93, � � 0.91), mean (r � 0.87, � � 0.86), and mode (r � 0.78, � � 0.76).
These correlations dropped substantially with nordicICE. With fractional tumor burden, IB Neuro was more accurate than nordicICE in
diagnosing tumor versus posttreatment effect (area under the curve � 0.85 versus 0.67) (P � .01). The highest relative CBV–microvessel
area correlations required preload dose and IB Neuro (r � 0.64, � � 0.58, P � .001).

CONCLUSIONS: Different implementations of perfusion MR imaging software modeling can impact the accuracy of leakage correction,
relative CBV calculation, and correlations with histologic benchmarks.

ABBREVIATIONS: FTB � fractional tumor burden; GBCA � gadolinium-based contrast agents; IBN � IB Neuro; MVA � microvessel area; NICE � nordicICE; PLD �
preload dose; pMRI � perfusion MR imaging; rCBV � relative cerebral blood volume

Perfusion MR imaging (pMRI) has emerged as a powerful di-

agnostic tool in neuro-oncology. Multiple independent stud-

ies have shown how measures of microvessel volume, which are

linked closely to histologic identity and malignant potential, can

facilitate diagnoses that have historically eluded conventional MR

imaging.1-7 For instance, the metric relative cerebral blood vol-

ume (rCBV), as measured by dynamic susceptibility-weighted

contrast-enhanced pMRI, can identify high-grade components

within nonenhancing glioma,6,7 distinguish tumor recurrence

from posttreatment effects (ie, pseudoprogression, radiation ne-
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crosis),8-11 and predict tumoral response and patient survival af-

ter targeted therapy.12-16

Despite the potential clinical impact of pMRI, broad-scale in-

tegration has been slowed by the need to define optimal methodo-

logic conditions to maximize rCBV accuracy. While a number of

factors can affect rCBV measurements (eg, image acquisition,

motion correction, signal fitting, and mathematic modeling),

most methodologic studies have focused on techniques that cor-

rect for T1-weighted leakage errors from blood-brain barrier dis-

ruption and T2/T2*-weighted residual errors from contrast recir-

culation within tortuous microvasculature.17-24 Specifically, DSC

relies on the assumptions that gadolinium-based contrast agents

(GBCA) transit through tissue as a single bolus and remain within

the vascular lumen. Yet, these premises are often violated in the

setting of high-grade glioma, increasing the likelihood of rCBV

inaccuracies.

On the basis of previous comparison studies, the administra-

tion of GBCA preload dose (PLD) and the subsequent use of soft-

ware modeling (during image postprocessing) offer the most ef-

fective methods for rCBV correction.17-19 PLD, given before DSC

acquisition, minimizes T1 leakage effects by presaturating tissue

T1 signal and decreasing subsequent GBCA extravascular diffu-

sion.17-22,25,26 Because of theoretic dose-dependent risks of neph-

rogenic systemic fibrosis, the GBCA dose is generally minimized,

with most studies showing effective T1 leakage-correction with a

PLD as low as 0.05– 0.1 mmol/kg.19 Additionally, modeling cor-

rection has proved necessary to correct residual T1 errors and

T2/T2*-weighted recirculation effects following PLD. While a

number of modeling algorithms have been proposed, the method

published by Boxerman et al17 remains the most highly cited and

validated algorithm to date, and it is widely considered the stan-

dard for DSC-pMRI.

Generally speaking, modeling correction requires implemen-

tation of mathematic algorithms through computer software pro-

grams developed either in-house by individual academic centers

or incorporated within vendor-supplied commercial packages.

Vendor-supplied options offer the advantage of wide availability

and ease of standardization across multiple institutions, but the

methods by which the algorithms are implemented can vary by

vendor. While we generally assume negligible differences in how

various software programs incorporate mathematic modeling to

calculate rCBV, this assumption has not been directly tested, par-

ticularly with validation against standard benchmarks such as

histology.

In this study, we compared 2 commonly published, commer-

cially available implementations of the Boxerman algorithm,17 as

integrated within the IB Neuro (IBN, Version 1.1; Imaging Bio-

metrics, Elm Grove, Wisconsin) and nordicICE (NICE, Version

2.3.13; NordicNeuroLab, Bergen, Norway) software pack-

ages.8,9,14-18,20,25-28 We present data from a cohort of 52 patients

with glioma who underwent DSC-pMRI acquisition at the time of

clinical MR imaging. The goals of this study are to determine the

equivalency of modeling implementation and rCBV calculation

across platforms and to assess whether rCBV variations, if pres-

ent, will significantly impact correlations with histologic bench-

marks. Our overarching goal is to provide information that will

help work toward consensus and standardization of pMRI

methodology.

MATERIALS AND METHODS
Subjects
We searched our data base (2007–2013) for patients with histo-

pathologically confirmed glioma who had conventional 3T MR

imaging with pMRI at 2 different institutions. We included pa-

tients in whom the same examination contained 2 separate DSC-

pMRI acquisitions (and separate bolus contrast injections)

and/or the MR imaging was performed preoperatively for stereo-

tactic resection and/or biopsy within 1 day after imaging. Subjects

were pooled from 2 separate institutions: Barrow Neurological

Institute at St. Joseph’s Hospital and Medical Center and Mayo

Clinic, Arizona. All patient data were anonymized for Health In-

surance Portability and Accountability Act compliance. The insti-

tutional review board approved our study. All patients undergo-

ing pMRI had estimated glomerular filtration rates of �60 mg/

min/1.72 m2.

Perfusion MR Imaging Data Acquisition
Each 3T examination was performed on 1 of 2 MR imaging mag-

nets (Signa HDx; GE Healthcare, Milwaukee, Wisconsin; or Mag-

netom Skyra; Siemens, Erlangen, Germany). All patients under-

went initial preload dose administration that allowed the

acquisition of PLD-corrected DSC-pMRI data, which were all ac-

quired via a second GBCA injection (0.05-mmol/kg, gadodiamide

or gadobenate dimeglumine) by using previously described meth-

ods.8,19 In all patients, the PLD amount totaled 0.1 mmol/kg,

administered via either a single bolus injection or 2 separate (0.05-

mmol/kg) bolus injections, depending on the departmental pro-

tocol at the time of imaging. In a subset of patients, we acquired

non-PLD-corrected DSC-pMRI data during the initial PLD bolus

injection, by using either 0.05- or 0.1-mmol/kg GBCA injections,

depending on the clinical perfusion MR imaging protocol used at

the time of acquisition. We performed a separate subanalysis to

determine the impact of different injection doses as shown in

On-line Table 1.

