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ORIGINAL RESEARCH
HEAD & NECK

MRI-Based Texture Analysis to Differentiate Sinonasal
Squamous Cell Carcinoma from Inverted Papilloma

S. Ramkumar, “#'S. Ranjbar, “#'S. Ning, “*D. Lal, "’ C.M. Zwart,

ABSTRACT

C.P. Wood, *“S.M. Weindling, “T. Wu, “#J.R. Mitchell, ). Li, and

J.M. Hoxworth

BACKGROUND AND PURPOSE: Because sinonasal inverted papilloma can harbor squamous cell carcinoma, differentiating these tumors is
relevant. The objectives of this study were to determine whether MR imaging—based texture analysis can accurately classify cases of noncoex-
istent squamous cell carcinoma and inverted papilloma and to compare this classification performance with neuroradiologists’ review.

MATERIALS AND METHODS: Adult patients who had inverted papilloma or squamous cell carcinoma resected were eligible (coexistent
inverted papilloma and squamous cell carcinoma were excluded). Inclusion required tumor size of >1.5 cm and preoperative MR imaging
with axial T1, axial T2, and axial T1 postcontrast sequences. Five well-established texture analysis algorithms were applied to an ROl from the
largest tumor cross-section. For a training dataset, machine-learning algorithms were used to identify the most accurate model, and
performance was also evaluated in a validation dataset. On the basis of 3 separate blinded reviews of the ROI, isolated tumor, and entire
images, 2 neuroradiologists predicted tumor type in consensus.

RESULTS: Theinverted papilloma (n = 24) and squamous cell carcinoma (n = 22) cohorts were matched for age and sex, while squamous cell carcinoma
tumor volume was larger (P = .001). The best classification model achieved similar accuracies for training (17 squamous cell carcinomas, 16 inverted
papillomas) and validation (7 squamous cell carcinomas, 6 inverted papillomas) datasets of 90.9% and 84.6%, respectively (P = .537). For the
combined training and validation cohorts, the machine-learning accuracy (89.1%) was better than that of the neuroradiologists’ ROl review (56.5%,
P = .0004) but not significantly different from the neuroradiologists’ review of the tumors (73.9%, P = .060) or entire images (87.0%,
P = 748).

CONCLUSIONS: MR imaging—based texture analysis has the potential to differentiate squamous cell carcinoma from inverted papilloma
and may, in the future, provide incremental information to the neuroradiologist.

ABBREVIATIONS: DOST = Discrete Orthonormal Stockwell Transform; GFB = Gabor Filter Banks; GLCM = Gray-Level Co-occurrence Matrix; IP = inverted
papilloma; LBP = local binary patterns; LoGHist = Laplacian of Gaussian histogram; PC = principal component; SCC = squamous cell carcinoma; T1 = axial Tl-weighted
MRI pulse sequence; T2 = axial T2-weighted MRI pulse sequence with frequency-selective fat suppression; TIC = axial Tl-weighted postcontrast MRI pulse sequence

with frequency-selective fat suppression

Inverted papilloma (IP) is an uncommon sinonasal tumor of
ectodermal origin that most commonly arises from the lateral
nasal wall." In addition to its pattern of locally aggressive behav-
ior and a propensity for postoperative recurrence, there is an as-
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sociation with malignancy, mostly squamous cell carcinoma
(SCC). Reports vary widely in frequency, but the rate of carci-
noma is on the order of 10%—15%, and approximately 60%—-70%
of these are synchronous.™* Although office-based endoscopic
incisional biopsy is safe, the sensitivity for the diagnosis of malig-
nancy has been called into question due to sampling errors.”

