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ABSTRACT

BACKGROUND AND PURPOSE: The complex MR imaging appearance of glioblastoma is a function of underlying histopathologic het-
erogeneity. A better understanding of these correlations, particularly the influence of infiltrating glioma cells and vasogenic edema on T2
and diffusivity signal in nonenhancing areas, has important implications in the management of these patients. With localized biopsies, the
objective of this study was to generate a model capable of predicting cellularity at each voxel within an entire tumor volume as a function
of signal intensity, thus providing a means of quantifying tumor infiltration into surrounding brain tissue.

MATERIALS AND METHODS: Ninety-one localized biopsies were obtained from 36 patients with glioblastoma. Signal intensities corre-
sponding to these samples were derived from T1-postcontrast subtraction, T2-FLAIR, and ADC sequences by using an automated coreg-
istration algorithm. Cell density was calculated for each specimen by using an automated cell-counting algorithm. Signal intensity was
plotted against cell density for each MR image.

RESULTS: T2-FLAIR (r � �0.61) and ADC (r � �0.63) sequences were inversely correlated with cell density. T1-postcontrast (r � 0.69)
subtraction was directly correlated with cell density. Combining these relationships yielded a multiparametric model with improved
correlation (r � 0.74), suggesting that each sequence offers different and complementary information.

CONCLUSIONS: Using localized biopsies, we have generated a model that illustrates a quantitative and significant relationship between
MR signal and cell density. Projecting this relationship over the entire tumor volume allows mapping of the intratumoral heterogeneity in
both the contrast-enhancing tumor core and nonenhancing margins of glioblastoma and may be used to guide extended surgical resection,
localized biopsies, and radiation field mapping.

ABBREVIATIONS: CE � contrast-enhancing; HPF � high-power field; NE � nonenhancing

Glioblastoma is a complex malignancy characterized by heter-

ogeneous radiographic and histopathologic features. This

intratumoral heterogeneity, combined with the diffuse infiltra-

tion of glioblastoma, renders correlations between imaging and

underlying tissue critical for better understanding of tumor be-

havior.1 Stereotactically localized biopsies allow this comparison

of local radiologic characteristics across multiple sequences with

histopathologic or molecular analysis and provide a means for

understanding underlying tissue characteristics that lead to mac-

roscopic appearances on MR imaging.1-4 However to date, histo-

pathologic-radiographic correlations have been limited by the

following: 1) the surgical challenge of obtaining stereotactically

localized biopsies with reliable accuracy, 2) the maintenance of

spatial fidelity across multiple MR images, and 3) the application

of quantitative histopathologic analysis.

Radiographically, glioblastoma typically appears as a contrast-

enhancing (CE) mass with surrounding nonenhancing (NE) tis-

sue marked by abnormal T2-FLAIR and DWI-derived ADC sig-

nals.5-7 These heterogeneous MR signal characteristics in the NE

area are known to represent a combination of vasogenic edema
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and infiltrating glioma cells8-10; however, correlating these MR

imaging abnormalities with underlying histopathology remains

challenging. Nonetheless, there has been much effort with a vari-

ety of MR images to draw such radiologic-histologic correlations

to better understand the tumor environment,1-4 which is critical

for refining radiation treatment fields, assessing response to ther-

apy, and evaluating progression.

Early studies have suggested that tumor cellularity as a surro-

gate for infiltration correlates with decreased apparent diffusiv-

ity,3,10-13 reduced T2-FLAIR hyperintensity,14,15 and increased

gadolinium-related T1 signal.16,17 More recent effort has com-

bined these changes on multiple MR images to help distinguish

glioma cell infiltration and edema. Akbari et al14 used a machine-

learning algorithm to identify several multiparametric features

that spatially colocalized with areas of future radiographic recur-

rence, with the implication that these regions likely harbor under-

lying infiltrative tumor. However, this study did not confirm the

proposed radiographic features with histologic data. Hu et al18

incorporated multiple MR imaging textural features with histo-

logic data to identify areas of high tumor content for targeting

diagnostic biopsies. The resulting model was able to sort tissue

into 2 categories of high and low tumor content. Together, these

initial studies suggested that important imaging patterns exist

amid the complex signal changes within the peritumoral region

and that careful analysis may yield correlates to tumor infiltration.