All DSC data (gradient-echo echo-planar imaging with TR/

TE/flip angle � 1500 –2000/20 ms/60°, FOV � 24 � 24 cm, ma-

trix � 128 � 128, 5-mm section, no gap) were acquired during 3

minutes with the bolus injection occurring at the 1-minute mark

after the start of the DSC sequence. All GBCA injections were via

power injector at 3–5 mL/s, followed by a 20-mL normal saline

flush. The final GBCA dose for all patients (irrespective of the

method of PLD administration) was 0.15 mmol/kg of body

weight.

Perfusion MR Imaging Data Analysis
After transferring all MR imaging data to an off-line workstation

and removing baseline points collected during the first 5 seconds,

we generated whole-brain rCBV maps by using 2 commonly pub-

lished commercial software packages: nordicICE (Version 2.3.13)

and IB Neuro (Version 1.1), both approved by the US Food and

Drug Administration. For NICE, we used all available default op-

tions and included leakage correction in all cases. Default options

consisted of automatic prebolus baseline selection to define the
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prebolus baseline and integration intervals and subsequent noise

threshold adjustment to maximize brain tissue used for CBV cal-

culation. We did not use spatial or temporal smoothing for either

software package, to help maintain data integrity and limit poten-

tial confounding factors. We performed rCBV calculations with �

variate fitting before leakage correction or without � variate fit-

ting. For IBN, we used all default options including leakage cor-

rection: 1) automated detection of brain tissue mask for voxels

used in CBV calculation, 2) automated detection of contrast ar-

rival within brain mask voxels to define the prebolus baseline and

integration intervals, and 3) leakage correction based on Boxer-

man et al.17 For rCBV generated with either NICE or IBN, we

coregistered the rCBV maps with stereotactic anatomic images

by using registration methods implemented in the Insight Seg-

mentation and Registration Toolkit (www.itk.org) within the

IB Suite (Version 1.0.454; Imaging Biometrics), as previously

described.17,18,29,30

We normalized all rCBV maps to mean CBV from two 3 � 3

voxel-sized square ROIs within the contralateral frontal and pa-

rietal normal-appearing white matter.8,19 To reduce variability,

we used identical normal-appearing white matter ROIs for both

software package analyses to generate all rCBV metrics. We cal-

culated multiple previously published rCBV metrics including the

following: 1) volume fraction of tumor voxels above the rCBV

threshold of 1.75 (percentage �1.75); 2) volume fraction of tu-

mor voxels above the rCBV threshold of 1.0, also known as per-

fusion MR imaging fractional tumor burden (FTB); 3) histogram

mean rCBV; and 4) histogram mode rCBV for all tumor voxels.

We chose the thresholds of 1.0 and 1.75 because of previous stud-

ies reporting the biologic significance of these values.6,8,30 On the

basis of the rCBV maps generated from NICE and IBN packages,

we calculated volume fraction metrics by using the IB Suite and

histogram metrics by using custom code written in Matlab (Ver-

sion R2012a; MathWorks, Natick, Massachusetts). To reduce

variability, we also used identical segmented enhancing tumor

volumes for both software analyses and all rCBV metrics (as de-

scribed below).

Conventional MR Imaging Acquisition and Analysis
For each examination, we acquired routine conventional con-

trast-enhanced MR imaging that included pre- and postcontrast

T1-weighted spoiled gradient-echo (inversion recovery prepped)

stereotactic (ie, volumetric) MR imaging datasets (TI/TR/TE �

300/6.8/2.8 ms, matrix � 320 � 224, FOV � 26 cm, section thick-

ness � 2 mm). Tumor volumes were defined as abnormal en-

hancing tissue by an experienced neuroradiologist (L.S.H.). In

nonenhancing glioma, we defined tumor volumes by using T2-

weighted stereotactic MR imaging (TR/TE � 4500/82 ms, ma-

trix � 256 � 256, FOV � 26 cm, section thickness � 2 mm).

Stereotactic Biopsy, Image Coregistration, and Histologic
Microvessel Analysis
Our cohort included a subset of patients in whom neurosurgeons

collected an average of 2–3 tissue specimens from each tumor by

using stereotactic surgical localization, following the smallest pos-

sible diameter craniotomies to minimize brain shift. Biopsies

were performed without knowledge of rCBV analyses. Similar to

those in previous studies, biopsy locations and neuronavigational

coordinates were recorded and coregistered with MR imaging to

enable localized rCBV measurement (3 � 3 voxel-sized ROIs) at

corresponding biopsy sites.11,31 Multiple biopsy targets in the

same patient were separated by a minimum of 2 cm. The neuro-

surgeon visually validated stereotactic imaging locations with cor-

responding intracranial anatomic landmarks, such as vascular

structures. Stereotactic biopsy samples were sectioned (10-�m

thickness), CD-34 stained, and submitted for quantification of

total microvessel area (MVA) by using previously published

methods.31-34 Corresponding sections were also stained with

hematoxylin-eosin per standard protocol. For each CD-34-

stained slide, we measured total microvessel area as previously

described.31,32,35 Raw data from 7 of these patients were studied

previously.31 The current study differs in the following ways: 1)

We used commercial software packages and modeling correction

to measure rCBV, 2) we determined test performance differences

between packages, and 3) we compared PLD against non-PLD

conditions.

Quantification of Histologic Tumor Fraction in Recurrent
Glioblastoma Multiforme
Our cohort included a subset of 25 patients with recurrent glio-

blastoma multiforme, previously treated with the protocol of

Stupp et al.36 We enrolled each of these patients at the time of

recurrence, at which time they underwent preoperative MR im-

aging (including pMRI) for surgical debulking of newly devel-

oped or enlarging lesions suspicious for recurrence identified on

surveillance contrast-enhanced MR imaging.

