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ORIGINAL RESEARCH
ADULT BRAIN

Improved Automatic Detection of New T2 Lesions in Multiple
Sclerosis Using Deformation Fields

X M. Cabezas, J.F. Corral, X A. Oliver, X Y. Díez, X M. Tintoré, X C. Auger, X X. Montalban, X X. Lladó, X D. Pareto, and X À. Rovira

ABSTRACT

BACKGROUND AND PURPOSE: Detection of disease activity, defined as new/enlarging T2 lesions on brain MR imaging, has been
proposed as a biomarker in MS. However, detection of new/enlarging T2 lesions can be hindered by several factors that can be overcome
with image subtraction. The purpose of this study was to improve automated detection of new T2 lesions and reduce user interaction to
eliminate inter- and intraobserver variability.

MATERIALS AND METHODS: Multiparametric brain MR imaging was performed at 2 time points in 36 patients with new T2 lesions. Images
were registered by using an affine transformation and the Demons algorithm to obtain a deformation field. After affine registration, images
were subtracted and a threshold was applied to obtain a lesion mask, which was then refined by using the deformation field, intensity, and
local information. This pipeline was compared with only applying a threshold, and with a state-of-the-art approach relying only on image
intensities. To assess improvements, we compared the results of the different pipelines with the expert visual detection.

RESULTS: The multichannel pipeline based on the deformation field obtained a detection Dice similarity coefficient close to 0.70, with a
false-positive detection of 17.8% and a true-positive detection of 70.9%. A statistically significant correlation (r � 0.81, P value �

2.2688e-09) was found between visual detection and automated detection by using our approach.

CONCLUSIONS: The deformation field– based approach proposed in this study for detecting new/enlarging T2 lesions resulted in
significantly fewer false-positives while maintaining most true-positives and showed a good correlation with visual detection annotations.
This approach could reduce user interaction and inter- and intraobserver variability.

ABBREVIATIONS: BL � baseline; CIS � clinically isolated syndrome; DSC � Dice similarity coefficient; DF � deformation fields; FP � false-positive; FPf �
false-positive fraction; FU � follow-up; PD � proton density; TP � true-positive; TPf � true-positive fraction

MR imaging has become a core paraclinical tool for diag-

nosing and predicting long-term disability and treat-

ment response in patients with multiple sclerosis. Of particular

note, several criteria and strategies have been proposed for

prompt identification of suboptimal response in individual pa-

tients based on a combination of clinical and MR imaging

measures assessed during the first 6 –12 months after treatment

initiation.1-6 These criteria are related to detection of disease

activity on follow-up brain MR imaging studies compared with

baseline scans, defined as either gadolinium-enhancing lesions

or new/enlarging T2 lesions. However, detection of active T2

lesions in patients with MS can be hindered by several factors,

such as a high burden of inactive T2 lesions, the presence of

small and confluent lesions, inadequate repositioning, and

high interobserver variability.7 Image subtraction after image

registration can overcome these issues by visually cancelling

stable disease (lesions that stay the same over time) and pro-

viding good visualization and quantification of active T2 le-

sions (either positively or negatively).8,9

Techniques for automatic detection of active T2 lesions can be

classified into 2 categories: intensity-based and deformation-

based approaches.10 In the former, successive scans are analyzed

by point-to-point (voxel-to-voxel) comparison, whereas in the
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latter, deformation fields obtained by nonrigid registration of the

2 scans are analyzed.

Most of the proposed techniques to detect changes on fol-

low-up images use an image-subtraction process that identifies

new T2 lesions11-13 and include statistical models of intensity

changes between scans or other, more complex, supervised strat-

egies. Although segmentation of subtraction images enables

quantification of new, enlarging, and resolving MS lesions, auto-

mated image analysis that differentiates a true lesion change and

noise or artifacts would save considerable time and effort.

