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ORIGINAL RESEARCH
ADULT BRAIN

Relationships among Cortical Glutathione Levels, Brain
Amyloidosis, and Memory in Healthy Older Adults

Investigated In Vivo with 1H-MRS and
Pittsburgh Compound-B PET

X G.C. Chiang, X X. Mao, X G. Kang, X E. Chang, X S. Pandya, X S. Vallabhajosula, X R. Isaacson, X L.D. Ravdin, for the Alzheimer’s
Disease Neuroimaging Initiative, and X D.C. Shungu

ABSTRACT

BACKGROUND AND PURPOSE: Oxidative stress has been implicated as an important pathologic mechanism in the development of
Alzheimer disease. The purpose of this study was to assess whether glutathione levels, detected noninvasively with proton MR spectros-
copy, are associated with brain amyloidosis and memory in a community-dwelling cohort of healthy older adults.

MATERIALS AND METHODS: Fifteen cognitively healthy subjects were prospectively enrolled in this study. All subjects underwent 1H-MR
spectroscopy of glutathione, a positron-emission tomography scan with an amyloid tracer, and neuropsychological testing by using the
Repeatable Battery for the Assessment of Neuropsychological Status. Associations among glutathione levels, brain amyloidosis, and
memory were assessed by using multivariate regression models.

RESULTS: Lower glutathione levels were associated with greater brain amyloidosis in the temporal (P � .03) and parietal (P � .05) regions,
adjusted for apolipoprotein E �4 carrier status. There were no significant associations between glutathione levels and cognitive scores.

CONCLUSIONS: This study found an association between cortical glutathione levels and brain amyloidosis in healthy older adults, suggesting a
potential role for 1H-MR spectroscopy measures of glutathione as a noninvasive biomarker of early Alzheimer disease pathogenesis.

ABBREVIATIONS: AD � Alzheimer disease; ADNI � Alzheimer’s Disease Neuroimaging Initiative; APOE � apolipoprotein E; GSH � glutathione; PiB � Pittsburgh
compound-B; RBANS � Repeatable Battery for the Assessment of Neuropsychological Status

Alzheimer disease (AD), a devastating neurodegenerative dis-

order afflicting �11% of individuals older than 65 years of

age,1 is currently the sixth leading cause of death in the United

States. Various forms of therapy have failed to show clinical ben-

efit in individuals with AD.2 In the absence of disease-modifying

pharmacotherapy for AD, identifying and potentially targeting

early pathologic processes that may lead to the development of

AD are essential in developing prevention strategies.

Oxidative stress, defined as excessive production of free radi-

cals relative to total tissue antioxidant reserves, has emerged from

in vitro and preclinical studies as a key pathologic process in the

development of AD.3-8 In transgenic mouse models, depletion of

the reduced form of the tripeptide thiol glutathione (GSH)—the

most abundant intracellular antioxidant and free radical scaven-

ger and a reliable marker of oxidative stress9— has been reported

to precede amyloid oligomerization and plaque formation,10,11

both pathologic hallmarks of AD. A self-propagating cycle of free

radical formation, oxidative stress, and amyloid plaque formation

has also been shown in vitro.12 Furthermore, it has been suggested

that amyloid may have antioxidant properties, thereby serving as

a compensatory mechanism in the presence of oxidative stress.13

However, the relationship between oxidative stress and amyloid-

osis in humans remains poorly understood, particularly early in

the disease course when oxidative stress may serve as a potential

target for disease-modifying interventions.

The primary aim of this study was therefore to assess the rela-

tionship between proton MR spectroscopy measures of GSH lev-

els and brain amyloidosis, as assessed by positron-emission to-

mography with the amyloid tracer Pittsburgh compound-B

(PiB),14 in a prospective cognitively healthy community cohort of

elderly subjects. Secondarily, we aimed to assess the relationship

between GSH levels and memory. Last, we investigated whether

GSH levels were associated with potentially modifiable AD risk

factors.
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MATERIALS AND METHODS
Subjects
Fifteen cognitively healthy subjects, recruited through flyers

posted in the community, newspaper advertisements, and ambu-

latory care clinics, were prospectively enrolled. All subjects gave

written informed consent to participate in this study, which was

approved by the institutional review board of our institution.

Inclusion criteria consisted of individuals between 55 and 75

years of age with intact ability to perform all routine activities of

daily living, including living independently in the community.

None of the subjects met the criteria for mild cognitive impair-

ment or AD. Subjects were also excluded if they had comorbid

medical conditions that could impact brain function, including

major psychiatric disorders (ie, major depression, bipolar disor-

der, psychosis), brain tumors, prior strokes, significant traumatic

brain injury (defined as requiring a visit to the emergency de-

partment or a hospital admission), seizure disorders, recent

illicit drug use, alcohol abuse, and other major medical condi-

tions, such as heart failure, recent myocardial infarction, renal

failure, liver disease, chronic obstructive pulmonary disease, and

malignancy.