We hypothesized that quantitative measures of tissue cellular-

ity from localized biopsies will correlate with voxel-level signal on

multiple MR images and will provide more informative maps of

tumor infiltration at the margins of glioblastomas. To this end, a

fully automated cell counting and image coregistration pipeline

was developed to eliminate subjective bias and improve reliability.

With this approach, the objective of this study was to generate a

model capable of predicting cellularity at each voxel within an

entire tumor volume as a function of signal intensity, thus pro-

viding a means of quantifying tumor infiltration into surrounding

brain tissue.

MATERIALS AND METHODS
Patient Selection
A retrospective review was performed on our data base of adult

patients with MR imaging–localized biopsies obtained during

open surgical resection for glioma at Columbia University Medi-

cal Center between January 2012 and January 2015. Patient selec-

tion was limited to those with newly diagnosed glioblastoma

(World Health Organization grade IV) resected by 1 of 2 attend-

ing neurosurgeons (M.B.S., J.N.B.), who had complete preopera-

tive MR imaging available for analysis (ADC, T2-FLAIR, and T1-

weighted precontrast and postcontrast sequences). Patients were

excluded if their localized samples were determined to be inade-

quate for any for any of the following reasons: poor neuronaviga-

tional registration, excessive MR imaging motion artifacts, errors

in the automated screen capture, or problems with histologic pro-

cessing pipeline.

Image Acquisition
All imaging was performed on a 3T MR imaging system (Signa;

GE Healthcare, Milwaukee, Wisconsin) by using an 8-channel

head-array coil (Signa HDxt; GE Healthcare). The following se-

quences were assessed for each patient: pre- and postcontrast T1-

weighted, T2-FLAIR, and DWI. Pre- and postcontrast volumetric

acquisition was performed with a T1-weighted 3D inversion re-

covery fast-spoiled gradient-recalled sequence with the following

parameters: TI � 450 ms, TR � 10.2 ms, TE � 4.2 ms, flip angle

� � 13°, FOV � 250 mm; matrix � 256 � 256, section thick-

ness � 1.2 mm. The total scan time was approximately 4 minutes

15 seconds. Postcontrast images were acquired by using intrave-

nous gadobenate dimeglumine (MultiHance; Bracco Diagnostics,

Princeton, New Jersey) at a dose of 0.2 mL/kg. The time between

injection and postcontrast imaging was approximately 5 minutes.

Axial T2-FLAIR was performed with the following parameters:

TR/TE � 9500/127 ms, TI � 2250 ms, section thickness � 5 mm

with no gap, FOV � 225 mm. DWI was performed with a single-

shot, spin-echo, echo-planar sequence with the following param-

eters: TR/TE �7000/73 ms, FOV � 220 mm, matrix � 128 � 192,

section thickness � 5 mm with no gap, bandwidth � 1953 Hz/

pixel with b-values of 0 and 1000 s/mm2. ADC maps were gener-

ated in FuncTool software (GE Healthcare) for the quantitative

determination of mean diffusivity measurements.

Image Preprocessing
Raw image data from T1-precontrast, T2-FLAIR, and ADC maps

were aligned to the volumetric T1-postcontrast sequence by using

the FMRIB Linear Image Registration Tool (FLIRT; http://www.

fmrib.ox.ac.uk/).19,20 The linear affine transformation algorithm

was implemented by using 12 df, trilinear interpolation, and a

mutual information cost function. Each sequence was further

processed with a histogram normalization algorithm to standard-

ize intensity values among patients. The algorithm is based on a

method previously described that maximizes the cross-correla-

tion between cumulative histogram distribution functions of each

input volume with a reference standard.21 A mean reference tem-

plate was created for each sequence by pooling data from the

study subjects, each set to a mean intensity of 0 and an SD of 1.

T1-postcontrast subtraction images were obtained by subtracting

coregistration-normalized T1-precontrast volumes from T1-

postcontrast volumes.