Nonrigid registration techniques usually provide a discrete

vector field that defines deformations occurring between 2 dif-

ferent images. This vector field can be used to detect evolving

processes, including new T2 lesions. Several approaches that

use deformation fields (DF) to detect positive changes occur-

ring in longitudinal MR studies have been reported.14,15 These

approaches focus on detecting and explaining processes un-

dergoing change (ie, lesions shrinking or growing), but not on

detecting new lesions, a measure that is now under consider-

ation as a biomarker for monitoring and predicting treatment

response.16

The purpose of this study was to improve automated detection

of new T2 lesions on successive brain MR images, by using a novel

approach that combines subtraction and DF analysis. This new

pipeline will be compared with other approaches, in which a

threshold is applied or a postprocessing step is incorporated on

the basis of intensity rules.

MATERIALS AND METHODS
Patients
We prospectively analyzed previously acquired data from a cohort

of 36 patients with clinically isolated syndrome (CIS) or early

relapsing MS (13 women and 23 men; 35.4 � 7.1 years of age) who

underwent brain MR imaging in our center for diagnosis or for

monitoring disease evolution or treatment response. All patients

with CIS and early relapsing MS demonstrated new T2 lesions on

the follow-up scans and were diagnosed according to recent def-

initions and criteria.17,18 Two brain MR imaging acquisitions

were obtained in each patient, the first within the first 3 months

after the onset of symptoms (baseline [BL]) and the second at 12

months’ follow-up after onset (FU). The Vall d’Hebron hospital’s

ethics committee approved the study, and written informed con-

sent was signed by the participating patients.

MR Image Acquisition
All patients underwent brain MR imaging at BL and FU on the

same 3T magnet (Tim Trio; Siemens, Erlangen, Germany) with a

12-channel phased array head coil. The MR imaging protocol

included the following sequences: 1) transverse proton density

(PD)- and T2-weighted fast spin-echo (TR� 3080 ms/TE �

21–91 ms, voxel size � 0.78 � 0.78 � 3.0 mm3), 2) transverse fast

T2-FLAIR (TR � 9000 ms, TE � 87 ms, TI� 2500 ms, flip angle �

120°, voxel size � 0.49 � 0.49 � 3.0 mm3), and 3) sagittal T1-

weighted 3D magnetization-prepared rapid acquisition of gradi-

ent echo (TR � 2300 ms, TE � 2.98 ms, TI � 900 ms, voxel size �

1.0 � 1.0 � 1.2 mm3).

Expert Analysis
All new and enlarging T2 lesions visually detected on the FU scan

were annotated on T2-FLAIR images by using the semiautomated

tool included in Jim 5.0 (http://www.xinapse.com/home.php).

This task was performed by a trained technician who first detected

changes visually by using the BL and FU scan and then delineated

them semiautomatically by using a subtraction image and both

scans. This task was later confirmed by an expert neuroradiolo-

gist. The results of this analysis served as the reference standard for

comparisons in the study.

Preprocessing
On both BL and FU PD-weighted images, a brain mask was identi-

fied and delineated by using the FSL Brain Extraction Tool (bet2

command) (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET) with the ro-

bust center estimation, neck clean-up, and default threshold param-

eters. The mask was then applied to the other coregistered images

(T2-, T2-FLAIR-, and T1-weighted), and the N4 algorithm from the

ITK library (http://www.itk.org/)19 was used to correct for bias with

the standard parameters for a maximum of 400 iterations. The last

preprocessing step was to normalize BL and FU intensity values by

using a histogram-matching approach.

Registration and Subtraction
In each patient, T1- and T2-FLAIR-weighted images from the

same study were coregistered to the PD-weighted image by using

a 3D affine transformation similar to that in previous works.20

The Mattes Mutual Information cost function was minimized

by Regular Step Gradient Descent Optimization (https://itk.org/

Doxygen320/html/classitk_1_1RegularStepGradientDescent

Optimizer.html), and B-spline interpolation was applied. This

framework was implemented by using ITK.