Following debulking, we fixed all surgical tissue specimens in

10% formalin, embedded them in paraffin, sectioned them (10

�m), and stained them with hematoxylin-eosin per standard di-

agnostic protocol at our institution. Two neuropathologists

quantified glioblastoma multiforme and/or posttreatment effect

elements for all specimens without knowledge of DSC-MR imag-

ing, by simultaneously estimating histologic fractional volume of

tumor relative to nonneoplastic treatment-related features, as

previously described.8,30,37,38 Features of tumor recurrence38 and

posttreatment effect37,39 were quantified and used to determine

the histologic tumor fraction from surgical resection material to

diagnose either tumor progression (histologic tumor fraction of

�50%) or posttreatment effect (histologic tumor fraction of

�50%) on the basis of group median values. Raw data from these

25 patients have been studied previously.8 Like the prior study,

the current study measures FTB but with several important dif-

ferences in experimental design: 1) We used and compared 2 sep-

arate modeling algorithm implementations to calculate FTB, 2)

we assessed performance differences between methods by com-

paring test accuracies (with receiver operating characteristic anal-

ysis), and 3) we use a simplified classification system to establish

the clinical presence/absence of tumor progression.

Statistical Analysis
A biostatistician performed all analyses. We first determined

Pearson and Spearman correlations between non-PLD- and PLD-

corrected conditions for all rCBV metrics as calculated by IBN

and NICE. Second, we used receiver operating characteristic anal-
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ysis to determine the accuracy of FTB (as measured by IBN and

NICE) to diagnose tumor versus posttreatment effect. Finally, we

determined Pearson and Spearman correlations between local-

ized rCBV and MVA from corresponding stereotactic biopsies.

P � .05 was statistically significant.

RESULTS
Subjects and Tumor Types
We enrolled 52 patients (17 women, 35 men; mean age, 53 years),

of whom 87% (45/52) had high-grade gliomas with 78% (35/45)

presenting at recurrence after standard multimodal therapy.

On-line Table 2 summarizes the tumor types for primary and

recurrent cases.

Comparing rCBV Measurements in the Presence and
Absence of Preload Dose
Comparing rCBV between PLD and non-PLD conditions gives an

indication of how well modeling implementation corrects T1

leakage errors. We acquired both PLD- and non-PLD-corrected

rCBV values in a subset of patients (n � 36) for whom we calcu-

lated 4 separate rCBV metrics (mean, mode, percentage �1.75,

and FTB) by using both IB Neuro and nordicICE software pack-

ages. When we used IBN (Fig 1), rCBV thresholding metrics cor-

related very highly between non-PLD- and PLD-corrected condi-

tions (FTB: r � 0.96, � � 0.94; percentage � 1.75: r � 0.93, � �

0.91); correlations were also high for mean rCBV (r � 0.87, � �

0.86) and mode rCBV (r � 0.78, � � 0.76). With NICE modeling,

these correlations dropped substantially (Fig 1) for thresholding

metrics (FTB: r � 0.70, � � 0.71; percentage � 1.75: r � 0.59, � �

0.60), mean rCBV (r � 0.43, � � 0.62), and mode rCBV (r � 0.51,

� � 0.65). When we added � variate fitting, correlations for mean

rCBV by using NICE decreased though the other metrics re-

mained largely unchanged (Table 1). On visual inspection of

thresholding maps, non-PLD and PLD-corrected voxels showed

greater spatial correspondence when using IBN compared with

NICE (Fig 2). Table 1 summarizes correlations for all conditions.

Of these 36 patients, 10 received PLD via 2 separate half-dose

injections. To assess the potential effects of heterogeneity in PLD

administration, we performed a subanalysis (n � 26) excluding

these 10 subjects, which showed correlations consistent with the

original analysis (On-line Table 1).

FIG 1. A–D, Scatterplots correlating rCBV metrics with and without preload dosing (PLD), as measured by 2 separate modeling algorithms (IBN,
NICE without � variate fitting). PLD- and non-PLD corrected values are shown in the x- and y-axes, respectively. Overall, IBN measurements
demonstrate consistently higher Pearson (r) and Spearman (�) correlations for mean rCBV, mode rCBV, fractional tumor burden (FTB), and
percentage of voxels � 1.75. The thresholding metrics (FTB, percentage � 1.75) correlate most strongly between PLD- and non-PLD-corrected
conditions.
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The Type of Modeling Implementation Impacts the
Accuracy of rCBV to Diagnose Tumor versus
Pseudoprogression/Radiation Necrosis
In a subset of patients with recurrent glioblastoma multiforme

(n � 25) undergoing surgical debulking for suspected tumor re-

currence, we used receiver operating characteristic analysis to de-

termine the accuracy of FTB, as measured by IBN or NICE, to

diagnosed tumor versus posttreatment effect (ie, pseudoprogres-

sion, radiation necrosis). We used histologic tumor fraction from

surgical resection to categorize each subject’s diagnosis as either

tumor recurrence (histologic tumor fraction of �50%) or post-

treatment effect (histologic tumor fraction of �50%). We used

PLD correction for all cases. The area under the curve for FTB, as

measured by IBN (0.85), was significantly higher than that by

NICE (0.67; P � .01) (Fig 3).

Influence of PLD and Modeling Correction on the
Correlation of rCBV with Stereotactic Microvessel Area
Quantification
We measured localized rCBV values corresponding to coregis-

tered stereotactic biopsy samples (n � 29) in a subset of patients

(n � 12). We determined Spearman and

Pearson correlations between matched

rCBV and histologic microvessel area

measurements under multiple condi-

tions, which varied by method of mod-

eling correction or the presence/absence

of PLD correction (Table 2). Both PLD

correction and IBN modeling were

needed to maximize rCBV correlations

with MVA (r � 0.64, � � 0.58, P �

.001).