Biopsy Acquisition
All tissue sampling was performed within the normal surgical

plan when it posed no additional risk to the patient. Samples were

taken from the CE tumor core in all cases and the NE region

around the tumor in some cases. Sampling of the NE, T2-FLAIR

hyperintense region was permissible in 2 scenarios: 1) when the

surgical trajectory required dissection through brain parenchyma

en route to the tumor, and 2) when resection of tissue lateral or

superficial to the CE region was part of the surgical goal. Biop-

sies were obtained before tumor debulking to maximize the

spatial fidelity of localization. Stereotactic guidance was pro-

vided by a volumetric T1-weighted postcontrast sequence on a

neuronavigation system (Brainlab Curve; Brainlab, Feld-

kirchen, Germany). The location of the biopsy was recorded by

screen capture of the surgical navigation system at the time of

tissue sampling.
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Biopsy Coregistration
A custom fully automated 2D-to-3D coregistration algorithm was

developed to convert the crosshairs from the neuronavigation sys-

tem screenshot image into an MR imaging coordinate (On-line

Fig 1). The algorithm is implemented in the following steps: First,

a cropped subimage of the biopsy crosshair in the axial orientation is

obtained. Subsequently, a 2D convolution is applied to a single axial

section from the original MR imaging by using the cropped axial

subimage as a convolution kernel. The process is iterated over a num-

ber of subimage scales (30%–200% zoom) and MR imaging sections

by using a grid search technique. The maximum from each resulting

cross-correlation response matrix is recorded, and the parameters are

updated until convergence is achieved. A final 2D convolution is

applied to the image by using a kernel reflecting a mask of the ex-

pected crosshair, thus localizing the point of interest. With this coor-

dinate as the center point, all voxels within a spheric ROI radius of 1

mm are recorded for each coregistered sequence. The final intensity

value used for analysis from each biopsy point is a Gaussian-weighted

mean of the voxels within the spheric ROI.

Histopathologic Processing and Analysis
The samples were divided into 2 pieces in the operating suite. One

piece was immediately flash frozen in liquid nitrogen for future

genetic studies. The second piece was fixed in 10% (volume/vol-

ume) formalin and infiltrated with low-temperature paraffin for

histologic analysis. Five-micrometer sections were stained with

hematoxylin-eosin. The slides were then scanned and digitalized

to BigTIFF files (http://bigtiff.org/) at �40 magnification by using

a Leica SCN400 system (Leica Biosys-

tems, Wetzlar, Germany). The high-res-

olution image was acquired at 40,000

pixels per centimeter (2.5 � 10�5 cm

per pixel).

Whole-Slide Cell Counting
A fully automated cell-counting algo-

rithm was developed by using a convo-

lutional neural network (Fig 1 and On-

line Fig 2). The algorithm was trained to

count the number of nuclei present in a

single high-power field (HPF), defined

by a 2.25 � 2.25 mm square (900 � 900

pixels). Subsequently, the neural net-

work was iteratively processed through

tiles of HPFs until the entire H&E slide

was counted (Fig 1B–D). HPFs at the

border of the tissue specimen (eg, only a

fraction of the field contained cells) were

excluded from analysis.

The neural network was trained to

classify the center pixel of a 21 � 21 � 3

RGB color input into 1 of 3 categories:

cellular nuclei, densely staining artifacts

mimicking cellular nuclei, and back-

ground staining. After a hyperparameter

grid search, the final neural network ar-

chitecture consisted of 5 convolutional

layers of 5 � 5 filters (with increasing

channel filter depths of 20, 40, 60, 80, and 120) followed by a final

fully connected layer. Rectified linear activation functions were

used after each convolutional layer, and a final softmax loss func-

tion was used to classify each input image. The network was

trained on 5000 annotated examples of each class and validated on

separate 1000 ground truth examples. A final validation classifi-

cation error of 3.8% was achieved after training for 100 epochs.

As a final test set validation, 25 high-power fields were chosen

at random. Each field was manually inspected to determine the

number of nuclei present. The same field was then evaluated by

the automated cell-counting algorithm. The human reviewer was

blinded to the final total cell count obtained by the automated

method. A high correlation was observed between the automated

algorithm and the manual cell counts as determined by a Pearson

coefficient (r � 0.984, Fig 2A).