The same 3D affine-registration framework was also used be-

fore subtraction to warp the BL images to the FU space because

patients with CIS and early relapsing MS present with small (or

no) overall anatomic changes.21 The registration was conducted

between both PD-weighted images. After the transformation had

been obtained, we applied it to the other images by using B-spline

interpolation to subtract the BL PD-, T2-, and T2-FLAIR-

weighted images from their corresponding FU images. In the case

of BL T2-FLAIR-weighted images, the 2 affine transformations

were combined to avoid interpolating more than once.

Affine registration methods are robust to the presence of lesions,

and when new lesions appear, deformable models usually show dis-

tortions to compensate for the anomalous regions. On the basis of the

characteristics of these approaches, we were able to analyze the DF

obtained after applying these nonrigid techniques to the registered

images. In this study, we applied the multiresolution Demons regis-

tration approach22 from ITK initialized with the previous affine

transformation. Concretely, we used the DemonsRegistrationFilter

(SD � 1) (http://www.itk.org/Doxygen320/html/classitk_1_

1DemonsRegistrationFilter.html) with MultiResolutionPDED-

eformableRegistration (http://www.itk.org/Doxygen320/html/

classitk_1_1MultiResolutionPDEDeformableRegistration.

html) (iterations � 50, levels � 2). This algorithm can produce

large localized deformations and has been widely used in brain

MR imaging.
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Threshold
New and enlarging T2 lesions appear hyperintense in the subtrac-

tion image. However, certain regions outside the white matter

may also appear hyperintense due to artifacts, noise, inhomoge-

neity, registration errors, or small anatomic differences. Because

our goal was to detect new and enlarging T2 WM lesions, we

restricted our search to areas within the WM. To define this re-

gion, we applied an automated tissue-segmentation algorithm23

to the BL and FU scans. This nonparametric algorithm uses an

atlas registered to the T1-weighted image in conjunction with the

T1-, T2-, and PD-weighted images. This segmentation was ap-

plied before the registration step between the 2 image sets. After reg-

istration, a final WM mask was obtained as the union of the 2 WM

segmentations in the FU space. After defining WM, we smoothed the

subtracted images by using the ITK 3D Gaussian filter (Discrete-

GaussianImageFilter; http://www.itk.org/Doxygen/html/classitk_

1_1DiscreteGaussianImageFilter.html) with a 0.5 SD to reduce the

impact of spurious hyperintense regions.20 An automated threshold

was then computed for each subtraction image (PD, T2, and T2-

FLAIR) and applied separately to obtain 3 initial lesion masks. The

thresholds were computed as the mean of the subtraction image

within the WM plus 5 SDs to guarantee that only hyperintense re-

gions were detected and to maintain a large number of true-positives

(TPs), as proposed previously.20 Lesions of �3 voxels were excluded

to reduce the effects of noise.

Lesion Mask Combination
To differentiate between errors and true lesions in each mask, we

used the intersection of the 3 masks (PD, T2, and T2-FLAIR).

Because differences in the initial masks might still result in false-

positive (FP) detections of 1 or 2 voxels, we also applied the lesion

size restriction to the combined mask to reduce this effect.

Afterward, the 2 different postprocessing approaches were

used independently in order to compare them.

Postprocessing Based on Intensity
While the aforementioned restrictions usually exclude a large num-

ber of FPs, they do not completely eliminate this problem. As has

been reported,20 some FPs can arise from low intensities in the BL

images, caused, for example, by skull-stripping errors. To reduce the

effect of these factors and to include local information, we applied a

set of suggested intensity-based rules to the BL and FU images20:

● Global rule: To avoid regions with a low intensity, candidate

lesions with a mean value under �basal � 2�basal are discarded,

where �basal and �basal are the mean and SD of the basal inten-

sities inside the WM ROI.

● Basal neighborhood ratio: New lesions should appear as WM in

the basal image. To ensure that, we compute a ratio between the

neighboring pixels of the candidate lesions (�lesion/�neighbors).