It can be useful to preoperatively identify SCC when coexistent
with IP to guide biopsy, expedite surgery, and plan an oncologically
sound resection. Although bone thinning and remodeling without
large areas of erosion on CT are more characteristic of IP than SCC,
this finding is imperfect because IP may also aggressively destroy
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bone, particularly when contacting the walls of the sphenoid sinuses
and floor of the anterior cranial fossa.”” Not surprising, FDG-PET
has shown a higher mean standard uptake value for SCC compared
with IP, but overlap limits the clinical utility of PET.® To date, MR
imaging has the most promise in differentiating SCC from IP. Al-
though early work initially found no signature appearance on MR
imaging for IP, alternating hypointense and hyperintense bands on
T2-weighted and contrast-enhanced T1-weighted sequences have
become recognized as a distinctive feature of IP and have been de-
scribed as a convoluted cerebriform pattern.””"'" As with any sub-
jective finding, interpretive errors can occur, especially when tumors
are small or incompletely express the convoluted cerebriform pat-
tern. Hence, a more objective form of image analysis is desirable.
Texture analysis is a form of image processing that seeks to
characterize complex visual patterns by quantitatively identifying
simpler but characteristic subpatterns. Within the field of head
and neck radiology, texture analysis has shown applicability in
predicting the p53 status of SCC, classifying SCC as human pap-
illoma virus—related, predicting treatment response in head and
neck cancer, differentiating benign from malignant thyroid nod-
ules, and characterizing parotid tumors and structural changes
after radiation therapy.'>"'” Because a large volume of data is gen-
erated when multiple texture analysis algorithms are applied to
MR imaging sequences, the statistical comparison of individual
texture features is of limited practical value; instead, a multifactorial
data-driven analysis is necessary (ie, “radiomics”). Therefore, the ob-
jective of this study was to determine whether MR imaging—based
texture analysis can differentiate sinonasal SCC from IP by using a
multiparametric machine-learning model. Model performance was
additionally compared against qualitative neuroradiologists’ inter-
pretation to determine its potential for added clinical value.

MATERIALS AND METHODS

Subject Enrollment

The Mayo Clinic Institutional Review Board approved this retro-
spective study, and the need for informed consent was waived.
The pathology data base was queried to identify adult patients (18
years of age or older) who underwent resection of sinonasal IP or
SCC. Subjects enrolled from January 1, 2009, to December 31,
2014, were included in the training dataset for model develop-
ment, while those enrolled between January 1, 2015, and July 1,
2016, composed the validation dataset. To ensure that only a sin-
gle histologic tumor type would be used for texture analysis, we
excluded cases of coexistent IP and SCC. Potential subjects were
screened to determine which of them had preoperative face MR
imaging available for review. The MRIs, which were performed on
numerous scanners within the authors’ institution and at external
facilities, had to be of diagnostic image quality. Ata minimum, the
imaging had to include an axial T1-weighted MRI pulse sequence
(T1), an axial T2-weighted pulse sequence with frequency-
selective fat-suppression (T2), and an axial T1-weighted postcon-
trast MRI pulse sequence with frequency-selective fat suppression
(T1C) for texture analysis, with a section thickness of =5 mm, an
FOV of = 22 c¢m, and a matrix size of at least 256 X 192. No
restrictions on additional MR imaging technical parameters or
type of gadolinium-based intravenous contrast were imposed,
and studies were included whether they were performed at 1.5T or
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FIG1. ROIplacement. A 51-year-old man with an IP involving the right
maxillary sinus. Axial T2-weighted fat-suppressed MR imaging pulse
sequence demonstrates the manual placement of the largest rectangular
ROI that would fit within the tumor margins on the axial image with the
greatest tumor cross-sectional area. The inset image in the lower right
corner is representative of the final 16 X 16 matrix that was derived from
the ROl isocenter and served as the input for texture analysis.

3T field strength. The electronic medical record was reviewed for
each potential case, and subjects were excluded if they had an inter-
vention for the sinonasal tumor, including biopsy, surgery, chemo-
therapy, or radiation therapy before imaging. Subjects were further
eliminated if the tumor did not have orthogonal transaxial dimen-
sions greater than 1.5 X 1.5 cm on at least 1 axial image.

Image Preparation and Texture Analysis
DICOM files containing the T1, T2, and T1C pulse sequences
(also referred to as “contrasts” for the purpose of texture analysis)
were anonymized and encoded so that all subsequent image anal-
ysis was blinded. To ensure uniformity for texture analysis, we
performed resampling and/or zero-padding to generate images
with an 18-cm FOV and a 256 X 256 pixel array and normalized
image intensities to a dynamic range of 0-255. The studies were
then reviewed by a board-certified neuroradiologist with OsiriX
(Version 6.5; http:// www.osirix-viewer.com). The borders of the
tumor were manually traced on all T1C images on which tumor was
visible to generate an ROI-based cross-sectional area for each image
and an estimated tumor size by using the ROI Volume function in
OsiriX. On the axial image with the greatest tumor cross-sectional
area, the neuroradiologist inserted the largest possible rectangular
ROI that would fit within the tumor for all 3 sequences (Fig 1). To
prevent the 2D texture analysis from being biased by tumor size, a
computer script determined the maximal square ROI that could fit
within all manually drawn rectangular ROIs across all subjects and
automatically positioned this smallest common square ROI at the
isocenter of each of the rectangular ROIs. The contents of this square
RO, with 16 X 16 pixels, served as the input for texture analysis.