Statistical Analysis
For each biopsy, MR signal intensity (ADC, T2-FLAIR, and T1-

weighted postcontrast) was correlated against cell density per

HPF. Single variable linear regression analysis and Pearson corre-

lation coefficients were determined. In addition, a multiple linear

regression model was created as defined by:

1) F� x� � ax1 � bx2 � cx3 � d,

where the predicted cellularity, F(x), was a linear function of sig-

nal intensity on ADC, T2-FLAIR, and T1-weighted postcontrast

sequences (x1, x2, and x3, respectively).

FIG 1. Whole-cell counting. A, Digitized, low-power magnification view of a single H&E-stained
slide. Two representative 400� fields from this single tissue specimen of relatively lower (B) and
higher (C) cell density illustrate the tissue heterogeneity present at a microscopic level. Stained
cellular nuclei identified by the automated counting algorithm are outlined in green. D, The “heat
map” demonstrates distribution of cell density at the level of a HPF throughout the tissue sample.
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To quantify the effects of potential biopsy misregistration, we

repeated the above linear correlations iteratively by replacing the

original spheric ROI with concentric shells of voxels at an increas-

ing distance from the biopsy center. The resulting changes to the

correlation of the model with increasing distance were plotted

and fit with a sigmoidal regression curve. All statistical and image

analyses were performed by using Matlab 2015b (MathWorks,

Natick, Massachusetts).

RESULTS
Patient Population
Thirty-six patients were included in this study, of whom 15

were male and 21 were female. The mean patient age at the

operation was 65.2 years (range, 24 – 88 years). Eight patients

were excluded due to poor neuronavigational registration, ex-

cessive motion artifacts, or errors in radiographic or tissue

processing. A total of 91 localized biopsies were analyzed (me-

dian, 2 samples per patient; range, 1– 6 samples). Each biopsy

point was coregistered individually on ADC, T2-FLAIR, and

T1-weighted postcontrast subtraction sequences, yielding 273

sets of data points for analysis.

Cell Density
Ninety-one H&E slides, 30,578 HPFs (mean, 336 HPFs per sam-

ple), were analyzed.

The median cell density was 98 nuclei per HPF (range, 4 –296

nuclei) among all biopsies. The median was used as a representa-

tive measure for cell density in an H&E slide, given the presence of

both outlying high- and low-density HPFs in almost all tissue

samples (Fig 1B, -C). Other percentile cell densities were also con-

sidered, but it was shown that these represented an approximately

linear translation of the median within any given H&E slide (Fig

2B, -C). For example, the 98th percentile cell density of any given

H&E slide was directly linearly correlated to the median cell count

(r � 0.901), displaced by approximately 50 additional nuclei/

HPFs. Thus, although the following analysis was evaluated with

the median cell density, the linear nature of the relationship be-

tween signal intensity and cellularity would remain valid across

most cell density percentiles.

Correlation between Signal Intensity and Cell Density
Scatterplots were used to assess the relationship between MR sig-

nal intensity and cellularity on multiple sequences (Fig 3). The

correlation between ADC and cellularity was r � 0.63; the corre-

FIG 2. Cell-counting statistics. A, Comparison between
manual and automated cell counts for 25 high-power fields
of various cellular densities. Correlation is high (r � 0.984),
suggesting that the automated algorithm accurately reflects
manual counts. B, For each biopsy sample, the median cell
density of all HPFs is compared with that of the 98th percen-
tile. A relatively strong linear correlation is preserved (r �
0.901), suggesting that the 98th percentile cell density simply
represents a linear translation of the median cell density. C,
Correlation analysis is repeated for all percentiles (0 –100).
With the exception of extreme values, most percentiles re-
tain a strong linear correlation (r � 90%) with the median cell
density.
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lation between T2-FLAIR and cellularity was r � 0.61; and the

correlation between T1-weighted postcontrast subtraction and

cellularity was r � 0.69. A multivariable linear regression was

performed to assess the predictive power of the combined MR

images. The Table shows the results of this analysis. The com-

bined model correlation improves to r � 0.74 with a model vari-

ance of R2 � 0.55.