If this ratio is �0.9, we discard the candidate lesion. That usu-

ally means that there is a dark spot that might appear as a hy-

perintensity in the subtraction image.

● Follow-up neighborhood ratio: Similarly, new lesions should ac-

tually be lesions in the follow-up image. To ensure that, we com-

pute the same ratio. If this ratio is �1, the candidate lesion has a

lower intensity profile than its neighboring area, so we discard it.

Postprocessing Based on Deformation Fields
The Demons algorithm provides DF representing a transfor-

mation from the target image (FU scan) to the source image

(BL scan). To compensate for hyperintense lesions, the DF go

from outside the lesion to its center (shrinking it), as is illus-

trated in Figs 1 and 2. Vectors within and in the vicinity of the

lesion have a higher modulus than those in other regions of the

image. Moreover, no sinking patterns with independent be-

havior between neighboring vectors are observed far from

lesions.

To be able to model and automatically detect this behavior, we

defined 3 regional metrics computed from the DF inside each

candidate lesion:

● Divergence15: This vector operator is defined as the volume

density of the outward flux of a vector field from an infinitesi-

mal volume around a given point. Given a continuously differ-

entiable vector field F�, the divergence at a given point is equal to

the scalar-valued function:

divF� �
�Fx

�x
�

�Fy

�y
�

�Fz

�z
.

In our case,

divDF � G� x�x � G� y�y � G� z�z,

where G(i)j is the j component of the gradient in the i compo-

nent of the vector field volume.

For new T2 lesions, deformations have an inward flux that is

represented by a negative value (div DF of �0). Therefore, we

excluded lesions that had a positive mean value.

● Jacobian14: We used the Jacobian operator to analyze the DF at

each candidate lesion. Values of �1 represent a shrinking pro-

cess. Regions with a higher value were excluded.

● Concentricity: Due to the inward flux of the vector field

within lesions, all vectors point to the center of mass of the

lesion. We defined a new operator on the basis of that no-

tion. For each lesion voxel, we computed the vector between

the voxel and the center of mass of the lesion. We then com-

FIG 1. Example of the deformation field inside a new lesion. All ar-
rows point to the lesion center.
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puted the scalar product between the DF vector and this

concentric vector. Concentric vector fields should have an

absolute mean value close to 1; therefore, we excluded all

candidate lesions with an absolute value lower than 0.75.

This value indicates that the deformation vector and the

concentric vector have a maximum angle of 15°.

Evaluation and Statistical Analysis
To validate use of the DF and the benefits

they provide when automatically detect-

ing new T2 lesions, we compared the pro-

posed pipeline to a state-of-the-art ap-

proach20 with detection-based measures.

In this approach, a lesion is considered TP

if it overlaps a ground truth lesion, FP is a

detected lesion with no overlap, and FN is

a lesion that has not been detected.

The TP fraction (TPf) and FP fraction

(FPf) are the ratio measures of TP versus

ground truth lesions and FP versus all le-

sions found, respectively. Therefore, per-

fect detection would be 100% TPf and 0%

FPf. To complement and summarize these

measures, we also computed the Dice sim-

ilarity coefficient (DSC):
FIG 2. Example of the deformation field for 2 sections. The first image does not contain lesions
and presents large deformations with no clear sinking patterns, while in the second image with a
lesion, all the arrows inside the lesion point to the center.

FIG 3. New lesion detection. For each row, the first image is the baseline image, the second is the follow-up image, the third is the subtraction,
and the fourth is the lesion analysis over the follow-up image (green � true-positive). The patient has a large number of TPs (100%), with a small
number of FPs (0%).
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DSC �
2 � TP

2 � TP � FP � FN
.

Furthermore, we also performed an evaluation of the actual

overlap between lesions by using the volumetric DSC.