DISCUSSION
Relative CBV represents the most robust

and widely used perfusion MR imaging

metric in neuro-oncology.1-31,40-46 Of the techniques that mea-

sure rCBV, DSC is the most commonly used method because of

wide availability, straightforward postprocessing, and easy-to-use

software programs.40,41 DSC uses the indicator dilution theory

based on susceptibility (T2-/T2*-weighted signal drop) from

first-pass transit of a single GBCA bolus injection. DSC assumes

an intact BBB with no extravascular GBCA leakage or recircula-

tion and thus requires correction methods when these factors

occur (discussed below). Dynamic contrast-enhancement MRI

and arterial spin-labeling offer alternative approaches to DSC for

calculation of rCBV. The theory and limitations of these tech-

niques have been described previously.23,24,40-42

Correctly performing DSC requires several technical consid-

erations based on comparison data from prior studies validating

optimal conditions for best practice. First, DSC-pMRI generally

necessitates both PLD and mathematic modeling to achieve the

highest degree of T1 leakage correction and rCBV accuracy.17-19

Results from our study support this requirement (Table 2). Re-

garding PLD amount, most groups use a single dose (0.1 mmol/

kg) of GBCA,8,9,14-20,22,25,26,42 particularly at 1.5T, though ade-

quate PLD correction could be achieved with a GBCA dose as low

as 0.05 mmol/kg at 3T.19 Second, gradient-echo T2*-weighted

DSC represents the most preferred and widely published method

for DSC. While spin-echo T2-weighted DSC offers a higher sig-

nal-to-noise ratio and fewer susceptibility artifacts,45 double or

triple GBCA injection doses (0.2– 0.3 mmol/kg) are typically

needed during the acquisition of spin-echo DSC,2,7,30 to over-

come the lower contrast-to-noise ratio (ie, signal drop in response

to the GBCA first-pass bolus). Compared with spin-echo, gradi-

ent-echo DSC offers advantages such as the following: 1) superior

contrast-to-noise ratio (ie, greater signal drop during GBCA first-

pass), which allows lower contrast dosage during DSC acquisition

(0.05– 0.1 mmol/kg) and improves the quality of rCBV data, min-

imizing the need for signal denoising; 2) greater sensitivity to

microvessels of all sizes (including larger tortuous glomeruloid-

type vessels commonly observed in high-grade gliomas); and 3)

the ability to use flip angles of �90° to minimize T1 leakage ef-

fects.11,19,31,42,44,45 Finally, in regard to mathematic modeling, the

algorithm published by Boxerman et al17 remains the most highly

cited and validated method to date and has been implemented

commercially for widespread use.

The study results here underscore the importance of how soft-

FIG 2. Image of a representative case in a 39-year-old patient with
recurrent high-grade ganglioglioma shows an enhancing mass (A).
Color overlay percentage � 1.75 thresholding maps (B–E) depict or-
ange voxels with high rCBV � 1.75, compared with intermediate yel-
low voxels (rCBV, 1.0 –1.75) and low green voxels (rCBV � 1.0). With
NICE, both spatial distribution and percentage of orange voxels show
high discrepancy between non-PLD- (70%, B) and PLD-corrected (35%,
C) maps. With IBN, the percentage of orange voxels on the non-PLD
map (54%, D) approximates that on the PLD-corrected map (51%, E)
with high spatial congruence.

Table 1: Pearson (r) and Spearman (�) correlations between rCBV metrics under PLD-
corrected and non-PLD-corrected conditions, as measured by IBN and NICE perfusion
software algorithmsa

rCBV Metric
Non-PLD vs
PLD (IBN)

P
Value

Non-PLD vs PLD
(NICE) with gvf

P
Value

Non-PLD vs PLD
(NICE) without gvf

P
Value

Mean r � 0.87 �.001 r � 0.11 .54 r � 0.43 .01
� � 0.86 �.001 � � 0.42 .02 � � 0.62 �.001

Mode r � 0.78 �.001 r � 0.44 .01 r � 0.51 .01
� � 0.76 �.001 � � 0.65 �.001 � � 0.65 �.001

% � 1.75 r � 0.93 �.001 r � 0.55 �.001 r � 0.59 �.001
� � 0.91 �.001 � � 0.61 �.001 � � 0.60 �.001

FTB r � 0.96 �.001 r � 0.79 �.001 r � 0.70 �.001
� � 0.94 �.001 � � 0.72 �.001 � � 0.71 �.001

Note:—gvf indicates � variate fitting.
a NICE calculations were performed with and without gvf. IBN modeling shows substantially higher correlation be-
tween PLD and non-PLD metrics (compared with NICE), suggesting higher rCBV accuracy in the absence of PLD
correction. Statistical significance is P value � .05.
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ware programs implement a particular modeling algorithm for

rCBV calculation. In this study, we tested 2 widely published

FDA-approved commercial packages that offer separate imple-

mentations of the Boxerman method,8,9,14-21,24,26-28 and we eval-

uated how the modeling implementation by each software pro-

gram would impact T1 leakage correction and rCBV correlation

with histologic measures. We minimized potential confounding

factors by using identical segmented tumor volumes and regions

in normalized white matter to evaluate each implementation

method, and we used default settings and leakage correction for

both software packages. For NICE, these included automated se-

lection of the prebolus baseline and subsequent noise threshold-

ing to maximize brain tissue for calculation of CBV. The rCBV

metrics on IBN (compared with NICE) demonstrated greater

consistency between PLD and non-PLD conditions, most notably

with mean rCBV (IBN: r � 0.87; NICE:

r � 0.43) and percentage � 1.75 (IBN:

r � 0.93; NICE: r � 0.59). This suggests

that the modeling correction by IBN

provides more effective correction of T1

errors, which are most prominent at

non-PLD conditions.

While we observed strong correla-

tions between non-PLD and PLD mea-

sures (when using IBN), further studies

are likely needed to determine the fol-

lowing: 1) whether PLD can or should be

omitted, 2) what the optimal conditions

would be to allow PLD omission (ie,

modeling implementation, 3T field

strength), and 3) whether this omission

would significantly impact prognostic

and diagnostic accuracy. Under PLD

conditions, separate experiments con-

firmed significantly higher FTB accu-

racy with IBN (area under the curve �

0.84), compared with NICE (area under

the curve � 0.67, p � 0.01), in diagnos-

ing histopathologically confirmed tu-

mor versus posttreatment effect (ie,

pseudoprogression, radiation necrosis).

IBN also provided the highest degree of

correlation between localized rCBV and

tissue microvessel area (Table 2).

In this study, we chose to validate

rCBV measurements against histopa-

thology rather than outcomes. Imaging
measurements such as rCBV are most
directly related to histologic correlates
such as microvessel volume and histo-
logic identity (eg, tumor grade, tumor
versus posttreatment effect). How these
histologic features (and their imaging
correlates) predict survival may be con-
founded by a number of different factors
such as age, molecular markers (isocit-

rate dehydrogenase), methylation status

(eg, O6-methylguanine-DNA methyl-

transferase), extent of resection, salvage therapy at the time of

recurrence, and so forth.6-16,47,48 While clinical outcomes are de-

sirable as end points, they must be correlated with imaging and

histologic features together in a controlled trial with a larger pa-

tient cohort, which is beyond the scope of this article. Our pur-

pose in this study was simply to determine which method of rCBV

measurement (ie, which software package) came closest to in-

forming of underlying tissue features. We think that this context

justifies the rationale for validating rCBV against histopathologic

benchmarks.