Effects of Possible Misregistration
The ability to correlate voxel-level signal intensities and histo-

pathology is contingent on accurate biopsy colocalization. To

estimate the detrimental effect of possible misregistrations by

our automated coregistration algorithm, we compared the re-

lationship between MR signal intensity at varying degrees of

registration error. The spheric ROI used for the model corre-

lation was systematically replaced with voxels displaced at

0.5-mm increments from the center up to 5 mm of displace-

ment. For example, the first ROI included all voxels located 0.5

mm from the center, the second ROI included all voxels 1.0

mm from the center, and so on, resulting in a series of concen-

tric spheric shells. The correlations between signal intensity

and these projected biopsy locations are shown in Fig 4. As

expected, the correlation decreased as a function of distance

from the original biopsy site. After 5 mm of displacement,

near-zero correlation was observed for ADC and T2-FLAIR

sequences, suggesting that our registration algorithm was ac-

curate to �5-mm spatial resolution. Of note, increasing sam-

pling distance beyond this threshold for T1-weighted postcon-

trast subtraction sequences inverts the correlation from

positive to negative. This outcome is likely because beyond a

certain distance, voxels originally within the CE tumor are now

predominantly in the NE region, while voxels within the NE

portion of the tumor likely begin to incorporate portions of CE

tumor, thus inverting the expected relationship between en-

hancement and cellularity.

FIG 3. Cell count versus MR signal intensity. Scatterplots demonstrate median cell density as a function of signal intensity on ADC (A), T2-FLAIR
(B), and T1-postcontrast subtraction sequences (C) correlated by using single-variable regression analysis. The linear regression and Pearson
correlation (r) were significant (P � .05) for all 3 sequences. D, The scatterplot shows the actual and predicted cell counts as estimated by
combining all 3 imaging modalities in a multiple-variable regression model.

Multivariate linear regression model coefficients
� SE T-Score P Value

Constant 102 5.98 17.1 �.001
ADC �106 32.0 �3.30 �.001
FLAIR �56.0 23.5 �2.38 �.001
T1-subtracted 129 24.6 5.27 �.001

Note:—SE indicates standard error.
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Cell Density Map
Estimates for cellularity were projected at each voxel within the

tumor volume by using the multivariable linear regression model

and coregistered MR imaging sequences (Fig 5). Given that all

biopsies were obtained within the boundaries of T2-FLAIR signal

abnormality, the projected model estimates are limited to these

regions.

DISCUSSION
In this study, we describe a voxel-level multiparametric MR im-

aging model of glioblastoma cellularity derived from the radio-

logic and histologic features of radiographically localized biop-

sies. We found that tumor cellularity is inversely correlated with

ADC and T2-FLAIR signal and directly correlated with T1-

weighted postcontrast signal. A multiparametric linear regression

model based on these correlations captured approximately 54%

of the variance in cellularity within the tumor. Projection of these

estimates throughout the tumor volume provided a noninvasive

map of glioblastoma cellularity, suggesting a means of visualizing

infiltrative margins that may be derived from routine standard

imaging. Clinically, this model may be used to guide extended

surgical resection, localized biopsies, and/or radiation field map-

ping. Furthermore, it can be used as an outcome measure for

tracking progression and response to treatment.

Cellularity was inversely correlated to ADC signal; this corre-

lation is consistent with the notion that water diffusion is re-

stricted in hypercellular neoplastic environments.11,12,22-24 This

concept would suggest reduced ADC signal from frank tumor

tissue in the area of CE region, but also from infiltrating tumor in

the surrounding NE area. Our results are concordant with prior

studies using localized biopsies in the CE area, which found an

inverse relationship between ADC and cellularity in the CE

core.3,25 However, studies that used this technique in the peritu-

moral region yielded contradictory results. Sadeghi et al3 failed to

identify any significant relationship of ADC and cellularity in the

peritumoral region; however, this study consisted largely of lower

grade gliomas and the peritumoral region was defined histologi-

cally rather than radiologically. Conversely, the postmortem anal-

ysis of ex vivo tissue samples of LaViolette et al10 found a signifi-

cant inverse relationship between ADC and cellularity in areas of

tissue coregistered to peritumoral T2-FLAIR hyperintensity. In

summary, the mixed results and differences in techniques yielded

no strong conclusions but, together with our results, suggested

that ADC offers some information in characterizing the peritu-

moral region. However, additional study is necessary to under-

stand precisely how tumor histology is represented by ADC.