Finally, we also included the average surface distance measure
from the MICCAI MS Lesion Segmentation Challenge 2008
(http://www.ia.unc.edu/MSseg/).24 The border voxels of segmen-
tation and reference are determined. For each voxel along one
border, the closest voxel along the other border is determined (by
using unsigned Euclidean distance in real-world distances). All
these distances are stored, and their average is computed. This
value is zero for a perfect segmentation.

A statistical analysis was performed to evaluate the significance
of the results obtained. To determine the performance of each key
step in our pipeline, we conducted 3 sets of experiments, each
focusing on a different aspect. The naïve approach consisted of
applying the threshold defined in the “Materials and Methods”
section to each subtraction image. We also applied different post-
processing approaches to the initial masks separately, and finally,
we compared the results of the threshold mask combination to
our proposal and a state-of-the-art approach.

First, we performed a Lilliefors test on the measures evaluated
and their differences. Due to the number of pipelines evaluated
and the statistically proved non-normal distribution of the mea-
sures, pair-wise t tests were inappropriate. Hence, permutation
tests20,25 were used to determine significant differences among
applying a threshold, using intensity and neighborhood rules, and
using DF. Permutation tests yield the mean (�) and SD (�) of the
fraction of times that the difference in a given measure for a given
method is smaller than the remaining methods, with a P value �

.05. The methods were then ranked by
the mean and SD of the method with the
highest measured value. Methods in the
same rank had similar results, whereas
methods in different ranks showed sig-
nificant differences.

We also performed a Wilcoxon rank
sum test among the DSC, TPf, and FPf
results for each independent image after
the threshold was applied. Finally, the
Pearson correlation was used to analyze
the manual annotations and the auto-
matic detections obtained with our
approach.

RESULTS
The mean results for new T2 lesion detection and segmentation by

using each of the approaches are summarized in Table 1. The DSC

results with our approach were 0.68 in terms of detection (re-

gions) and 0.52 in terms of segmentation (volume). Moreover, we

obtained the lowest average surface difference (7.89 mm) in con-

trast to the joint threshold (13.07 mm) and with intensity rules

(30.80 mm). While the volumetric agreement was lower, it was

high enough to validate our detection definition of 1 voxel

overlap.

Impact of Postprocessing per Image
Our first set of experiments consisted of applying a threshold to

PD-weighted, T2-weighted, and T2-FLAIR-weighted images sep-

arately. We compared this naïve approach with a state-of-the-art

approach26 based on intensity and spatial rules and the DF rules

presented here on each image.

According to Table 1, application of a threshold alone missed

some ground truth lesions and resulted in a large number of FPs.

Lowering the threshold to include all ground truth detections

would be counterproductive because of the number of FPs. In

terms of sensitivity alone, both PD-weighted and FLAIR subtrac-

tions yielded similar results.

Rankings obtained by statistical permutation testing for the

DSC are summarized in Table 2. Negative values indicate lower

performance than the method with the highest DSC value.

Rank 1 only included approaches that relied on the DF after

applying a threshold, whereas rank 2 included approaches that

used intensity and neighborhood rules for the PD and T2-

FLAIR subtractions. Rank 3 included all methods based on

thresholds with a negative P value. Because ranking between

the approaches differed, we can conclude that there was a sig-

nificant difference between using DF and intensity/neighbor-

ing rules.

Paired rank sum testing between strategies revealed no signif-

icant difference in DSC or TPf among the 3 image subtractions,

thus indicating that all 3 images provided similar sensitivity for

lesion detection. However, we obtained significant differences for

FPf, suggesting that FP detection differed among the images. This

difference supports our idea of combining the masks obtained for

each subtraction.

