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PEDIATRICS

Brain Development in Fetuses of Mothers with Diabetes:
A Case-Control MR Imaging Study

X F.C. Denison, X G. Macnaught, X S.I.K. Semple, X G. Terris, X J. Walker, X D. Anblagan, X A. Serag, X R.M. Reynolds, and
X J.P. Boardman

ABSTRACT

BACKGROUND AND PURPOSE: Offspring exposed to maternal diabetes are at increased risk of neurocognitive impairment, but its
origins are unknown. With MR imaging, we investigated the feasibility of comprehensive assessment of brain metabolism (1H-MRS),
microstructure (DWI), and macrostructure (structural MRI) in third-trimester fetuses in women with diabetes and determined normal
ranges for the MR imaging parameters measured.

MATERIALS AND METHODS: Women with singleton pregnancies with diabetes (n � 26) and healthy controls (n � 26) were recruited
prospectively for MR imaging studies between 34 and 38 weeks’ gestation.

RESULTS: Data suitable for postprocessing were obtained from 79%, 71%, and 46% of women for 1H-MRS, DWI, and structural MRI,
respectively. There was no difference in the NAA/Cho and NAA/Cr ratios (mean [SD]) in the fetal brain in women with diabetes compared
with controls (1.74 [0.79] versus 1.79 [0.64], P � .81; and 0.78 [0.28] versus 0.94 [0.36], P � .12, respectively), but the Cho/Cr ratio was
marginally lower (0.46 [0.11] versus 0.53 [0.10], P � .04). There was no difference in mean [SD] anterior white, posterior white, and deep gray
matter ADC between patients and controls (1.16 [0.12] versus 1.16 [0.08], P � .96; 1.54 [0.16] versus 1.59 [0.20], P � .56; and 1.49 [0.23] versus 1.52
[0.23], P � .89, respectively) or volume of the cerebrum (243.0 mL [22.7 mL] versus 253.8 mL [31.6 mL], P � .38).

CONCLUSIONS: Acquiring multimodal MR imaging of the fetal brain at 3T from pregnant women with diabetes is feasible. Further study
of fetal brain metabolism in maternal diabetes is warranted.

ABBREVIATIONS: T1DM � type 1 diabetes mellitus; T2DM � type 2 diabetes mellitus; GDM � gestational diabetes; sMRI � structural MRI

Diabetes is the most common medical disorder of pregnancy

with the prevalence of type 1 (T1DM), type 2 (T2DM), and

gestational diabetes (GDM) all increasing among women of child-

bearing age in resource-rich settings. The perinatal complications

of maternal diabetes, which reflect altered metabolic function in

utero, include major congenital malformations, macrosomia, and

stillbirth.1 Long-term, children born to mothers with diabetes are

at increased risk for cognitive impairment,2,3 inattentiveness,4

impaired working memory,5 and altered language development.6

These adverse outcomes are not fully explained by postnatal

events; this question focuses research attention on the vulnerabil-

ity of the developing brain during fetal life. Identification of the

nature and timing of alterations to brain structure and function

that underlie neurocognitive impairment could help the develop-

ment of strategies designed to improve the long-term outcome of

children of diabetic mothers.

During fetal life, the predominant source of brain energy is

glucose, which crosses the placenta by facilitated diffusion.7 While

severe perturbations in glucose homeostasis after birth are asso-

ciated with neonatal brain injury, the effect of chronic fluctuant

glucose concentration experienced by fetuses of women with di-

abetes on in utero brain development has not been investigated, to

our knowledge. Maternal diabetes is also associated with distur-

bances in fatty acid metabolism: Umbilical venous blood docosa-

hexaenoic acid concentration is reduced; this reduction reflects

lower docosahexaenoic acid transfer to the fetus.8 Docosa-

hexaenoic acid accumulates in the brain in abundance from the
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third trimester and is essential for neurogenesis, neurotransmis-

sion, and protection from oxidative stress. Reduced bioavailabil-

ity of this key metabolite has been suggested as a putative mech-

anism for programming altered neurodevelopment.8,9

Advances in proton MR spectroscopy (1H-MRS) and diffu-

sion-weighted and structural MR imaging (sMRI) have led to the

development of objective and sensitive measures of fetal brain

structure and metabolism. Use of these technologies has revealed

alterations in the cerebral NAA:choline ratio and gyrification in

fetuses with congenital heart disease,10 temporal lobe volumes in

fetuses with congenital cytomegalovirus infection,11 and ADC values

and parenchymal volume in antenatal ventriculomegaly.12,13 Histor-

ically, most fetal imaging studies have been undertaken at 1.5T. How-

ever, although an increasing number of studies have been performed

at 3T field strength,14-20 which has benefits over 1.5T due to im-

proved signal-to-noise and is likely to be advantageous for depicting

fetal anatomy,21 to date, there have been no studies assessing the

feasibility of recruiting women with diabetes for fetal neuroimaging.