We recognize potential study limitations. First, we limited the
scope of the evaluation to 2 specific software packages, though
many commercial options exist. We simplified the project to
maximize the potential clinical impact because we evaluated the

most published and validated modeling algorithm to date (Box-

FIG 3. Receiver operating characteristic curves for fractional tumor burden to predict histopathology
(tumor versus posttreatment effect) in patients with recurrent glioblastoma multiforme (n � 25). FTB
by IB Neuro (blue) demonstrates a significantly larger area under the curve (AUC) compared with
nordicICE (without � variate fitting, orange) FTB measurements (0.85 versus 0.70, P � .01), suggesting
that different modeling algorithms can impact the accuracy in predicting histopathologic diagnosis.
Adding � variate fitting further reduces NICE estimates of FTB (0.67, green).

Table 2: Correlations between rCBV and fractional MVA under different PLD and modeling
conditionsa

Conditions for rCBV
Measurement

Pearson
Correlation (r)

P
Value

Spearman
Correlation (�)

P
Value

Fractional MVA 1.00 – 1.00 –
No PLD (IBN) 0.46 .02 0.33 .12
No PLD (NICE � gvf) 0.51 .01 0.26 .19
No PLD (NICE � gvf) 0.35 .10 0.18 .39
PLD (IBN) 0.64 �.001 0.58 .001
PLD (NICE � gvf) 0.53 �.01 0.28 .15
PLD (NICE � gvf) 0.59 .001 0.40 .04

Note:—� indicates with; �, without; –, not applicable; gvf, � variate fitting.
a Both PLD correction and IBN software modeling were needed to achieve maximal correlation.
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erman et al17) and the 2 most commonly published commercial

platforms that implement that algorithm. Future studies may in-

corporate other vendor packages in a more comprehensive fash-

ion. In fact, the study results here may motivate the development

of a framework by which to standardize or evaluate modeling

implementation for all vendors. Second, we did not evaluate the

factors underlying the differences in modeling implementation

because the software code was not made available to us for anal-

ysis or modification. Regardless, this comparison study simulates

what would be available to end users within the clinical environ-

ment and demonstrates that differences between programs can

significantly impact rCBV accuracy. Future efforts to develop or

use open-source software may help elucidate some of the differ-

ences among commercial packages. Third, nonuniformity in PLD

administration (single-dose bolus versus 2 separate half-dose in-

jections) may theoretically degrade correlations between non-

PLD- and PLD-corrected rCBV. However, strong correlations

within the full cohort and subanalysis (On-line Table 1) suggest

negligible impact. Fourth, while we used 2 different MR imaging

scanners (Signa HDx; Magnetom Skyra), all MR imaging– histo-

logic correlations came from 1 scanner (Signa HDx). Moreover,

both scanners used identical field strengths (3T) and DSC param-

eters (ie, pulse sequence, injection rates, and so forth). These fac-

tors, along with strong correlations in a subanalysis (On-line Ta-

ble 3), suggest a negligible impact on study results. Fifth, the

observed strength of rCBV-MVA correlations in this study (at

best r � 0.64) may be underestimated because Pathak et al46 have

shown that correlations between rCBV and histologic vascular

fraction can be further improved when accounting for histologic

section thickness as a potential confound. Sixth, there was vari-

ability in the TR (1.5 versus 2.0 seconds) of the DSC acquisitions

for some patients, depending on the clinical protocol used at the

time of imaging. While we do not anticipate this having a signif-

icant effect on correlations, we recognize it as a potential limita-

tion. Finally, nonuniformity of the GBCA type (gadodiamide or

gadobenate dimeglumine) resulted from protocol changes during

the study. Subanalysis (On-line Table 4) based on GBCA type

suggested negligible effects.

CONCLUSIONS
Different implementations of perfusion MR imaging software

modeling can impact the accuracy of leakage correction, rCBV

calculation, and correlations with histologic benchmarks. Future

decisions about pMRI standardization should incorporate com-

parison data that have validated rCBV measurements against clin-

ical benchmarks such as histopathology.

Disclosures: Leland S. Hu, Zachary Kelm, Leslie C. Baxter—RELATED: Grant: National
Institutes of Health.* Timothy J. Kaufmann—UNRELATED: Consultancy: SpineThera,
Comments: startup company hoping to create a sustained-release epidural cortico-
steroid preparation. Peter Nakaji—UNRELATED: Board Membership: Foundation for
International Education for Neurological Surgery, Barrow Neurological Institute co-
management*; Consultancy: Zeiss, Aesculap, AlloSource; Grants/Grants Pending:
Barrow Neurological Foundation*; Payment for Lectures (including service on
Speakers Bureaus): Zeiss; Patents (planned, pending or issued): AlloSource, Gamma-
Tile, Incubeon; Stock/Stock Options: Microfabrica. Bradley J. Erickson, P. Korfiatis—
RELATED: Grant: National Cancer Institute (1U01CA160045).* *Money paid to the
institution.

REFERENCES
1. Fink JR, Carr RB, Matsusue E, et al. Comparison of 3 Tesla proton

MR spectroscopy, MR perfusion and MR diffusion for distinguish-
ing glioma recurrence from posttreatment effects. J Magn Reson
Imaging 2012;35:56 – 63 CrossRef Medline

2. Lev MH, Ozsunar Y, Henson JW, et al. Glial tumor grading and
outcome prediction using dynamic spin-echo MR susceptibility
mapping compared with conventional contrast-enhanced MR:
confounding effect of elevated rCBV of oligodendrogliomas [cor-
rected]. AJNR Am J Neuroradiol 2004;25:214 –21; Erratum in: AJNR
Am J Neuroradiol 2004;25:B1

3. Knopp EA, Cha S, Johnson G, et al. Glial neoplasms: dynamic con-
trast-enhanced T2*-weighted MR imaging. Radiology 1999;211:
791–98 CrossRef Medline