Clinical Data
All subjects completed detailed questionnaires about their medi-

cal history and medical records were also examined. Clinical data

collected included recent weight and height, cholesterol levels,

blood pressure measurements, and the number of hours of exer-

cise per week, because these factors have been reported to be as-

sociated with the risk for AD.15,16 Exercise was defined as physical

activity more strenuous than daily routine activity. We also elic-

ited a family history of dementia, because genetics could explain

increased brain amyloidosis in otherwise cognitively healthy

subjects.17

Cognitive Battery
Cognitive testing was performed by a board-certified neuropsy-

chologist (L.D.R.). Patients were first screened for depression and

anxiety by using the Beck Depression Inventory-II18 and the Beck

Anxiety Inventory.19 Immediate and delayed memory were as-

sessed by using subscores of the Repeatable Battery for the Assess-

ment of Neuropsychological Status (RBANS) based on tasks that

involved recalling a list of words and a short story.20 Additional

cognitive domains assessed included visuospatial and construc-

tional function, assessed with figure copying and line orientation

tasks; attention, assessed with digit span and coding tasks; and

language, assessed with picture naming and semantic fluency

tasks. The RBANS has been previously reported to have 90% ac-

curacy for discriminating between cognitively healthy individuals

and those with mild cognitive impairment.21

Apolipoprotein E �4 Genotyping
Blood samples were obtained from all subjects to isolate DNA

for Apolipoprotein E (APOE) genotyping, which was performed

by using polymerase chain reaction amplification, allele-spe-

cific primers, and identification of fragments on an agarose

gel.22

MR Imaging and Spectroscopy Data Acquisition
and Analysis
All subjects underwent standardized structural MR imaging of the

brain and single-voxel 1H-MR spectroscopy on a research-dedi-

cated 3T MR imaging system (Excite HD; GE Healthcare, Mil-

waukee, Wisconsin) with an 8-channel phased array head coil.

The MR imaging protocol consisted of a structural T1-weighted

spoiled gradient-recalled echo volumetric scan for tissue segmen-

tation and an axial fast fluid-attenuated inversion recovery scan to

exclude focal pathology.

In vivo 1H-MR spectroscopy data were obtained from a 2.5 �

2.5 � 2.5 cm3 voxel prescribed in the medial parietal lobe to

include the posterior cingulate gyrus and precuneus—a region

chosen because multiple prior studies reported early involvement

of these regions by AD due to their inclusion in the memory

network.23-26 The standard J-edited spin-echo difference method

with TE/TR � 68/1500 ms was used to measure the levels of re-

duced GSH, as previously described27-30 and illustrated in Fig 1.

Although it has been suggested that a TE of 120 ms is optimal for

GSH detection by J-editing,31 we opted to use a TE of 68 ms

because it yields a difference spectrum in which the coedited as-

FIG 1. Glutathione detection in the medial parietal lobe with J-edited
1H-MR spectroscopy. Axial (A), sagittal (B), and coronal (C) MR images
of a human brain, with depiction of the size, location, and angulation of
the voxel of interest in the medial parietal lobe. D, Demonstration of
in vivo human brain glutathione detection by 1H-MR spectroscopy:
spectra a and b, single-voxel subspectra acquired in 15 minutes with
the editing pulse on and off and 290 (580 total) interleaved averages;
spectrum c, difference between spectra a and b, showing the edited
brain GSH resonance at 2.98 ppm; spectrum d, model fitting of spec-
trum c to obtain the GSH peak area; spectrum e, residual of the
difference between spectra c and d. tCho indicates total choline; tCr,
total creatine.
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partyl (CH2) resonances of NAA around 2.5 ppm are inverted and

clearly separated from the noninverted GSH resonance, facilitat-

ing spectral fitting (Fig 1).27,28

Briefly, a pair of frequency-selective inversion pulses was in-

serted into the standard point-resolved spectroscopy sequence

method and was applied on alternate scans at the frequency of the

GSH �-cysteinyl resonance at 4.56 ppm while avoiding excitation

of oxidized GSH �-cysteinyl at 3.28 ppm.32 This process resulted

in 2 subspectra in which reduced GSH, but not oxidized GSH, was

alternately inverted or not inverted. Subtracting these 2 subspec-

tra yielded a 1H-MR spectrum consisting of only the edited GSH

�-cysteinyl resonance at 2.98 ppm. A high test-retest reliability

has been reported for detection of �-aminobutyric acid with this

MR spectroscopy technique on the same 3T GE Healthcare Excite

HD instrument.33 Spectral data for this study were acquired in 15

minutes by using 290 interleaved excitations (580 total) with the

editing pulses on or off. The area under the GSH resonance, which

is proportional to the concentration of GSH in the voxel of inter-

est, was obtained by frequency-domain spectral fitting as previ-

ously described.28 The derived GSH peak areas were then ex-

pressed semiquantitatively as ratios relative to the unsuppressed

intravoxel water signal for normalization across subjects before

being used in group analyses. To estimate the proportions of gray

matter, white matter, and CSF contained in the voxel of interest,

the volumetric spoiled gradient-recalled echo MR imaging data

were segmented by using Statistical Parametric Mapping software

(SPM8; http://www.fil.ion.ucl.ac.uk/spm/software/spm8).

