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ORIGINAL RESEARCH
INTERVENTIONAL

Thinner Regions of Intracranial Aneurysm Wall Correlate with
Regions of Higher Wall Shear Stress: A 7T MRI Study

X R. Blankena, X R. Kleinloog, X B.H. Verweij, X P. van Ooij, X B. ten Haken, X P.R. Luijten, X G.J.E. Rinkel, and
X J.J.M. Zwanenburg

ABSTRACT

BACKGROUND AND PURPOSE: Both hemodynamics and aneurysm wall thickness are important parameters in aneurysm pathophysiol-
ogy. Our aim was to develop a method for semi-quantitative wall thickness assessment on in vivo 7T MR images of intracranial aneurysms
for studying the relation between apparent aneurysm wall thickness and wall shear stress.

MATERIALS AND METHODS: Wall thickness was analyzed in 11 unruptured aneurysms in 9 patients who underwent 7T MR imaging with
a TSE-based vessel wall sequence (0.8-mm isotropic resolution). A custom analysis program determined the in vivo aneurysm wall
intensities, which were normalized to the signal of nearby brain tissue and were used as measures of apparent wall thickness. Spatial wall
thickness variation was determined as the interquartile range in apparent wall thickness (the middle 50% of the apparent wall thickness
range). Wall shear stress was determined by using phase-contrast MR imaging (0.5-mm isotropic resolution). We performed visual and
statistical comparisons (Pearson correlation) to study the relation between wall thickness and wall shear stress.

RESULTS: 3D colored apparent wall thickness maps of the aneurysms showed spatial apparent wall thickness variation, which ranged from
0.07 to 0.53, with a mean variation of 0.22 (a variation of 1.0 roughly means a wall thickness variation of 1 voxel [0.8 mm]). In all aneurysms,
apparent wall thickness was inversely related to wall shear stress (mean correlation coefficient, �0.35; P � .05).

CONCLUSIONS: A method was developed to measure the wall thickness semi-quantitatively, by using 7T MR imaging. An inverse
correlation between wall shear stress and apparent wall thickness was determined. In future studies, this noninvasive method can be used
to assess spatial wall thickness variation in relation to pathophysiologic processes such as aneurysm growth and rupture.

ABBREVIATIONS: AWT � apparent wall thickness; MPIR-TSE � magnetization-prepared inversion-recovery turbo spin-echo; PC/mag � phase-contrast MR
magnitude images; PCMR � phase-contrast MR imaging; WSS � wall shear stress

Intracranial aneurysms may rupture; this rupture leads to sub-

arachnoid hemorrhage. The case fatality of aneurysmal SAH has

decreased during the past decades but is still around 30%– 40%,

and almost half of the survivors remain permanently disabled.1

The prevalence of intracranial aneurysms is approximately 3%.2

Several risk and trigger factors for rupture have been identified,3,4

but these factors explain only a small proportion of the risk of

rupture and are insufficient to explain the pathophysiology of

rupture.5 Thus, we need more risk factors to better predict rup-

ture, and we need to increase knowledge of pathophysiology to

better understand rupture.6

Hemodynamics play an important role in aneurysm patho-

physiology because the endothelial cells are sensitive to mechan-

ical stimuli such as stretch and wall shear stress (WSS, the

frictional force on the walls caused by the blood flow).7 Time-

resolved 3D phase-contrast MR imaging (PCMR) can measure in

vivo flow and WSS in aneurysms,8 and a recent study showed that

the use of 7T MR imaging increases the signal-to-noise ratio and

improves flow visualization and quantification.9

Aneurysmal wall thickness is another interesting parameter in

the pathophysiology of rupture because the wall eventually rup-

tures. In a previous study, we showed that it is possible to assess

Received September 3, 2015; accepted after revision December 22.

From the Department of Neurology and Neurosurgery (R.B., R.K., B.H.V., G.J.E.R.),
Brain Center Rudolf Magnus, Department of Radiology (P.R.L., J.J.M.Z.), and Image
Sciences Institute (P.R.L., J.J.M.Z.), University Medical Center Utrecht, Utrecht, the
Netherlands; Faculty of Science and Technology (R.B., B.t.H.), Department of Tech-
nical Medicine, University of Twente, Enschede, the Netherlands; and Department
of Biomedical Engineering and Physics (P.v.O.), Academic Medical Center, Amster-
dam, the Netherlands.