Cellularity was also inversely correlated with T2-FLAIR signal

FIG 4. Correlation versus distance from the biopsy. Scatter-
plots demonstrate the correlation between cell density and
signal intensity for each MR image (ADC, T2-FLAIR, T1-post-
contrast subtraction) obtained by taking the mean of con-
centric spheric shells of voxels at an increasing distance from
the original biopsy point. Notably, the correlations drop to 0
at a radius of approximately 5 mm (	10 voxels), providing an
estimate of the spatial accuracy of the biopsy location.
T1SUB indicates T1-subtraction.
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intensity. This correlation confirms earlier hypotheses of varia-

tions in T2-FLAIR hyperintensity. Specifically, areas of high cell

density result in an intermediate intensity signal, while tissue with

greater proportions of vasogenic edema is more uniformly hyper-

intense.15 This distinction was previously suggested by Akbari

et al,14 in which a mild loss in T2-FLAIR signal was found to be a

significant predictor of cellular infiltration, leading to recurrent

glioblastoma. Our results are the first to confirm this observation

with histologic sampling, to our knowledge.

Conversely, cellularity was directly correlated with T1-short-

ening on gadolinium-enhanced sequences. This finding is in line

with evidence of the perivascular migration of malignant cells,

disruption of endothelial tight junctions, and subsequent leakage

of gadolinium.16,17,26,27 Notably, instead of a bimodal distribu-

tion of T1 signal intensity corresponding to CE-versus-NE tumor,

a broad range of MR imaging intensity values was observed. These

observations corresponded to a similarly continuous broad

distribution of cellularity. These findings suggest that even

within apparently similar tumor compartments, marked his-

tologic heterogeneity is present.

To account for the possible effects of intrinsic T1 shortening as

may be seen with intratumoral blood products or dystrophic min-

eralization, we performed an analysis by using images obtained by

subtracting T1-weighted precontrast and postcontrast data.

Compared with results with native T1-weighted postcontrast im-

ages, the overall correlation in both single and multivariable mod-

els is slightly superior (On-line Fig 3). One potential explanation

is the reduced confounding influence of intrinsic T1 shortening

when using subtraction images, though no significant hemor-

rhage or dystrophic mineralization was identified on histopatho-

logic evaluation of localized biopsy samples. A second possible

source of improved correlation is that subtraction images facili-

tate an internal reference for intensity normalization so that local

magnetic field inhomogeneities or other artifacts present on both

pre- and postcontrast imaging would be reduced.

A multiple linear regression model

combining these individual relation-

ships improved overall correlation from

61%– 69% to 74%. This improvement

confirms that these MR images contrib-

ute different and complementary infor-

mation about the magnetic properties of

the tumor environment. Specifically,

our model is informed by tumor effects

on Brownian motion of water, tissue

heterogeneity in vasogenic edema, and

the degree of tumor-induced blood-

brain barrier breakdown.

Multiparametric modeling has been

previously leveraged to investigate the

imaging surrogates of peritumoral infil-

tration. Akbari et al14 used imaging evi-

dence of tumor recurrence in lieu of his-

tologic markers for cellularity to identify

MR imaging features suggestive of glio-

blastoma infiltration, yielding a predic-

tive model for recurrence. Hu et al18 ex-

panded on this technique with histologic correlation, by using

textural features extracted from multiple MR images to identify

regions of tumor-rich biopsy targets (defined as �80% tumor

content) in both the CE and NE regions. Our investigation builds

on the described previous work for multiparametric analysis by

implementing quantitative analysis of cellularity in the localized

biopsies from both CE and NE regions. The use of this continuous

variable provides a predictive model of underlying tissue

heterogeneity.

Furthermore, this study relates radiologic and histologic char-

acteristics at a more granular level, estimating cellularity on a

voxel-by-voxel basis. This feature necessitates accurate and pre-

cise biopsy acquisition, coregistration of multiple imaging se-

quences, and quantitative histologic analysis of tissue samples.