Early-life metrics derived from 1H-MRS, DWI, and sMRI

are associated with function in childhood. After preterm birth,

NAA/Cho and Cho/Cr ratios are associated with neurodevelop-

mental outcome at 2 years of age,22 lactate/NAA predicts outcome

following hypoxic-ischemic encephalopathy,23 and abnormalities

in the NAA/Cr and Cho/Cr ratios in neonates24 and older chil-

dren25 predict developmental delay. Increased ADC values in

white matter are associated with diffuse white matter injury fol-

lowing preterm birth26 and with poor outcome after hypoxic-

ischemic encephalopathy in term infants.27,28 Finally, reduced re-

gional and whole-brain volumes are associated with specific

preterm comorbidities,29,30 and structural alteration predicts

long-term impairment after preterm birth.31,32

On the basis of disturbances to fetal glucose and fatty acid

metabolism associated with maternal diabetes and the neurocog-

nitive profile of offspring, we aimed to investigate the feasibility of

comprehensive fetal brain assessment by acquiring measurements

of NAA/Cho, NAA/Cr, and Cho/Cr ratios; regional apparent dif-

fusion coefficient measurements; and volume of the cerebrum

during the third trimester of pregnancy from women with diabe-

tes and from healthy controls by using 3T MR imaging. The sec-

ondary aim was to determine normal values for these measures

for future studies designed to investigate the effect of maternal

disease on fetal brain development and in utero origins of neuro-

developmental impairment.

MATERIALS AND METHODS
Study Population
Ethics approval was obtained from the National Research Ethics

Committee (South East Scotland Research Ethics Committee),

and written informed consent was obtained. Women with a preg-

nancy complicated by diabetes (n � 26) and healthy controls (n �

26) were recruited prospectively from antenatal diabetes clinics at

the Simpson Centre for Reproductive Health at the Royal Infir-

mary, Edinburgh, UK. The inclusion criteria were a singleton

pregnancy and a fetal anomaly scan with normal findings at 20

weeks’ gestation. Women with diabetes were eligible to partici-

pate if they had gestational diabetes, diagnosed by using the Scot-

tish Intercollegiate Guideline Network diagnostic criteria33 as a

fasting venous plasma glucose of �5.1 mmol/l or 2-hour glucose

of �8.5 mmol/l after a 75-g oral glucose tolerance test or preges-

tational type 1 or type 2 diabetes. Exclusion criteria were serious

coexisting maternal systemic disease other than maternal diabetes

and women with any contraindications to MR imaging, including

metal implants and pacemakers.

MR Image Acquisition
MR imaging studies were performed at the Clinical Research Im-

aging Centre in the Queen’s Medical Research Institute, Univer-

sity of Edinburgh, UK, by using a Magnetom Verio 3T MR imag-

ing clinical scanner (Siemens, Erlangen, Germany). To avoid

vena-cava compression, we placed women in a left-lateral tilt,

with blood pressure being constantly monitored by using a Veris

MR imaging vital signs monitor (Medrad, Indianola, Pennsylva-

nia). No fetal sedation was used, women were limited to spending

45 minutes in the scanner, and data were acquired with women

free-breathing throughout. MR images were obtained between 34

and 38 weeks’ gestation. A radiologist with experience in MR im-

aging reported all images.