R. Kleinloog was supported by a Focus and Mass cardiovascular research grant by
Utrecht University, the Netherlands. J.J.M. Zwanenburg received funding from the Eu-
ropean Research Council under the Seventh Framework Programme of the European
Union (FP7/2007–2013)/European Research Council grant agreement No. 337333.

Please address correspondence to Jaco J.M. Zwanenburg, PhD, Department of Ra-
diology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht,
the Netherlands; e-mail: j.j.m.zwanenburg@umcutrecht.nl

Indicates open access to non-subscribers at www.ajnr.org

Indicates article with supplemental on-line photo.

http://dx.doi.org/10.3174/ajnr.A4734

1310 Blankena Jul 2016 www.ajnr.org

http://orcid.org/0000-0002-9689-9377
http://orcid.org/0000-0002-5315-5001
http://orcid.org/0000-0003-4927-4646
http://orcid.org/0000-0001-8755-0192
http://orcid.org/0000-0001-8159-7424
http://orcid.org/0000-0002-8040-8449
http://orcid.org/0000-0001-8930-3953
http://orcid.org/0000-0002-4282-5719


the spatial variation in aneurysm wall thickness by using signal

intensities of the aneurysm wall on 7T MR imaging.10 A phantom

and histopathologic correlation study validated that there is a lin-

ear relation between wall thickness and image intensity.10 This

development has the potential to enable noninvasive assessments

of the relation between different pathophysiologic parameters

and wall thickness. However, a method to quantitatively assess the

wall thickness on in vivo images has not yet been developed.

Therefore, we aimed to develop an algorithm to obtain semi-

quantitative measurements of the wall thickness to assess the spa-

tial variation of the apparent wall thickness within an aneurysm

and to assess the correlation between wall thickness and WSS on

7T images in patients with intracranial aneurysms.

MATERIALS AND METHODS
Patient Selection
From a series of patients (18, with 20 aneurysms in total) with un-

ruptured intracranial aneurysms from a previous study,10 we selected

the patients who underwent both a magnetization-prepared inver-

sion-recovery turbo spin-echo (MPIR-TSE) scan for vessel wall im-

aging and a time-resolved PCMR scan for wall shear stress assess-

ment. Patients with artifacts in the PCMR scan due to gradient coil

hardware problems were excluded as well as patients with motion

artifacts on the MPIR-TSE scan. Patients in whom an insufficient

amount of aneurysm wall was free from directly bordering brain

tissue (�10%, based on subjective estimation) could not be analyzed

and were excluded (in total, 4 aneurysms were excluded for this rea-

son). We performed exclusion blinded to the WSS results.

Imaging Sequences
MR imaging was performed on a 7T MR imaging scanner

(Achieva; Philips Healthcare, Best, the Netherlands) with a 32-

channel receive head coil and a volume-transmit coil (Nova Med-

ical, Wilmington, Massachusetts).

A previously described10 T1-weighted 3D MPIR-TSE se-

quence with whole-brain coverage was used to image the aneu-

rysm wall.11 Briefly, the scan parameters were as follows: acquired

resolution, 0.8 � 0.8 � 0.8 mm3; FOV, 250 � 250 � 190 mm3

(feet to head � anterior to posterior � right to left); scan dura-

tion, approximately 11 minutes.

A time-resolved 3D PCMR sequence
was used to determine wall shear stress.
Briefly, we used the following scan pa-
rameters9: acquired resolution, 0.5 �
0.5 � 0.5 mm3; FOV, 190 � 190 � 20
mm3 (anterior to posterior � right to
left x feet to head); velocity-encoding
limit, 150 cm/s for each velocity-encod-
ing direction. Five (n � 1) or 6 (n � 10)
cardiac phases were obtained, retrospec-
tively gated, by using a peripheral pulse
unit. Acquired temporal resolution
ranged between 209 and 286 ms, de-
pending on the heart rate. The scan du-
ration was approximately 13 minutes.

Image Processing

Wall Thickness from Intensity: Theory. For
walls thinner than the voxel size, the intensity on the MPIR-TSE
images is proportional to the vessel wall thickness.10 Under idealized

circumstances, the observed intensity in MPIR-TSE images could be

used to compute the absolute wall thickness, w, by using a simple

linear relationship:

w � d � Sw/S0,

where Sw is the signal for a voxel with isotropic voxel size d, con-

taining the vessel wall with surrounding blood and CSF. S0 is the

signal of a voxel completely filled with vessel wall.