Texture analysis of each ROI consisted of 3 first-order intensity-
based features (mean, SD, and range of gray-level intensities) and
features computed by using 5 widely available texture algorithms
(all implemented in Python 2.7 programming language [https://
www.python.org/downloads/], by using either custom-written code
based on publications or open-source libraries as noted):

1) Gray-Level Co-occurrence Matrix (GLCM) is a widely ap-
plied method that uses second-order statistics to assess the ar-



Table 1: Patient demographic characteristics and tumor features®

sus diagnosis of IP or SCC for each case.

sample S Tumor Volume ___Tumor Stage® This was performed during 3 separate
Study Group  Size (Female/Male)  Age (yr) (cm®) T T2 T3 T4  rounds of image review, each of which
IP training 16 412 58.0 = 1211 212177 1 3 10 2  wasrandomized and completed in the
IP validation 6 15 582*+153  220*69 T 1 3 following order:
IP combined 22 5:17¢ 581+ 13.1¢ 214 +15.5¢ 2 4 13 3 1) RO For the T1, T2, and T1C se-
SCC training 17 413 540 £135  558+405 0 1 4 R L g oloeists exclusivel
sCCvalidation 7 16 54694  435+279 0 1 2 4 > 5 Y
SCC combined 24 5:19¢ 542+125¢ 522+377° 0 2 6 16  reviewed the 16 X 16 square ROIs that

? Data are presented separately for the training and validation sets and also as a single combined cohort for each tumor

type. Age and tumor volume are presented as means.

© Tumor stage represents the Krouse staging system?®” for IP and the American Joint Committee on Cancer staging*® for

SCC.

€ Fisher exact test, P = .578.
9 Two-sample t test, P = 317.
€ Two-sample t test, P = .001.

rangement of similar gray-scale intensities within an ROIL*
GLCM evaluates how frequently a pair of intensity levels is iden-
tified in an orientation based on a specified angle and radius. In
the current study, the co-occurrence matrix was determined for a
distance of 1 pixel over 4 angular directions (0°, 45°, 90°, and
135°). The mean and range for 13 rotationally invariant features
(including measures of homogeneity, entropy, angular second
moment, correlation, and dissimilarity) were computed at each
ROI for each MR imaging contrast.*

2) Local binary patterns (LBP) evaluates the set of points
within a fixed radius of a specified voxel to determine in a binary
fashion whether they are higher or lower in intensity than neigh-
boring voxels.”! Depending on the number of bitwise transitions
across this interrogated region, the LBP can be classified as uni-
form or nonuniform, and histograms of these data provide a mea-
sure of ROI uniformity. A 3-voxel radius was selected to comple-
ment the smaller scale patterns already assessed by GLCM. A 12-
bin histogram was used, resulting in 12 LBP texture features being
calculated at each ROI for each MR imaging contrast.

3) Discrete Orthonormal Stockwell Transform (DOST) pro-
vides a rotationally invariant multiresolution spatial-frequency
representation of an image based on dyadic sampling of the Fou-
rier representation of the image.”” Ten DOST features were cal-
culated at each ROI for each MR imaging contrast.

4) Laplacian of Gaussian Histogram (LoGHist) is a convolu-
tion-based method to capture the spectral composition of an im-
age in intermediate scales not achievable with first- and second-
order statistics. Through the use of varying sizes of bandpass
filters, different scales of texture ranging from fine to coarse are
highlighted.** Gaussians with 3 different values of o (2.0, 4.0, and
6.0) were used to cover the range of fine-to-medium-scale tex-
tures, and 18 LoGHist features were generated at each ROI for
each MR imaging contrast.