T2-weighted half-Fourier-acquisition single-shot turbo spin-

echo images were acquired of the fetal brain in sagittal, coronal,

and transverse orientations (HASTE: TR/TE � 1800/86 ms,

FOV � 400 � 400 mm, matrix � 192 [phase] � 256 [frequency],

section thickness � 8 mm, acquisition time � 18 seconds). These

images were used to plan the position of the single 20-mm3 spec-

troscopy voxel within the fetal brain. The scanner bed was moved

to ensure that the fetal brain was positioned at the isocenter, and

the voxel was positioned within 1 hemisphere of the fetal brain,

avoiding ventricles and contaminant signal from surrounding tis-

sue. An optimized semiautomated shimming protocol was sys-

tematically applied until the full width at half maximum of the

water peak was �20 Hz. A single-voxel point-resolved spectros-

copy technique was applied with TR/TE � 1500/30 ms, 96 signal

averages, bandwidth � 2000 Hz, and a water suppression band-

width � 50 Hz. The spectral acquisition took 2 minutes 30 sec-

onds. Signal was received from selected elements of the spine ma-

trix coil and body matrix surface coils positioned to allow

adequate coverage of the fetal brain. A postspectroscopy 3-plane

HASTE acquisition was then compared with the prespectroscopy

HASTE images to allow visual assessment of fetal movement dur-

ing the spectral acquisition. If the expert operator observed evi-

dence of movement between HASTE acquisitions, then the spec-

troscopy voxel was repositioned and the spectral acquisition was

repeated. No additional filtering or quality-control limiting of

data was applied during the processing stage. We therefore pro-

cessed all the MR spectroscopy data that were acquired. An exam-

ple of voxel positioning for the MR spectroscopy acquisition is

shown in Fig 1A.

Transverse DWIs of the whole fetal brain (TR/TE � 7300/106

ms, FOV � 400 � 400 mm, matrix � 128 � 128, section thick-

ness � 3 mm, b-values � 0, 500, and 1000 s/mm2) were acquired.

DWI was checked at the point of acquisition for obvious signs of

fetal motion and was repeated if required. ADC maps were gen-

erated automatically from the diffusion-weighted images.

Finally, additional transverse HASTE images were acquired

with identical coverage to the DWIs to aid subsequent ROI anal-
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ysis and to enable construction of the 3D motion-corrected brain

volumes.

Data Analysis: 1H-MRS
Spectral analysis was performed by using the QUEST algorithm

available in jMRUI (www.mrui.uab.es/mrui/mrui_download/).34

This technique estimates metabolite amplitudes by using a non-

linear least-squares fit of simulated metabolite signals to the ac-

quired spectrum. A metabolite basis set was generated by using

the NMR-Scope function available in jMRUI35 and included con-

tributions from NAA (2.01, 2.49, and 2.70 ppm), Cho (3.20, 3.53,

and 4.08 ppm), and Cr (3.04 and 3.93 ppm). We then calculated

the following ratios: NAA/Cho, NAA/Cr, and Cho/Cr.36,37 The

QUEST algorithm calculates errors associated with the estimated

metabolite amplitudes by using an extended version of the Cra-

mer–Rao lower bounds calculation.35 The errors for each of the

calculated metabolite ratios were derived through error propaga-

tion of the jMRUI output.

Data Analysis: Diffusion and sMRI

Apparent Diffusion Coefficients. ROI analysis was performed on

ADC maps by using standard software on the 3T Magnetom Verio

MR imaging system (Siemens). First, ROIs within white matter

and gray matter were identified from the HASTE images acquired

in the same plane and with the same coverage as the diffusion-

FIG 1. Examples of MR spectroscopy voxel placement in the fetal brain (A–C). ROIs for DWI in anterior white matter and posterior white matter
(right and left) (D) and deep gray matter (right and left) (E), and tissue segmentation in the brain, highlighted in green (F–G).
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weighted images. A section above the ventricles was identified as

white matter, and a section at the level of the thalami was identi-

fied as deep gray matter by using landmarks described in Board-

man et al.38 The identical sections were then identified on the

corresponding ADC map; 4 ROIs were positioned in the white

matter (2 posterior and 2 anterior) and 2 were positioned in the

gray matter. Due to differences in fetal brain volume, we used an

anatomically appropriate ROI size for each individual brain, tak-

ing care to avoid partial volume effects from adjacent structures

and artifacts. The mean (SD) ADC value for each ROI was re-

corded. The mean white matter ROI size was 0.30 � 0.12, and the

mean gray matter ROI size was 0.32 � 0.13. Sample ROI place-

ments for white and gray matter are shown in Fig 1B. Interrater

agreement was checked by 2 independent investigators (D.A.,

G.M.).

sMRI. For each participant, a single 3D motion-corrected brain

volume was reconstructed by using a section-to-volume registra-

tion method (Fig 1C).39 The fetal brain was extracted from sur-

rounding fetal and maternal tissue by using an atlas-based ap-

proach.40 All reconstructed images were nonlinearly aligned to

the closest age-matched template from a publicly available 4D

fetal brain atlas.41 Then, an automatic method based on an expec-

tation-maximization framework for brain tissue segmentation

was used, in which the priors of brain tissues were propagated by

using prior probabilities provided by the 4D atlas. Finally, binary

masks of the cerebrum (intracranial contents excluding intraven-

tricular CSF, extra-axial CSF, and the choroid plexus, brain stem,

cerebellum, and pons structures) and the intracranial volume

(GM, WM, and CSF) were deformed to the subject’s native space,

and volumes were calculated.