To render signal intensity a true reflection of the wall thickness

(relative to the voxel size), one should have the following (long)

list of requirements for a voxel with a piece of vessel wall inside:

First, the partial volume effect should occur only among the vessel

wall, blood, and CSF, and the signal from blood and CSF should

be perfectly suppressed (Fig 1A). Second, the signal intensity of a

voxel that is fully filled with vessel wall (S0) should be known.

Third, there should be no variation of vessel wall signal across the

wall due to, for example, heterogeneous tissue composition in

combination with the contrast-weighting of the MPIR-TSE se-

quence. Fourth, the vessel wall should be parallel with one of the

sides of the voxel because oblique walls will lead to a higher filling

factor than just the proportion of the wall thickness to the voxel

size (Fig 1B). Fifth, the partial volume effect of the thin vessel wall

should not be divided over 2 voxels; thus, there may be no bound-

ary of 2 voxels within the vessel wall, parallel to the vessel wall (Fig

1C). Last, the nominal acquired resolution of the MPIR-TSE im-

ages (0.8 mm) should be equal to the true physical resolution,

without blurring due to motion or an imperfect point spread

function.

Apparent Wall Thickness Estimation Algorithm
Because the above-mentioned requirements will not be met, in

practice, an algorithm was developed to obtain an estimation of

the ratio Sw/S0 from the signal intensities in the vessel wall (MPIR-

TSE) images, and this ratio was termed “apparent wall thickness”

(AWT). With the limitations of the requirements in mind, one

might think of the AWT as a fractional thickness of the vessel

wall relative to the voxel size. As a surrogate for the unknown

FIG 1. A, Illustration of a voxel (dashed square, size d) partly filled with aneurysm wall (filled
rectangle) with thickness w. In case of perfect suppression of the surrounding CSF and blood, the
signal from the voxel is directly proportional to the wall thickness w, as given by the equation. B,
If the vessel wall is oblique, the filling factor is higher, leading to a different proportionality
constant between the wall thickness and the signal obtained from the voxel (extra signal is
indicated by black areas). C, If the voxel boundary falls within the vessel wall, the partial volume
effect is spread over 2 voxels, leading to apparently thinner walls (less signal compared with A).
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intensity of a voxel completely filled with vessel wall, S0, the

intensity of the adjacent brain tissue, was used. Brain tissue was

chosen because the vessel wall has T1 similar to that of brain

tissue at 7T12 and because the MPIR-TSE yields only limited

T1-weighted contrast (almost no contrast between gray and

white matter, Fig 2). A schematic overview of the analysis

method, including the correlation with WSS measurements, is

shown in Fig 2.

First, to be able to relate measurements and segmentations of

either images, the MPIR-TSE images were registered to the PCMR

magnitude (PC/Mag) images by using a standard rigid body reg-

istration in MeVisLab (MeVis Medical Solutions, Bremen, Ger-
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FIG 2. Schematic overview of the algorithm to determine the apparent wall thickness and its correlation to wall shear stress in intracranial
aneurysms on 7T MR imaging. Blocks represent in- and outputs, and arrows represent procedures within the algorithm. The numbers in the
boxes refer to the visualizations of several steps at the bottom of the image: 1) MPIR-TSE image (transverse orientation); the red box indicates
the area of brain tissue that is used for the correction (by fitting a second-order polynomial function to the brain tissue intensities) and
normalization of the vessel wall intensities; 2) cropped MPIR-TSE image clearly showing the aneurysm wall and its varying intensity; 3) the PC/mag
image used for segmentation of the aneurysm lumen; 4) cropped PC/mag image; 5) registered images: pink is MPIR-TSE; green, PC/mag; 6) 3D shell
encompassing the aneurysm wall; 7) brain tissue mask; 8) overlay of the 3D shell on the MPIR-TSE image with tissue mask; 9) segmented aneurysm wall;
and 10) radial intensity profiles to sample vessel wall intensities (ie, signal maxima within the 3D shell, indicated by red dots). The profiles were rotated
by stepping with 1°; here only a few profiles are shown. The images are taken from aneurysm 1 (Table). PC/P indicates phase-contrast MRI phase images.
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many). The registration was performed on the entire image,

which leads, in a minority of cases, to slightly suboptimal regis-

tration at the location of the aneurysm. Therefore, when auto-

matic registration was not optimal, small manual adjustments

were made. After registration, no deviations between the lumen

derived from the PC/mag and the lumen of the MPIR-TSE images

were observed.