Table 1: Lesion detections obtained for our data base using various approaches
Image Method ASD TPf FPf DSC (Lesions) DSC (Volume)

PD Threshold 25.80 92.28 93.18 0.11 0.31
Intensity rules20 21.90 80.61 83.01 0.24 0.35
DF 19.91 73.18 77.02 0.30 0.37

T2 Threshold 25.22 93.89 95.88 0.07 0.25
Intensity rules20 22.22 64.09 86.35 0.17 0.25
DF 17.76 81.79 80.84 0.26 0.34

T2-FLAIR Threshold 27.22 90.24 92.79 0.10 0.26
Intensity rules20 21.17 78.34 80.77 0.25 0.31
DF 21.14 81.22 77.11 0.30 0.33

Combination Threshold 13.07 91.05 85.61 0.22 0.45
Intensity rules20 30.80 51.62 35.87 0.46 0.37
Proposal 7.89 70.93 17.80 0.68 0.52

Note:—ASD indicates average surface distance.

Table 2: Permutation test ranking of DSC values for the
approaches applied on each image separatelya

Method Mean P Value
Rank 1 (�1 �) T2-FLAIR-DF .75

PD-DF .56
T2-DF .53

Rank 2 (�2 �) T2-FLAIR20 .22
PD20 .16

Rank 3 (�3 �) T220 �.22
PD-threshold �.56
T2-FLAIR-threshold �.67
T2-threshold �.78

a Methods were ranked relative to the mean and SD of the method with the highest
DSC value. Methods in the same rank have similar results, whereas methods in differ-
ent ranks show significant differences.
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Impact of the Lesion Mask Combination
When the initial masks for each image were analyzed indepen-

dently, almost all new T2-WM lesions were detected. However,

FP detections were visually different among the images in most

cases and, therefore, highly related to the image being

visualized.

To validate the assumption that combining the masks signifi-

cantly improves the results, we performed a second set of experi-

ments and comparisons by using rank sum testing between the

lesion mask after applying a threshold to each image indepen-

dently and the intersection of all 3 masks. Significant differences

were found for FPf and DSC (P � .05) but not for TPf. Again, this

finding suggests that combining all masks reduces the number of

FPs without significantly affecting TP detections.

Pipeline Comparison
We also performed an analysis of the last group in Table 1 (mask

combination in the 3 different strategies). In this case, we ob-

tained significant differences (P � .05) for all 3 measures (DSC,

TPf, and FPf) between the intersection mask and the 2 approaches

based on postprocessing. This result indicates that the DSC im-

provement was due to the considerable decrease in FPs detrimen-

tal to the number of TPs. This is the usual trade-off encountered

when dealing with postprocessing techniques, in which some TPs

are excluded (eg, due to image artifacts) to reduce the number of

FPs. We also found significant differences (P � .05) in all 3 mea-

sures between the 2 automatic approaches (our proposal and that

of Ganiler et al20), reinforcing the notion that our DF strategy

yields better performance. Qualitative examples of the results ob-

tained with our proposal are shown in Fig 3.

A significant correlation (r � 0.81, P � 2.2688e-09) was found

between annotations based on visual detection and our auto-

mated approach for detecting new T2 lesions (Fig 4). We then

analyzed the effect of the 3 DF-based measures and found that

they all had a similar impact in most cases; however, some FPs

were only detected by one of them, with no apparent pattern.

Lesion Analysis per Volume
Finally, we analyzed lesion detection by groups of similar size.

Table 3 summarizes the results before and after postprocessing by

using the deformation field obtained. As expected, lesions with a

small size (between 3 and 10 voxels) have a low detection rate

(42.86%). Due to their small size, the deformation field cannot

fully capture them and they are discarded during the postprocess-

ing step. As the volume increases, the deformation field presents a

clearer pattern that we can detect with the rules presented in this

article. Even though for lesions of a medium size (between 11 and

50 voxels) the TPf is still lower than 50% (48.57%), this value

increases for large lesions of 	50 voxels (77.42%). Moreover, the

TPf decreases from 69.23% before postprocessing to 23.08% with

lesions of �7 voxels.

FIG 4. Correlation between the number of ground truth lesions and the number of automatically detected ones (Pearson coefficient � 0.81, P �
2.2688e-09).