Statistical Analysis
This was a feasibility study, so a formal power calculation for

sample size was not required.42,43 For normally distributed data,

the mean and SD are reported, and for non-normally distributed

data, the median and interquartile range are reported. For group-

wise comparisons of normally distributed variables, an indepen-

dent-sample t test was used, and for skewed data, the Mann-Whit-

ney U test was used. To analyze regional ADC values, we first

tested for evidence of laterality in the anterior and posterior white

matter and deep gray matter values with a paired-samples t test,

and if there were no significant differences between left and right,

the values were averaged to compute mean anterior white matter

ADC, mean posterior white matter ADC, and mean deep gray

matter ADC per individual. The distributions were assessed for

normality, and an independent-samples t test was used for group-

wise comparisons of regional ADC. Interobserver agreement in

ADC measurements was assessed for each region in a randomly

selected subset of 20 participants by using Bland-Altman statis-

tics. For group-wise analysis of NAA/Cho, NAA/Cr, and Cho/Cr

ratios and cerebral and intracranial volumes, an independent-

samples t test was used after assessing the equality of variance

between groups. Statistical analyses were performed by using

SPSS 21 (IBM, Armonk, New York) with statistical significance

defined as P � .05.

RESULTS
Participants
The maternal demographics and delivery outcomes of the study

population are shown in Table 1. All women tolerated the MR

imaging well, and no scan had to be abandoned due to maternal

discomfort or claustrophobia. Of the women with diabetes, 13

were diagnosed with GDM during pregnancy, 12 had T1DM, and

1 had T2DM. In women with GDM, the median gestation at di-

agnosis and diagnosis-to-scan interval were 27.1 weeks (inter-

quartile range, 12.0 –31.0 weeks) and 8.9 weeks (interquartile

range, 4.4 –23.6 weeks), respectively. Only 1 woman with GDM

was treated with diet alone. The other 12 were treated with met-

formin (n � 9) or metformin and insulin (n � 3) to achieve

glycemic control. All women with T1DM were insulin-treated,

and the 1 woman with T2DM was treated with insulin and met-

formin. The hemoglobin A1c (glycolated hemoglobin) at booking

(11–13 weeks’ gestation) for women with T1DM and T2DM was

51.9 mmol/mol (16.6 mmol/mol). Two women with GDM, 4

women with T1DM, and 1 control had antenatal steroids for fetal

lung maturation before MR imaging. Three neonates of women

with T1DM were admitted to the neonatal unit for �72 hours.

The reasons for admission were suspected sepsis (culture negative

Table 1: Demographics, MRI details, and delivery outcomes

Control (n = 26)

Diabetes

All (n = 26) GDM (n = 13) T1DM (n = 12) T2DM (n = 1)
Maternal demographics

Maternal age (mean) (SD) (yr) 31 (5) 31 (5) 32 (5) 30 (6) 34
Parity (median) (range) 0 (0–3) 0 (0–3) 1 (0–2) 0 (0–3) 0
Current smoker (No.) (%) 1 (4) 3 (12) 1 (8) 2 (17)
Deprivation (No.) (%)

SIMD 1–3 13 (50) 13 (50) 6 (46) 6 (50) 1
SIMD 4–5 13 (50) 13 (50) 7 (54) 6 (50)

MRI details
Gestation at MRI (mean) (SD) (wk) 36.1 (0.9) 36.0 (0.8) 36.0 (0.8) 36.0 (0.9) 36.7
MRI-to-delivery interval (mean) (SD) (wk) 3.6 (1.6) 2.1 (1.2) 2.6 (1.2) 1.6 (1.1) 15