4. Cha S, Lupo JM, Chen MH, et al. Differentiation of glioblastoma
multiforme and single brain metastasis by peak height and percent-
age of signal intensity recovery derived from dynamic susceptibili-
ty-weighted contrast-enhanced perfusion MR imaging. AJNR Am J
Neuroradiol 2007;28:1078 – 84 CrossRef Medline

5. Law M, Yang S, Wang H, et al. Glioma grading: sensitivity, specific-
ity, and predictive values of perfusion MR imaging and proton MR
spectroscopic imaging compared with conventional MR imaging.
AJNR Am J Neuroradiol 2003;24:1989 –98 Medline

6. Law M, Young RJ, Babb JS, et al. Gliomas: predicting time to pro-
gression or survival with cerebral blood volume measurements at
dynamic susceptibility-weighted contrast-enhanced perfusion MR
imaging. Radiology 2008;247:490 –98 CrossRef Medline

7. Maia AC Jr, Malheiros SM, da Rocha AJ, et al. Stereotactic biopsy
guidance in adults with supratentorial nonenhancing gliomas: role
of perfusion-weighted magnetic resonance imaging. J Neurosurg
2004;101:970 –76 CrossRef Medline

8. Hu LS, Eschbacher JM, Heiserman JE, et al. Reevaluating the imag-
ing definition of tumor progression: perfusion MRI quantifies re-
current glioblastoma tumor fraction, pseudoprogression, and radi-
ation necrosis to predict survival. Neuro Oncol 2012;14:919 –30
CrossRef Medline

9. Gahramanov S, Muldoon LL, Varallyay CG, et al. Pseudoprogression
of glioblastoma after chemo- and radiation therapy: diagnosis by
using dynamic susceptibility-weighted contrast-enhanced perfu-
sion MR imaging with ferumoxytol versus gadoteridol and correla-
tion with survival. Radiology 2013;266:842–52 CrossRef Medline

10. Barajas RF Jr, Chang JS, Segal MR, et al. Differentiation of recurrent
glioblastoma multiforme from radiation necrosis after external
beam radiation therapy with dynamic susceptibility-weighted con-
trast-enhanced perfusion MR imaging. Radiology 2009;253:486 –96
CrossRef Medline

11. Hu LS, Baxter LC, Smith KA, et al. Relative cerebral blood volume
values to differentiate high-grade glioma recurrence from
posttreatment radiation effect: direct correlation between im-
age-guided tissue histopathology and localized dynamic suscep-
tibility-weighted contrast-enhanced perfusion MR imaging
measurements. AJNR Am J Neuroradiol 2009;30:552–58 CrossRef
Medline

12. Sawlani RN, Raizer J, Horowitz SW, et al. Glioblastoma: a method
for predicting response to antiangiogenic chemotherapy by using
MR perfusion imaging—pilot study. Radiology 2010;255:622–28
CrossRef Medline

13. Galbán CJ, Chenevert TL, Meyer CR, et al. Prospective analysis of
parametric response map-derived MRI biomarkers: identification
of early and distinct glioma response patterns not predicted by
standard radiographic assessment. Clin Cancer Res 2011;17:
4751– 60 CrossRef Medline

14. LaViolette PS, Cohen AD, Prah MA, et al. Vascular change measured
with independent component analysis of dynamic susceptibility
contrast MRI predicts bevacizumab response in high-grade glioma.
Neuro Oncol 2013;15:442–50 CrossRef Medline

15. Schmainda KM, Prah M, Connelly J, et al. Dynamic-susceptibility
contrast agent MRI measures of relative cerebral blood volume pre-

2248 Hu Dec 2015 www.ajnr.org

http://dx.doi.org/10.1002/jmri.v35.1
http://www.ncbi.nlm.nih.gov/pubmed/22002882
http://dx.doi.org/10.1148/radiology.211.3.r99jn46791
http://www.ncbi.nlm.nih.gov/pubmed/10352608
http://dx.doi.org/10.3174/ajnr.A0484
http://www.ncbi.nlm.nih.gov/pubmed/17569962
http://www.ncbi.nlm.nih.gov/pubmed/14625221
http://dx.doi.org/10.1148/radiol.2472070898
http://www.ncbi.nlm.nih.gov/pubmed/18349315
http://dx.doi.org/10.3171/jns.2004.101.6.0970
http://www.ncbi.nlm.nih.gov/pubmed/15597757
http://dx.doi.org/10.1093/neuonc/nos112
http://www.ncbi.nlm.nih.gov/pubmed/22561797
http://dx.doi.org/10.1148/radiol.12111472
http://www.ncbi.nlm.nih.gov/pubmed/23204544
http://dx.doi.org/10.1148/radiol.2532090007
http://www.ncbi.nlm.nih.gov/pubmed/19789240
http://dx.doi.org/10.3174/ajnr.A1377
http://www.ncbi.nlm.nih.gov/pubmed/19056837
http://dx.doi.org/10.1148/radiol.10091341
http://www.ncbi.nlm.nih.gov/pubmed/20413772
http://dx.doi.org/10.1158/1078-0432.CCR-10-2098
http://www.ncbi.nlm.nih.gov/pubmed/21527563
http://dx.doi.org/10.1093/neuonc/nos323
http://www.ncbi.nlm.nih.gov/pubmed/23382287


dict response to bevacizumab in recurrent high-grade glioma.
Neuro Oncol 2014;16:880 – 88 CrossRef Medline

16. Schmainda KM, Zhang Z, Prah M, et al. Dynamic susceptibility con-
trast MRI measures of relative cerebral blood volume as a prognos-
tic marker for overall survival in recurrent glioblastoma: results
from the ACRIN 6677/RTOG 0625 multicenter trial. Neuro Oncol
2015;17:1148 –56. CrossRef Medline

17. Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral
blood volume maps corrected for contrast agent extravasation sig-
nificantly correlate with glioma tumor grade, whereas uncorrected
maps do not. AJNR Am J Neuroradiol 2006;27:859 – 67 Medline

18. Paulson ES, Schmainda KM. Comparison of dynamic susceptibility-
weighted contrast-enhanced MR methods: recommendations for
measuring relative cerebral blood volume in brain tumors. Radiol-
ogy 2008;249:601–13 CrossRef Medline