Second, the aneurysm lumen/wall boundary was obtained

by segmentation of the PC/Mag by using a level set evolution

algorithm.13 To obtain the segmentation of the aneurysm wall

on MPIR-TSE images, we dilated the contour of the segmented

lumen to generate a 3D shell (ROI) that encompassed the an-

eurysm wall (Fig 2, image panel 6). This step and the remaining

postprocessing steps of the analysis method were performed

in a custom built Matlab program (MathWorks, Natick,

Massachusetts).

Next, the intensities of the wall within the 3D shell were auto-

matically sampled by using radial-intensity profiles crossing the

aneurysm wall in the MPIR-TSE images. Maximum intensities

along the profiles within the 3D shell (ie, where the profile crossed

the aneurysm wall) were saved. The profiles were rotated with a

step of 1° through all 2D sections containing the aneurysm, in

transversal, sagittal, and coronal planes. Because the aneurysm

wall has nearly the same intensity as brain tissue, the wall was

indistinguishable from the brain tissue in areas where the an-

eurysm bordered the brain tissue. Therefore, a brain tissue

mask based on an intensity threshold and connected compo-

nents was used to avoid intensity measurements in the border-

ing brain tissue. Intensities of parent vessels were manually

deleted, as well as intensities that were evidently located out-

side the wall (errors).

Finally, the AWT was computed by normalizing to the local

brain tissue intensity. Care was taken to use only local brain tissue

to also correct for intensity inhomogeneity, which is typically

present on the 7T images (Fig 2, image panel 1). The inhomoge-

neity in local brain tissue intensity was corrected for by fitting the

intensities to a second-order polynomial function, by using brain

signal from a manually drawn box around the aneurysm. The

brain signal was selected by removing CSF and blood signal

(based on their low intensities) and the aneurysmal wall (based on

the segmented 3D shell described above). The resulting fitted

brain tissue intensity field was used to normalize the aneurysm

wall intensities. The normalized aneurysm wall intensities were

used as AWT.

Wall Shear Stress Calculation
Wall shear stress was determined as previously described.14

After smoothing of the lumen/wall boundary segmentation

mentioned above, a spline was fitted through the velocity val-

ues derived from PCMR phase images perpendicular to the

wall. A blood viscosity of 4.010�3 Pa � s, which is commonly

used in similar algorithms,15-17 was used in this algorithm and

the wall shear stress during peak systole was used for correla-

tion with the AWT measurements. Peak systole was defined as

the cardiac timeframe with the highest average velocity in the

aneurysm segmentation.

Comparison of Apparent Wall Thickness and Wall Shear
Stress
To obtain common measurement locations for both the AWT

and WSS, we divided the aneurysm lumen contour into different

faces (individual surfaces) and vertices (corners of faces) by using

the isosurface function in Matlab. The amount of vertices was

determined by the algorithm used in the isosurface function of

Matlab and depended on the size of the aneurysm. At each vertex

point, the WSS was computed from the 3D velocity data, and the

corresponding AWT was obtained by averaging the AWT samples

that were closest to the vertex. Because the amount of vertices was

much higher (approximately 10 times) than the amount of voxels

on the aneurysm lumen contour, the AWT and WSS values at

each vertex cannot be regarded as independent or unique mea-

surements. Accordingly, the resolution of the AWT map (or WSS

map) is determined by the resolution of the underlying MPIR-

TSE images (or PCMR images), and not by the density of the

vertices. Visual comparisons were made for all aneurysms, to il-

lustrate the results of the statistical analysis. The 3D lumen con-

tours of each aneurysm were presented, colored by an interpo-

lated color map representing the WSS and AWT.

Statistical Analyses
Spatial variation in AWT was defined as the interquartile range of the

AWT within an aneurysm (ie, the number specifies the range that

contains the middle 50% of the AWT). A higher range reflects more

variation in wall thickness across the aneurysm. The interquartile

range was chosen to avoid the effect of outliers on the AWT variation

assessment. A visual estimation of the coverage and the amount of

data points were reported to give an impression of the area of the

aneurysm wall that was covered by the analysis.