Neonatal outcome
Gestation delivery (mean) (SD) (wk) 39.7 (1.5) 38.1 (1.4) 38.6 (1.1) 37.6 (1.5) 38.9
Birthweight (mean) (SD) (g) 3372 (467) 3551 (627) 3629 (483) 3508 (780) 3040
Sex (male/female) 13:13 9:17 6:7 2:10 Male
Occipitofrontal circumference (mean) (SD) (cm) 34.4 (1.4) 34.8 (1.8) 35 (1.6) 35 (2.2) 36

Note:—SIMD indicates Scottish Index of Multiple Deprivation; SIMD 1, most deprived; SIMD 5, most affluent.
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for bacteria) and transient low blood glucose (n � 1), a fractured

clavicle sustained during a forceps delivery with shoulder dysto-

cia, and a duplication cyst that was not diagnosed antenatally. No

neonates born to healthy controls required admission. All neo-

nates were discharged home alive and well.

There was no difference in the gestation in weeks at MR imag-

ing between women with diabetes and healthy controls (mean

[SD]) (36.0 weeks [0.8 weeks] versus 36.1 weeks [0.9 weeks], P �

.69). No adjustment was therefore made for gestational age in the

statistical analysis. No congenital anomalies, acquired brain inju-

ries, or incidental findings were detected by MR imaging.

MR Spectroscopy
In utero 1H-MRS of the fetal brain of suitable quality for analysis

was obtained in 41/52 (79%) women in the study population,

22/26 (85%) with diabetes and 19/26 (73%) healthy controls.

There was no difference in the clinical characteristics of women in

whom interpretable data were acquired compared with those

in whom they were not (data not shown). There was no difference

in the NAA/Cho and NAA/Cr ratios in the fetal brain in women

with diabetes compared with controls (1.74 [0.70] versus 1.79

[0.64], P � .81; and 0.78 [0.28] versus 0.94 [0.36], P � .12, respec-

tively). The Cho/Cr ratio was marginally lower in the fetal brain in

women with diabetes compared with controls (0.46 [0.11] versus

0.53 [0.10], P � .04) (Fig 2).

Diffusion-Weighted Imaging: ADC
DWIs amenable to ADC computation were available for 37/52

(71%) women in the study population, 18/26 (69%) with diabetes

and 19/26 (73%) healthy controls. Fetal motion or maternal size

prevented interpretable data from being obtained from 9/52

(17%) of the study population. There was no difference in the

clinical characteristics of women in whom interpretable data were

acquired compared with those in whom they were not (data not

shown).

There was no evidence of laterality in the anterior white mat-

ter, posterior white matter, or deep gray matter ADC values (all

P � .05). Data were therefore combined to 3 variables: mean

anterior white matter, mean posterior white matter, and mean

deep gray matter ADC. There was no difference in mean (SD)

ADC values for anterior white matter, posterior white matter, and

deep gray matter in women with diabetes mellitus compared with

controls (1.16 [0.12] versus 1.16 [0.08], P � .96; 1.54 [0.16] versus

1.59 [0.20], P � .56; and 1.49 [0.23], versus 1.52 [0.23], P � .89,

respectively) (Fig 3).

There was good interrater agreement between the 2 indepen-

dent investigators for ADC values. The mean difference and 95%

confidence intervals between investigators for anterior white mat-

ter, posterior white matter, and deep gray matter measurements

are reported in Table 2.

Brain Volumes
Tissue segmentation data suitable for analysis were used to

assess the macrostructure of the fetal brain in 24/52 (46%) of

the study population (9/26 [35%] women with diabetes, 15/26

[58%] healthy controls). Fetal motion or data quality prevented

interpretable data from being obtained from 28/52 (54%) women

of the study population. There was no difference in mean cere-

brum volume/milliliter in women with diabetes compared with

controls (243.0 � 22.7 mL3 versus 253.8 � 31.6 mL3, P � .39).

There was no difference in mean intracranial volume in fetuses of

women with diabetes compared with controls (265.0 � 22.5 mL3

versus 274.5 � 32.3 mL3, P � .47).

DISCUSSION
In this study, we demonstrated that it is feasible to recruit preg-

nant women with diabetes to undergo MR imaging at 3T during

the third trimester of pregnancy for measurements of NAA/Cho,

NAA/Cr, and Cho/Cr ratios; regional ADC measurements; and

cerebrum and intracranial volumes. We chose to acquire 1H-

MRS, DWI, and sMRI because of their use as markers of tissue

injury/altered metabolism in the neonatal period and their rela-

tionships with long-term outcome. The values we acquired con-

FIG 2. Metabolite ratios for NAA/Cho, NAA/Cr, and Cho/Cr in the
fetal brain in women with diabetes and healthy controls. Data are
presented as mean � SD.