19. Hu LS, Baxter LC, Pinnaduwage DS, et al. Optimized preload leak-
age-correction methods to improve the diagnostic accuracy of dy-
namic susceptibility-weighted contrast-enhanced perfusion MR
imaging in posttreatment gliomas. AJNR Am J Neuroradiol 2010;31:
40 – 48 CrossRef Medline

20. Emblem KE, Bjornerud A, Mouridsen K, et al. T(1)- and T(2)(*)-
dominant extravasation correction in DSC-MRI, Part II: predicting
patient outcome after a single dose of cediranib in recurrent glio-
blastoma patients. J Cereb Blood Flow Metab 2011;31:2054 – 64
CrossRef Medline

21. Liu HL, Wu YY, Yang WS, et al. Is Weisskoff model valid for the
correction of contrast agent extravasation with combined T1 and
T2* effects in dynamic susceptibility contrast MRI? Med Phys 2011;
38:802– 09 CrossRef Medline

22. Quarles CC, Gochberg DF, Gore JC, et al. A theoretical framework to
model DSC-MRI data acquired in the presence of contrast agent
extravasation. Phys Med Biol 2009;54:5749 – 66 CrossRef Medline

23. Law M, Young R, Babb J, et al. Comparing perfusion metrics ob-
tained from a single compartment versus pharmacokinetic model-
ing methods using dynamic susceptibility contrast-enhanced per-
fusion MR imaging with glioma grade. AJNR Am J Neuroradiol 2006;
27:1975– 82 Medline

24. Johnson G, Wetzel SG, Cha S, et al. Measuring blood volume and
vascular transfer constant from dynamic, T(2)*-weighted contrast-
enhanced MRI. Magn Reson Med 2004;51:961– 68 CrossRef Medline

25. Batchelor TT, Sorensen AG, di Tomaso E, et al. AZD2171, a pan-
VEGF receptor tyrosine kinase inhibitor, normalizes tumor vascu-
lature and alleviates edema in glioblastoma patients. Cancer Cell
2007;11:83–95 CrossRef Medline

26. Sorensen AG, Emblem KE, Polaskova P, et al. Increased survival of
glioblastoma patients who respond to antiangiogenic therapy with
elevated blood perfusion. Cancer Res 2012;72:402– 07 CrossRef
Medline

27. Roder C, Bender B, Ritz R, et al. Intraoperative visualization of re-
sidual tumor: the role of perfusion-weighted imaging in a high-
field intraoperative magnetic resonance scanner. Neurosurgery
2013;72(2 suppl operative):ons151–58; discussion ons158 Medline

28. Jain R, Poisson L, Narang J, et al. Genomic mapping and survival
prediction in glioblastoma: molecular subclassification strength-
ened by hemodynamic imaging biomarkers. Radiology 2013;267:
212–20 CrossRef Medline

29. Emblem KE, Scheie D, Due-Tonnessen P, et al. Histogram analysis of
MR imaging-derived cerebral blood volume maps: combined glioma
grading and identification of low-grade oligodendroglial subtypes.
AJNR Am J Neuroradiol 2008;29:1664–70 CrossRef Medline

30. Gasparetto EL, Pawlak MA, Patel SH, et al. Posttreatment recurrence
of malignant brain neoplasm: accuracy of relative cerebral blood
volume fraction in discriminating low from high malignant histo-
logic volume fraction. Radiology 2009;250:887–96 CrossRef Medline

31. Hu LS, Eschbacher JM, Dueck AC, et al. Correlations between per-
fusion MR imaging cerebral blood volume, microvessel quantifica-
tion, and clinical outcome using stereotactic analysis in recurrent

high-grade glioma. AJNR Am J Neuroradiol 2012;33:69 –76 CrossRef
Medline

32. Sharma S, Sharma MC, Sarkar C. Morphology of angiogenesis in
human cancer: a conceptual overview, histoprognostic perspective
and significance of neoangiogenesis. Histopathology 2005;46:
481– 89 CrossRef Medline

33. Leon SP, Folkerth RD, Black PM. Microvessel density is a prognostic
indicator for patients with astroglial brain tumors. Cancer 1996;77:
362–72 Medline

34. Folkerth RD. Histologic measures of angiogenesis in human pri-
mary brain tumors. Cancer Treat Res 2004;117:79 –95 CrossRef
Medline

35. Wesseling P, van der Laak JA, de Leeuw H, et al. Quantitative immuno-
histological analysis of the microvasculature in untreated human gli-
oblastoma multiforme: computer-assisted image analysis of whole-tu-
mor sections. J Neurosurg 1994;81:902–09 CrossRef Medline

36. Stupp R, Mason WP, van den Bent MJ, et al; European Organisation for
Research and Treatment of Cancer Brain Tumor and Radiotherapy
Groups, National Cancer Institute of Canada Clinical Trials Group. Ra-
diotherapy plus concomitant and adjuvant temozolomide for glio-
blastoma. N Engl J Med 2005;352:987–96 CrossRef Medline

37. Burger PC, Mahley MS Jr, Dudka L, Vogel FS. The morphologic
effects of radiation administered therapeutically for intracranial
gliomas: a postmortem study of 25 cases. Cancer 1979;44:1256 –72
Medline

38. Forsyth PA, Kelly PJ, Cascino TL, et al. Radiation necrosis or glioma
recurrence: is computer-assisted stereotactic biopsy useful? J Neu-
rosurg 1995;82:436 – 44 CrossRef Medline

39. Louis DN. WHO Classification of Tumors of the Central Nervous Sys-
tem. 4th ed. Lyon, France: International Agency for Research on Can-
cer, World Health Organization; 2007

40. Essig M, Shiroishi MS, Nguyen TB, et al. Perfusion MRI: the five
most frequently asked technical questions. AJR Am J Roentgenol
2013;200:24 –34 CrossRef Medline

41. Falk A, Fahlström M, Rostrup E, et al. Discrimination between gli-
oma grades II and III in suspected low-grade gliomas using dy-
namic contrast-enhanced and dynamic susceptibility contrast per-
fusion MR imaging: a histogram analysis approach. Neuroradiology
2014;56:1031–38 CrossRef Medline

42. Kassner A, Annesley DJ, Zhu XP, et al. Abnormalities of the contrast
re-circulation phase in cerebral tumors demonstrated using dy-
namic susceptibility contrast-enhanced imaging: a possible marker
of vascular tortuosity. J Magn Reson Imaging 2000;11:103–13
CrossRef Medline