Table 3: Analysis of the TPf before and after postprocessing with
deformation fields for different sizesa

Image Method 3–10 11–50 50+
Combination Combination

(threshold)
71.43 72.38 95.16

Proposal 42.86 48.57 77.42
a Lesions between 3 and 10 voxels are considered small; lesions between 11 and 50
voxels, medium; and lesions with 	50 voxels, large.
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DISCUSSION
New/enlarging T2 lesion count is a common measure used to

monitor and predict treatment response in patients with MS.1-6

Trained radiologists perform this task by visual analysis of 2 suc-

cessive MR images, a time-consuming task associated with high

interobserver variability.7 The pipeline proposed in this study

may be of value for assisting or even replacing visual analysis for

detecting active MS lesions on T2-weighted images.

The method is completely autonomous and automated and

does not require user input or a training set. Furthermore, the

process is computationally fast because it mainly relies on sub-

traction and registration. With an optimized Demons algorithm,

it takes only minutes to segment all new T2 lesions in a single

patient, with a low number of FP detections.

We obtained significant results with a data base of 36 patients,

and we also tested our algorithm without any modification with a

small clinical trial dataset. This dataset had a reduced number of

images (n � 10) that were provided by 3 different centers. Even

though promising results were obtained with this initial test (DSC

for lesions � 0.79, DSC for volume � 0.60, TPf � 74.15, FPf �

9.61), an exhaustive analysis with a larger number of patients

should be performed to prove that the method performs similarly

with different acquisition setups.

However, currently, it is not possible to detect new black holes

(even though a postprocessing step could be included to differen-

tiate between new lesions and new black holes by using the T1-

weighted images).

Current studies are working on the definition and implemen-

tation of a new “no evidence of disease activity” treatment.6,27

This decision model relies on, among others, the detection of

new/enlarging T2 lesions as a biomarker and requires a high spec-

ificity and sensitivity because the number of FPs could suggest an

undesirable change in treatment. Therefore, reducing the number

of FPs when using automatic tools is a key factor. However, cur-

rent subtraction techniques usually rely on intensity information,

which can misguide detection due to local inhomogeneities or

small changes. While these FPs can be reduced by using spatial

information, a registration technique that overfits a free-form de-

formation incorporates this local information and provides better

insight into changes occurring due to development of a new lesion

or one that changes in size.

Automated algorithms usually obtain better scores when le-

sion count or lesion volume is high, but they often have

shortcomings when the lesion volume or volume change is

small.11-13,20 We also compared ours to a current state-of-the-art

technique that has been validated with 1.5T imaging. 3T imaging

provides better resolution and a higher signal-to-noise ratio, from

which registration techniques can benefit. Therefore, to demon-

strate that DF provide a better means to differentiate subtraction

artifacts and true disease activity (in terms of lesions), we used 3T

imaging, in which DF provide a better understanding of evolving

processes.

CONCLUSIONS
We have presented a new automated pipeline to detect new brain

T2 lesions and positive changes in disease activity in patients with

clinically isolated syndrome or early relapsing multiple sclerosis.

This technique relies on DF information and provides more reli-

able measurement of changes occurring between 2 successive MR

images than other currently available approaches. Significant dif-

ferences in accurate lesion detection were found between this

technique and other current approaches, and a strong correlation

and higher overlap were seen between our approach and visual

lesion detection. These findings indicate that the proposed

technique may be of value for application in clinical studies inves-

tigating disease activity, monitoring, and treatment effects, pro-

viding a decrease in user interaction and likely a reduction in

inter- and intraobserver variability.

Disclosures: Mariano Cabezas—RELATED: Grant: Magnetic Resonance Imaging in MS
(MAGNIMS), Comments: MAGNIMS/European Research Committee for Treatment
and Research in Multiple Sclerosis (ECTRIMS) Fellowship 2014. Further information
can be found at http://www.ectrims.eu/wp-content/uploads/2013/04/ECTRIMS-
MAGNIMS-MRI-fellowship-awardees_for-website_2015.pdf. Mar Tintoré—UNRE-
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