5) The Gabor Filter Banks (GFB) technique uses localized and
linear filters to capture details in various frequency resolutions.**
Four different Gabor filters were rendered by using 2 o levels (1.0
and 3.0) and 2 frequency levels (0.6 and 1.0). By calculating the
mean and SD of the filtered ROI, we computed 8 GFB features at
each ROI for each MR imaging contrast.

Neuroradiologists’ Review
Using OsiriX, 2 neuroradiologists with 25 and 28 years of experi-
ence, respectively, performed a blinded review to reach a consen-

had been used for texture analysis.

2) Tumor: On all images in the T1,
T2, and T1C series, the data outside the
tumor margins were zero-filled so that the
neuroradiologists could only base their as-
sessment on the intrinsic appearance of
the tumor without information regarding
tumor location and invasive behavior.

3) Image: The neuroradiologists were able to review the unal-
tered T1, T2, and T1C imaging datasets in their entirety.

Machine Learning and Statistical Analysis

Open-source R statistical and computing software (http://www.r-
project.org) was used to perform the analyses and classification.
Hypothesis tests were 2-sided, and statistical significance was de-
fined as P < .05. The comparison of subject demographics and
tumor size between IP and SCC was performed by using a 2-sam-
ple ¢ test for subject age and tumor volume and a Fisher exact test
for sex. The 2-sample ¢ test was used for a univariate comparison
of texture features between IP and SCC before the application of
machine-learning methodology, and P values were corrected for
multiple comparisons by using the false discovery rate.*

A total of 231 texture features were calculated for each case (77
texture features per MR imaging contrast X 3 contrasts). To re-
duce the dimensionality of the texture features and increase the
generalizability of the predictive model for the training dataset,
we used principal component (PC) analysis.”*>* PCs, which are
linear combinations of features, were identified separately for
each texture algorithm and MR imaging contrast. Those PCs that
sufficiently accounted for 90% of the texture feature variability
were selected for further processing. Three commonly described
classification algorithms, Diagonal Linear Discriminate Analysis,
Support Vector Machines, and Diagonal Quadratic Discriminate
Analysis, were conducted on the basis of the selected PCs in an
attempt to differentiate SCC from IP.**>! Sequential forward-
feature selection identified the image-based PCs that yielded the

627 In developing the classification model, we

greatest accuracy.
initially selected the PC with the largest discriminatory power and
incorporated additional PCs that improved model accuracy in an
iterative fashion until incremental gains in accuracy were <1%.
Classification accuracy was determined by using leave-one-
out cross-validation, in which all samples except for 1 were used,
while the left-out sample served as the test case with which to
assess classification accuracy.”” This process was repeated until all
samples in the training dataset had served as the test case, and the
overall cross-validation accuracy was the averaged accuracy. The
most accurate classification model was applied in a blinded fash-
ion to the validation dataset, and the diagnostic performance of
the model was assessed. Model performance accuracies between
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FIG 2. Heat map showing MR imaging texture feature significance in
distinguishing tumor type. Univariate analysis compared the pathol-
ogy status (SCC versus IP) with MR imaging—texture features. Color
maps show the false discovery rate—adjusted P values of a 2-sample t
test. MR imaging contrasts (pulse sequences) are listed above the
columns, and MR imaging—based texture features are listed in rows.
DOST features 0-9 correspond with low-to-high frequency patterns.
LBP 0-T1 are the normalized bin counts in the LBP histogram. The
reader is referred to the “Materials and Methods” section for addi-
tional details about the features.
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Table 2: Diagnostic performance of machine-learning
classification in training and validation datasets

Tumor
Type
(Pathologic
_ Diagnosis) Diagnostic
SCC IP Performance
Model prediction for
training dataset
SccC 16 2 Accuracy 90.9%*
Sensitivity 94.1%
IP 1 14 Specificity ~ 87.5%
PPV 88.9%
Total 17 16 NPV 93.3%
Model prediction for
validation dataset
SccC 6 1 Accuracy 84.6%*
Sensitivity  85.7%
P 1 5 Specificity  833%
PPV 85.7%
Total 7 6 NPV 83.3%
Model prediction for
entire cohort
SCC 22 3 Accuracy 89.1%
Sensitivity 9N.7%
IP 2 19 Specificity ~ 86.4%
PPV 88.0%
Total 24 22 NPV 90.5%

Note:—NPV indicates negative predictive value; PPV, positive predictive value.
#With a 2-tailed test of population proportion, the accuracies for the training and
validation datasets were not significantly different (P = .537).

the training and validation datasets and between the best classifi-
cation model and neuroradiologists’ review were compared by
using a 2-tailed test of population proportion.