Because the potential relation between WSS and AWT is not

necessarily linear, Spearman correlation coefficients were com-

puted to compare AWT and WSS in the aneurysms. The correla-

tion coefficients between AWT and WSS were calculated for each

individual aneurysm, after which a 1-sample t test was used to test

whether the mean correlation coefficient was significantly differ-

ent from zero, with significance set at P � .05. The correlation

coefficients were weighted by the amount of measured points, to

decrease the influence of aneurysms with fewer data points. We

decided to not pool all the data to calculate the overall correlation

coefficient because the amount of points were different per aneu-

rysm. If the data were pooled, the observed correlation between

WSS and AWT could be dominated by the data of the largest

aneurysm. The significance of each individual correlation coeffi-

cient was not determined because the artificially high number of

data points (from the high number of vertices on the lumen con-

tour) would yield unrealistically low P values.

The correlation between AWT and WSS was further visualized

with histograms for each aneurysm. To reduce the amount of data

in these histograms, the WSS was divided into quartiles, with an

equal amount of data points per quartile.

RESULTS
Population
Eighteen patients (with 20 aneurysms in total) underwent both

MPIR-TSE scans and PCMR. Four patients were excluded on the
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basis of PCMR artifacts due to a gradient hardware problem; 1

patient, due to motion artifacts on MPIR-TSE; and 4, due to an

insufficient proportion of visible wall. Thus, 9 patients with, in

total, 11 aneurysms were available for analysis. Their mean age

was 59 years, and 44% were women. Baseline characteristics are

shown in the Table.

Apparent Wall Thickness and Wall Shear Stress
Color maps of the AWT showed spatial variation in almost all

aneurysms (Fig 3), which ranged from 0.07 to 0.53, with a mean

variation of 0.22 (Table). A variation of 1.0 roughly means a thick-

ness variation of 1 voxel.

A correlation between AWT and WSS was visible in most an-

eurysms (Fig 3), particularly where the coverage and the spatial

variation was high (Table).

In all aneurysms, AWT and WSS were inversely correlated

(though sometimes close to zero, Table). The mean correlation

coefficient was �0.35, which was significantly different from zero

(P � .05).

The inverse relation between AWT and WSS is also visible in

the individual and pooled plots, as shown in Fig 4. In the lowest

WSS quartile, there was more variety in AWT between different

aneurysms than in the highest WSS quartile. In other words, low

WSS at thinner walls was present, but high WSS at thicker walls

was rarely observed (Fig 4B).

DISCUSSION
On the basis of previous work, a semi-automatic algorithm was

developed to measure apparent aneurysm wall thickness from the

signal intensity of the wall on 7T MR vessel wall images of patients

with unruptured intracranial aneurysms. Semi-quantitative mea-

surements of the wall thickness were obtained, which showed wall

thickness variation in all analyzed aneurysms. Furthermore, by

calculating WSS from PCMR data, we found an inverse relation

between apparent wall thickness and wall shear stress.

Our results are in contrast with the results of a previous study,

which found a positive correlation between wall thickness and

wall shear stress.18 The relation between WSS and wall thickness is

probably complex and may differ between large, thick-walled an-

eurysms and small, thin-walled ones.6 Kadasi et al18 studied pre-

dominantly smaller aneurysms because 12 of 54 aneurysms (22%)

were �7 mm, and we studied relatively large aneurysms (7 of 11

(63%) were �7 mm), which might partly explain the different

observations. However, the different observations can also be re-

lated to methodologic differences. Kadasi et al used intraoperative

images for a dichotomous visual scoring of wall thickness, while

we semi-quantitatively assessed wall thickness on noninvasive

MR images. Furthermore, although they did not validate thick-

ness measurements with ex vivo histopathologic assessment, they

visually assessed actual wall appearance. On the other hand, while

we did validate our thickness assessments with an ex vivo study on

2 samples with heterogeneous composition,10 we did so in the

absence of flowing blood or fluid. Wall shear stress was, in our

study, measured by 3D PCMR, while the previous study used

computational fluid dynamics simulations, which depend on cer-

tain assumptions and boundary conditions such as rigid vessel

walls and inflow velocity at the entrance of the simulated vessel

segment. However, general WSS patterns should be similar for

either method (computational fluid dynamics or PCMR).14 A

clear advantage of our method is the avoidance of invasive

methods (such as aneurysm surgery) to obtain information on

wall thickness. An elaborate study by using both approaches on

small and large aneurysms with ex vivo (postsurgery) valida-

tion is warranted to determine the impact of the differences in

methodology.