43. Young GS, Setayesh K. Spin-echo echo-planar perfusion MR imag-
ing in the differential diagnosis of solitary enhancing brain lesions:
distinguishing solitary metastases from primary glioma. AJNR
Am J Neuroradiol 2009;30:575–77 CrossRef Medline

44. Sugahara T, Korogi Y, Kochi M, et al. Perfusion-sensitive MR imag-
ing of gliomas: comparison between gradient-echo and spin-echo
echo-planar imaging techniques. AJNR Am J Neuroradiol 2001;
22:1306 –15 Medline

45. Schmainda KM, Rand SD, Joseph AM, et al. Characterization of a
first-pass gradient-echo spin-echo method to predict brain tumor
grade and angiogenesis. AJNR Am J Neuroradiol 2004;25:
1524 –32 Medline

46. Pathak AP, Schmainda KM, Ward BD, et al. MR-derived cerebral
blood volume maps: issues regarding histological validation and
assessment of tumor angiogenesis. Magn Reson Med 2001;46:
735– 47 CrossRef Medline

47. Thuy MN, Kam JK, Lee GC, et al. A novel literature-based approach
to identify genetic and molecular predictors of survival in glioblas-
toma multiforme: analysis of 14,678 patients using systematic re-
view and meta-analytical tools. J Clin Neurosci 2015;22:785–99
CrossRef Medline

48. Sanai N, Polley MY, McDermott MW, et al. An extent of resection
threshold for newly diagnosed glioblastomas. J Neurosurg 2011;115:
3– 8 CrossRef Medline

AJNR Am J Neuroradiol 36:2242– 49 Dec 2015 www.ajnr.org 2249

http://dx.doi.org/10.1093/neuonc/not216
http://www.ncbi.nlm.nih.gov/pubmed/24431219
http://dx.doi.org/10.1093/neuonc/nou364
http://www.ncbi.nlm.nih.gov/pubmed/25646027
http://www.ncbi.nlm.nih.gov/pubmed/16611779
http://dx.doi.org/10.1148/radiol.2492071659
http://www.ncbi.nlm.nih.gov/pubmed/18780827
http://dx.doi.org/10.3174/ajnr.A1787
http://www.ncbi.nlm.nih.gov/pubmed/19749223
http://dx.doi.org/10.1038/jcbfm.2011.39
http://www.ncbi.nlm.nih.gov/pubmed/21505476
http://dx.doi.org/10.1118/1.3534197
http://www.ncbi.nlm.nih.gov/pubmed/21452717
http://dx.doi.org/10.1088/0031-9155/54/19/006
http://www.ncbi.nlm.nih.gov/pubmed/19729712
http://www.ncbi.nlm.nih.gov/pubmed/17032878
http://dx.doi.org/10.1002/(ISSN)1522-2594
http://www.ncbi.nlm.nih.gov/pubmed/15122678
http://dx.doi.org/10.1016/j.ccr.2006.11.021
http://www.ncbi.nlm.nih.gov/pubmed/17222792
http://dx.doi.org/10.1158/1538-7445.AM2012-402
http://www.ncbi.nlm.nih.gov/pubmed/22127927
http://www.ncbi.nlm.nih.gov/pubmed/23147782
http://dx.doi.org/10.1148/radiol.12120846
http://www.ncbi.nlm.nih.gov/pubmed/23238158
http://dx.doi.org/10.3174/ajnr.A1182
http://www.ncbi.nlm.nih.gov/pubmed/18583405
http://dx.doi.org/10.1148/radiol.2502071444
http://www.ncbi.nlm.nih.gov/pubmed/19244052
http://dx.doi.org/10.3174/ajnr.A2743
http://www.ncbi.nlm.nih.gov/pubmed/22095961
http://dx.doi.org/10.1111/his.2005.46.issue-5
http://www.ncbi.nlm.nih.gov/pubmed/15842629
http://www.ncbi.nlm.nih.gov/pubmed/8625246
http://dx.doi.org/10.1007/978-1-4419-8871-3
http://www.ncbi.nlm.nih.gov/pubmed/15015553
http://dx.doi.org/10.3171/jns.1994.81.6.0902
http://www.ncbi.nlm.nih.gov/pubmed/7525899
http://dx.doi.org/10.1056/NEJMoa043330
http://www.ncbi.nlm.nih.gov/pubmed/15758009
http://www.ncbi.nlm.nih.gov/pubmed/387205
http://dx.doi.org/10.3171/jns.1995.82.3.0436
http://www.ncbi.nlm.nih.gov/pubmed/7861222
http://dx.doi.org/10.2214/AJR.12.9543
http://www.ncbi.nlm.nih.gov/pubmed/23255738
http://dx.doi.org/10.1007/s00234-014-1426-z
http://www.ncbi.nlm.nih.gov/pubmed/25204450
http://dx.doi.org/10.1002/(SICI)1522-2586(200002)11:23.0.CO;2-Z
http://www.ncbi.nlm.nih.gov/pubmed/10713941
http://dx.doi.org/10.3174/ajnr.A1239
http://www.ncbi.nlm.nih.gov/pubmed/19095787
http://www.ncbi.nlm.nih.gov/pubmed/11498419
http://www.ncbi.nlm.nih.gov/pubmed/15502131
http://dx.doi.org/10.1002/mrm.1252
http://www.ncbi.nlm.nih.gov/pubmed/11590650
http://dx.doi.org/10.1016/j.jocn.2014.10.029
http://www.ncbi.nlm.nih.gov/pubmed/25698544
http://dx.doi.org/10.3171/2011.2.JNS10998
http://www.ncbi.nlm.nih.gov/pubmed/21417701

	Impact of Software Modeling on the Accuracy of Perfusion MRI in Glioma
	MATERIALS AND METHODS
	Subjects
	Perfusion MR Imaging Data Acquisition
	Perfusion MR Imaging Data Analysis
	Conventional MR Imaging Acquisition and Analysis
	Stereotactic Biopsy, Image Coregistration, and Histologic Microvessel Analysis
	Quantification of Histologic Tumor Fraction in Recurrent Glioblastoma Multiforme
	Statistical Analysis

	RESULTS
	Subjects and Tumor Types
	Comparing rCBV Measurements in the Presence and Absence of Preload Dose
	DISCUSSION
	CONCLUSIONS

	REFERENCES