RESULTS

Thirty-three subjects were included in the training set, 16 IPs and
17 SCCs, while the validation set consisted of 6 IPs and 7 SCCs
(Table 1). The patients were similarly matched for age and male-
predominant sex. Mean tumor volume was larger for SCC than IP
(P = .001).

Individual features derived from the 5 different texture analy-
ses across all 3 MR imaging contrasts (T1, T2, T1C) were initially
evaluated in a univariate fashion to look for significant differences
between the IP and SCC groups (Fig 2). The greatest number of
texture features showing statistically significant differences were
derived from the DOST and GFB texture analyses.

Model performance for the training and validation datasets is
presented in Table 2. Following PC analysis and machine-learning
classification, the predictive classifier with the best classification
result was Support Vector Machines, yielding 90.9% accuracy for
the training dataset. The 84.6% accuracy of the validation dataset
did not significantly differ from that achieved in the training da-
taset (P = .537). When we combined the training and validation
cohorts (n = 46), the accuracy achieved by texture analysis
(89.1%) was significantly better than that of the ROI-based neu-
roradiologists’ review (Table 3, 56.5%, P = .0004) and showed a
trend toward improved accuracy over neuroradiologists’ review
of the entire tumor (73.9%, P = .060). Texture-analysis accuracy
was not significantly different from that of the neuroradiologists
reviewing the entire unaltered images (87.0%, P = .748).



Table 3: Diagnostic performance of texture analysis with machine learning compared with

neuroradiologists’ review for the differentiation of SCC from IP®

ported a sensitivity of 100%, specificity

of 87%, positive predictive value of 64%,

B b — a2 o

Analysis Method Accuracy Sensitivity Specificity PPV NPV negative predictive value of 100%, and
Texture analysis with machine learning 89.1% 917% 864%  88.0% 90.5% £899

) T, accuracy of 89%.
Neuroradiologists’ review, ROI 56.5% (P = .0004) 54.2% 59.1%  59.0% 54.2% T Isis i di
Neuroradiologists’ review, tumor ~ 73.9% (P = .060)  75.0% 727%  750% 72.7% e.xture an.a ysis integrated 1nto a
Neuroradiologists’ review, image ~ 87.0% (P = 748)  917% 81.8% 84.6% 90.0%  machine-learning model was able to

Note:—NPV indicates negative predictive value; PPV, positive predictive value.

?Results are shown for the entire cohort (22 IPs, 24 SCCs) and reflect the best classification model. The labels for the
neuroradiologists’ assessment indicate whether they reviewed the 16 X 16 ROI (ROI), tumor alone (tumor), or entire

images (image).

© P values represent comparison of texture analysis with machine learning against each neuroradiologist’s review using

a 2-tailed test of population proportion.
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0.030303
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Contributions of Selected Contrasts

0.78788

0.121212
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FIG 3. Relative contributions to model accuracy. Of the 90.9%
overall model accuracy for the training dataset, the bar graph
demonstrates the accuracy attributable to PCs derived from TIC-
GFB, T1-DOST, and T1-GLCM (upper panel). Across all texture al-
gorithms, the contribution to total model accuracy was derived
predominantly from T1C, with minor contributions from T1and no
input from T2 (lower panel).

Relative contributions to model accuracy from each texture
analysis algorithm and MR imaging contrast are presented (Fig 3).
The most significant texture features were derived from T1C-
GFB, T1-GLCM, and T1-DOST (Fig 4).