This effort remains nontrivial, with several potential sources of

error, including the following: neuronavigational registration to

the patient’s cranial features, intraoperative brain shift, initial

conversion of the biopsy image capture to 3D MR imaging space,

differences in acquisition matrices and patient motion, and anal-

ysis of whole-tissue specimens for full representation of their

heterogeneity.2,28

Measures were taken intraoperatively, and downstream pro-

cessing was fully automated to minimize these potential sources

of errors. By using changes in the model correlation as a reference

for deleterious effects secondary to possible misregistration, we

demonstrate that gradually displacing our original biopsy coordi-

nate by �0.5 mm causes an overall loss of signal correlation with

tumor cellularity. This outcome suggests that the coordinates de-

rived from the neuronavigation system screen capture corre-

spond well to the true location of tissue sampling. Furthermore,

the cell-counting algorithm provided unbiased measures of cell

density over the entirety of these heterogeneous tissue samples.

This proposed multivariable model reflects simple and intui-

tive signal-intensity responses to varying tissue cellularity; how-

ever, ultimately only 55% of the variance in observed tumor cel-

FIG 5. Whole-tumor model overlay. Estimated cellularity by applying the multiple regression
model on a voxelwise basis across the tumor. The model is derived from linear regression by using
ADC, T2-FLAIR, and T1-postcontrast sequences shown in the inset on the left. In the right panels,
corresponding biopsy specimens (400� magnification, H&E stained sections) are shown from 2
regions obtained on the same section, highlighting the considerable variation in cellularity in and
around the region of contrast enhancement (demarcated by a white outline).
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lularity is captured. The variance not accounted for by our model

may stem from several sources: The first is localization error,

which includes shifts in tissue position during an operation, er-

rors in registration between the MR imaging and neuronaviga-

tional system, and errors in registration in each patient’s multi-

modal MRIs. An additional source of unexplained variance comes

from the MR imaging intensity of each voxel being affected by

many physical and physiologic factors (eg, cell size and shape,

water volume, diffusion anisotropy, and so forth). Although these

factors are affected by tumor cellularity, a one-to-one relationship

between cellularity and MR imaging intensity of any given se-

quence does not exist. While a multivariable approach, in part,

reduces this phenomenon by minimizing the effects of uncorre-

lated noise, the proposed model is ultimately limited to linear

relationships between signal intensity and cellularity, unable to

account for the more spatially complex radiologic features of glio-

blastoma. The ability to model nonlinear behavior in signal intensity

may be improved in future iterations by using machine-learning al-

gorithms to implement both supervised and unsupervised feature

detection.

While cellularity provided a simple metric for radiographic-

histologic correlation, future studies would benefit from using

localized biopsies to analyze additional histologic characteristics

and molecular markers to capture other, more sophisticated fea-

tures of biologic heterogeneity in glioblastoma. In fact, the use of

machine-learning algorithms to implement both supervised and

unsupervised feature detection may allow the model to account

for potential complex and nonlinear radiographic-histologic re-

lationships. The incorporation of additional physiologic imaging

parameters such as dynamic susceptibility contrast perfusion, dif-

fusion tensor imaging, and resting-state blood oxygen level– de-

pendent imaging would likely further improve model prediction.

Finally, the model may generalize to other types of gliomas (eg,

low-grade gliomas); however, any model predictions beyond gli-

oblastoma would require a validation similar to that performed in

the current study.

CONCLUSIONS
This study demonstrates a significant correlation between voxel-

level signal intensity and cell density in glioblastoma by single-

variable regression as well as a more powerful multiparametric

predictive model. Thus, with a precise and rigorous analysis pipe-

line, we have affirmed the feasibility of meaningful quantitative

analysis at the voxel-level between signal intensity and localized

biopsies. In addition, the multiparametric model proposed in this

study provides a means to noninvasively map cell density at the

infiltrative margins of glioblastoma. This characterization, sup-

plemented by other histopathologic features, may be used to

guide extended surgical resection, localized biopsy, and/or radia-

tion field mapping, with significant implications for patient

management.
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