The observed inverse correlation in the present study is con-

sistent with the hypothesis that high WSS is associated with the

process of intracranial aneurysm wall remodelling that might

cause wall thinning, such as activation of proteases by mural

cells, matrix degradation, and apoptosis.6 Furthermore, low

WSS is associated with increased inflammatory cell infiltration

and smooth muscle cell proliferation,6,7 which may lead to wall

thickening.

The WSS computations require sufficiently high velocity-to-

noise ratios. We used a higher velocity-encoding (150 cm/s) than

the velocity-encoding of 100 cm/s that was used by van Ooij

et al,14 who showed good qualitative agreement between WSS

measured with PCMR and computational fluid dynamics simu-

lations. However, the study of van Ooij et al was performed at 3T,

whereas we performed PCMR at 7T, which yields a higher SNR

and, therefore, improved accuracy of the velocity vector direction

Baseline characteristics and AWT results of 11 unruptured intracranial aneurysms

Aneurysm
Age (yr),

Sex
Aneurysm (mm), Largest Diameter

(Height × Width in mm)
Location of
Aneurysm

Analyzed
Points Coverageb

AWT
Heterogeneityc Correlation (�)

1 50, Ma 9.1 (5.9 � 6.3) MCA 864 50%–75% 0.17 �0.4
2 55, M 9.6 (6.1 � 9.6) MCA 769 50%–75% 0.53 �0.6
3 70, M 9.5 (7.8 � 7.8) AcomA 714 25%–50% 0.22 �0.1
4 64, M 10.1 (8.8 � 7.7) MCA 466 25%–50% 0.15 �0.3
5 60, Fa 6.8 (6 � 4.7) MCA 428 50%–75% 0.21 �0.5
6 55, F 7.4 (6.0 � 5.8) MCA 406 50%–75% 0.11 �0.2
7 56, M 12.6 (10.1 � 9.4) AcomA 298 �25% 0.31 �0.5
8 50, Ma 6.4 (4.8 � 3.9) ICA 166 25%–50% 0.21 �0.5
9 74, F 6.1 (6.1 � 5.7) AcomA 163 25%–50% 0.13 �0.1
10 50, F 12.9 (12.9 � 6.3) MCA 130 �25% 0.31 �0.3
11 60, Fa 5.6 (4.5 � 3.9) Pericallosal artery 33 �25% 0.07 �0.4

Note:—AcomA indicates anterior communicating artery.
a Two aneurysms in 1 patient.
b Coverage indicates the visual estimated percentage of the area of the wall that could be analyzed.
c Heterogeneity is defined as the interquartile range in AWT, and reflects the spatial wall thickness variation.
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and magnitude.9 Thus, we are confident that the low WSS values

are of at least comparable reliability with those presented before.14

The lumen segmentations were performed on the PC/mag im-

ages, in which the SNR depends on the blood velocity (inflow

effect). The segmentations appear to be robust because no mis-

matches were observed with the lumens obtained from the MPIR-

TSE images. Besides, comparisons of velocity direction and

magnitude obtained from PCMR at 3T and the segmentation al-

gorithm showed good agreement with computational fluid dy-

namics in regions of both high and low SNR and velocity-to-noise

ratio in intracranial aneurysms.19

This study has several strengths. First, it uses a noninvasive

method to quantify wall thickness, which provides a unique

means for in vivo quantification of wall thickness variation in

FIG 3. Visual comparison between apparent wall thickness and wall shear stress in intracranial aneurysms on 7T MR imaging. 3D color map with
AWT (left images) and 3D color map with WSS (right images) are shown. The color scaling for all AWT images is equal, while the WSS images were
individually scaled as indicated by the color scale bars. Parent vessels and wall areas where no AWT data (N.D.) were available are displayed in gray.
Numbers correspond to the numbering of the aneurysms in the Table. The other side of the aneurysms is shown in the On-line Figure.
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unruptured aneurysms. Second, the method is based on the

relation between aneurysm wall thickness and image intensity,

which has been validated by a phantom and histopathologic

correlation study.10 Finally, the analyzed methods for WSS and

wall thickness have been shown useful in aneurysms of various

sizes, providing that an appropriate signal-to-noise ratio of the

MR images is obtained and that the walls are surrounded by

CSF.