DISCUSSION

MR imaging has long been recognized as the most useful tech-
nique with which to distinguish sinonasal SCC from IP. Most of
the prior work focused on a qualitative imaging appearance
known as the “convoluted cerebriform pattern.”®?'*>?* Al-
though this pattern has a high level of sensitivity for IP, it is not
entirely specific. As an example, Jeon et al® evaluated the perfor-
mance of the convoluted cerebriform pattern in 30 patients with

IP relative to 128 patients with sinonasal malignancies and re-

classify SCC and IP with an accuracy on
par with the previously published results
based on the convoluted cerebriform
pattern.” Itis also similar to the best con-
sensus neuroradiologists’ interpretation
in the current study. However, this tech-
nology is meant to supplement a neuroradiologist’s interpretive
skills rather than compete with them. In clinical practice, a diag-
nosis is rendered by synthesizing all available data that include not
only intrinsic tumor appearance but also other imaging features
such as site of origin, tumor size, extrasinonasal extension, and
tumor margins. Indeed, the current results support a neuroradi-
ologist’s accuracy improving for differentiating sinonasal IP and
SCC as more imaging information is made available. On the basis
of a 16 X 16 ROI, the texture-based machine-learning model
outperformed the accuracy of the neuroradiologists (P = .0004).
In terms of assessing the intrinsic tumor appearance, texture anal-
ysis stands to provide incremental benefit when human pattern
recognition becomes most limited, and this can occur with a small
tumor. For example, Maroldi et al® found it more challenging to
recognize the convoluted cerebriform pattern on T2-weighted
images for tumors of <2 cm. While tumors smaller than 1.5 X 1.5
cm were excluded from enrollment in the current study, the final
processed ROIs were only 1.125 X 1.125 cm.

Because small noninvasive sinonasal tumors are not univer-
sally imaged with MR imaging, the greatest potential benefit for
texture analysis might be in detecting a small focus of SCC within
a larger IP to expedite patient management. Accurately assessing
small regions would be a prerequisite for the detection of such
tumor heterogeneity. The potential for interpretive error is greatest
when a small focus of SCC exists within a much larger IP and goes
unrecognized because a convoluted cerebriform pattern is still pres-
ent. Indeed, this pattern of a “partial” convoluted cerebriform pat-
tern has been described.>**> Likewise, necrosis, recognized as non-
enhancing tissue on contrast-enhanced MR imaging, is associated
with SCC but may not be apparent when a small focus of SCC coex-
ists with an IP.>'>*> A future goal for texture analysis of a mixed
tumor containing both IP and SCC is to assist with interpretation by
highlighting areas that are most suspicious for SCC.

Texture analysis can also extract useful features from images
that have been traditionally neglected by the human eye. The con-
voluted cerebriform pattern has been historically described on
T1-weighted postcontrast and T2-weighted sequences.>”'"+3*3°
However, noncontrast T1-weighted MR imaging has received no
attention to date, to our knowledge. The texture analysis in the
current study found more significant features for T1 than T2 on a
univariate basis (Fig 2). Although T1-DOST and T1-GLCM made
a minority contribution to the final model, no T2 features con-
tributed to final model accuracy (Fig 3).

For MR imaging, it has been suggested that texture analysis
models may not effectively translate across different imaging pro-
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5 of SCC from IP with texture analysis is
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showing proof of concept, a 2D ROI-
based analysis was used to confirm dis-
criminatory ability with a limited data
sample. Moreover, because SCC tends to
be a larger tumor than IP on average,
this approach eliminated the potential
for falsely finding texture differences on
the basis of relative oversampling of a
larger tumor. Future directions will in-
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FIG 4. PC loading. The model with the greatest accuracy for discriminating SCC from IP was
derived from TIC-GFB, TI-GLCM, and T1-DOST texture features (right). For the individually spec-
ified texture features (left), PC loadings are graphically represented, and larger values in the PC

loading indicate greater significance in the final model.
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tocols and scanner platforms.’®*” Certainly, this possibility
would make such results clinically meaningless because a new
model would have to be created for each scanner running a
unique protocol. Fruehwald-Pallamar et al*® concluded that tex-
ture analysis is not practical for differentiating malignant and be-
nign tumors of the head and neck when using different protocols
on different MR imaging scanners. However, their cohort was
very heterogeneous, containing numerous types of benign and
malignant lesions. The subjects for the current study were accrued
during a long period and were not imaged with a common scan-
ner and protocol. Nevertheless, an accurate texture-based model
was achieved that performed similarly in the training and valida-
tion datasets. At least for the context of sinonasal IP and SCC, this
outcome holds promise for reproducibility across scanner
platforms.

The current study is limited, given its retrospective nature and
small sample size. Hence, the high accuracy for the differentiation
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ROYJ, texture analysis has the potential to
provide incremental benefit to the neu-
roradiologists’ interpretation, particu-
larly in cases of small or heterogeneous
tumors.
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