FIG 3. ADC values in the anterior white matter, posterior white mat-
ter, and deep gray matter in the fetal brain in women with diabetes
and healthy controls. Data are presented as mean � SD.
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tribute useful normative data for future fetal brain studies per-

formed with 3T systems.

Although this feasibility study was not powered to detect

group differences, we observed a marginal-but-significant reduc-

tion in Cho/Cr in the brains of fetuses of diabetic mothers during

the third trimester. The MR spectroscopy choline peak included

free choline, phosphocholine, and glycerophosphocholine, so

these data raise the possibility that brain metabolism and neuro-

nal membrane phospholipid turn-over are altered in pregnancies

with women with diabetes. While this finding requires confirma-

tion in a larger study, alterations in the Cho/Cr ratio in brains of

adults with type 2 diabetes have been reported.44

A strength of our study is that we recruited a cohort of women

with well-characterized diabetes with all participants being

scanned within a 4-week time window and gestation matched to

our control group. This feature is important because 1H-MRS

spectra and ADC values are dynamic during this period of brain

development.45-47 We also acquired sMRI suitable for conven-

tional clinical reporting, which was possible for all participants. A

limitation of our study is that we were unable to acquire data

amenable to quantitative analysis on all fetuses scanned. De-

spite ensuring the comfort of the women in a large-bore scanner,

data could not be processed from 1H-MRS in 21% of cases: DWI

in 29% of cases and sMRI in 54% of cases. The low data yield for

sMRI was partly because acquisition of 1H-MRS and DWI was

prioritized over sMRI. For future study designs that require fetal

brain segmentation, yield may be increased by modifications to

the acquisition protocol such as the increasing the number of

stacks per plane and accepting the idea that time constraints re-

quired for safety may curtail other acquisitions (we capped imag-

ing at 45 minutes). sMRI suitable for conventional clinical report-

ing was available for all participants.

We chose to recruit a heterogeneous population of women

with diabetes to assess the feasibility of dissecting the effect of

different in utero exposure to T1DM, T2DM, and GDM in a fu-

ture study. Recruitment of women with T1DM and GDM was

relatively easy; thus, recruitment to a future study assessing the

effect of in utero exposure of T1DM and GDM on the fetal brain

would be feasible. In contrast, we were able to recruit only 1

woman with T2DM, due to the lower prevalence of this condition.

Thus, targeting recruitment of women with T2DM to a future

study will not be practical unless recruitment occurs across mul-

tiple sites.

Our data were acquired by using a 3T system as opposed to

1.5T. For the advanced imaging techniques used in this study,

there are advantages of acquiring data with the higher field

strength of 3T.48 Compared with lower field strengths, imaging at

higher field strengths increases the signal-to-noise ratio. This in-

crease improves the spectral quality obtained in 1H-MRS and the

ability to differentiate closely located metabolites, particularly at

short TEs. The inability to complete data acquisition within the

time available due to fetal movement is a major limitation of MR

imaging in pregnancy. Acquiring data more rapidly by using more

advanced imaging methodologies, using methods of motion cor-

rection to compensate for fetal movement, and using alternative

sampling techniques such as compressed sensing is likely to

greatly increase data yield in the future. Finally, one advantage of

3T is the ability to acquire images with higher spatial resolution

(depending on the imaging coil used), potentially increasing di-

agnostic accuracy.49

Perinatal image metrics are sensitive to tissue injury and neu-

roprotective treatment strategies. They are therefore increasingly

used to address the “gap in translation” in perinatal neuroscience

to assess therapies that show promise in preclinical studies at

lower economic and opportunity costs than randomized con-

trolled trials powered on clinical outcomes.50 The normative data

provided here may inform the development of fetal brain bio-

markers for use in interventional perinatal neuroprotective out-

come studies.

CONCLUSIONS
The data provide proof-of-concept that comprehensive assess-

ment of the fetal brain using measures derived from images ac-

quired at 3T from women with diabetes and healthy controls is

achievable. In addition, they suggest that fetal brain MR spectros-

copy may provide a promising image marker of altered brain de-

velopment in maternal diabetes. Finally, although we studied fe-

tuses of mothers with diabetes, this research pipeline and the

normative values obtained could be applied to any paradigm in

which fetal origins of brain development are being investigated by

using 3T MR imaging.
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