Some limitations should be mentioned. First, the relation be-

tween the aneurysm wall parts bordering brain tissue and WSS

could not be analyzed because measurement of thickness in these

parts is not possible. Therefore, the association between thickness

of wall bordering the parenchyma and WSS remains unknown.

Unfortunately, this association frequently concerned the apex of

the aneurysm, which is especially of interest because it is known to

be the predominant site of rupture. Second, the observed corre-

lation coefficients were relatively weak, which may partly be due

to noise. The influence of noise is suggested by the fact that aneu-

rysms with larger variation in wall thickness, and thus a larger

dynamic range in the AWT parameter, tended to show a stronger

correlation than aneurysms with a more narrow range in AWT.

Last, despite the AWT, in theory, being directly related to the

absolute vessel wall thickness, it depends on too many require-

ments that are not met in practice to claim that we have found a

tool to measure absolute wall thickness. The most important re-

quirement is the nulling of CSF and blood. The found inverse

correlation may be partly caused by imperfect nulling of blood

with very low flow velocities. The MPIR-TSE is used to obtain

black blood, which is based on the high flow sensitivity of the long

turbo spin-echo train with low refocusing angles. However, very

slow blood flow may still yield some signal. If that is the case, the

wall seems thicker at locations with low velocities and thus low

WSS. This feature leads to overestimation of the negative

correlation.

We previously validated the correlation between signal inten-

sity and wall thickness with an ex vivo imaging experiment on an

aneurysm wall of heterogeneous composition and histopatho-

logic validation, and with a tapering phantom study, in which

flow could not affect the wall thickness.10 However, although

these validation experiments show that thickness variation can

explain the observed signal variation, they cannot exclude a po-

tential additional confounding role of slow-flowing blood in the

in vivo situation. The long turbo spin-echo trains with low re-

duced refocusing angles are very sensitive to motion, up to diffu-

sion-related motion.20 The refocusing angles of the MPIR-TSE

sequence used in this work were very low, with a range of 12°– 40°.

Although we think the low refocusing angles will protect against

the effect of low-flow velocities, this should be confirmed in fu-

ture studies by using a dedicated phantom setup with flow or by

performing additional validation studies on postoperative mate-

rial from patients who have been scanned with the MPIR-TSE

sequence before an operation.

Future Directions
The conflicting results of our study and a previous study on the

relation between aneurysm wall thickness and WSS18 call for fur-

ther studies in which both approaches are applied and compared

in the same patients. The presented method for in vivo wall thick-

ness determination, in combination with the aneurysm-specific

WSS, might provide a valuable means to noninvasively study how

wall thickness and hemodynamic parameters are related to aneu-

rysm growth and rupture. This study may yield new insights in the

pathophysiology of intracranial aneurysms. Therefore, studies to

correlate rupture of aneurysms with WSS and wall thickness may

help in the search for new rupture predictors. In particular, the

spatial variation in AWT might be an interesting parameter for

those future studies. Whether thickness variation indicates higher

rupture risks is currently unknown. Nevertheless, it seems plau-

sible that much variation in thickness calls for a pathologic wall,

prone to rupture.

CONCLUSIONS
A method was developed to measure the wall thickness semi-

quantitatively, using 7T MR imaging. An inverse correlation be-

tween wall shear stress and AWT was determined. In future stud-

ies, this noninvasive method can be used to assess spatial wall

thickness variation in relation to pathophysiologic processes such

as aneurysm growth and rupture.

A

B

FIG 4. Comparison of apparent wall thickness and wall shear stress in
intracranial aneurysms on 7T MR imaging. A, Histogram for each an-
eurysm is sorted from the aneurysm with the highest amount of
measurements points (n � 864) to the aneurysm with the least mea-
surement points (n � 33). The 4 colors represent the WSS, divided
into 4 quartiles per aneurysm with increasing WSS (1 � lowest WSS
quartile, 4 � highest WSS quartile). B, AWT is plotted against WSS in
all aneurysms (different colors). The dots represent the 4 WSS
quartiles.
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