Pittsburgh Compound-B PET Image Acquisition
and Analysis
All subjects underwent an amyloid PET scanning on a Biograph

PET-CT scanner (Siemens, Erlangen, Germany; 1-mm full width

at half maximum, 25-cm FOV) by using a standardized research

protocol.17 All subjects received an intravenous catheter for injec-

tion of 15 mCi of PiB. Sixty minutes after injection, subjects were

scanned for 30 minutes with their eyes open in a quiet, dimly lit

room. A low-dose CT scan was acquired for attenuation cor-

rection, and all images were reconstructed into a 512 � 512

matrix.

Summed PET images corresponding to the 60 –90 minutes of

PiB data were generated and nonlinearly normalized to a PiB tem-

plate. The PiB template was generated by averaging the summed

images of 48 cognitively healthy individuals in the same age range,

which were downloaded from the Alzheimer’s Disease Neuroim-

aging Initiative (ADNI) on-line data repository (adni.loni.

usc.edu). The ADNI was launched in 2003 as a public-private

partnership, led by Principal Investigator Michael W. Weiner,

MD, with the primary goal of testing whether serial MR imaging,

positron-emission tomography, other biologic markers, and clin-

ical and neuropsychological assessment may be combined to

measure the progression of mild cognitive impairment and early

Alzheimer disease. More information may be obtained at www.

adni-info.org.

Orientation and origin for all the PiB PET images were auto-

matically fixed to the anterior commissure to match the templates

used in Statistical Parametric Mapping (SPM; Wellcome Depart-

ment of Imaging Neuroscience, London, UK), because the “normal-

ize” function of SPM uses the origin as a starting estimate. These

reoriented PiB PET images and the mean PiB template were skull-

stripped with the FSL Brain Extraction Tool (http://fsl.fmrib.ox.

ac.uk/fsl/fslwiki/BET)34 to avoid any bias induced by skull staining.

All the skull-stripped PiB PET images were then nonlinearly warped

to the skull-stripped mean PiB template. Gray matter regions were

parcellated by using the Automated Anatomical Labeling atlas of

SPM to obtain 116 automated ROIs.35 Regional PiB uptake values

were then normalized by the subject’s cerebellar reference uptake.

Prior ADNI publications determined that the 4 large regions

of the brain that are most useful in measuring the degree of brain

amyloidosis are the frontal, anterior/posterior cingulate, lateral

parietal, and lateral temporal regions, with the cerebellum as a

reference region.36-39 Using ROIs from the Automated Anatom-

ical Labeling atlas, we determined amyloid deposition in the fron-

tal region by averaging the uptake values from the bilateral supe-

rior frontal, bilateral superior orbital frontal, bilateral middle

frontal, bilateral inferior frontal opercular, bilateral inferior fron-

tal triangularis, bilateral supplemental motor, bilateral medial su-

perior frontal, and bilateral middle orbital frontal regions of the

brain. The cingulate region included the bilateral anterior, mid-

dle, and posterior cingulum regions. The lateral parietal region

included the bilateral superior and inferior parietal regions, as

well as the precuneus. The lateral temporal region included the

bilateral and superior middle temporal regions.

Statistical Analysis
All statistical analyses were performed in STATA, Version 13

(StataCorp, College Station, Texas).

The potential influence of voxel tissue heterogeneity and brain

matter content in the analyses was examined by testing for asso-

ciations between brain matter proportions in the voxel of interest

and both MR spectroscopy measures of GSH levels and PiB PET

measures of amyloid levels. We also examined the distribution of

brain tissue proportions within our subject cohort to identify

outliers.

To assess whether there was an association between GSH and

brain amyloidosis, based on uptake on PiB PET, we used ordinary

least-squares regression analysis with amyloid levels in each of the

4 brain regions as the outcome variable and GSH as the predictor

variable. Because APOE �4 carrier status has been shown to be

associated with increased brain amyloidosis in the literature,40-43

carrier status was included as a covariate to adjust for this con-

founding factor.

The robustness of any association between GSH and amyloid-

osis was examined by bootstrapping the original cohort of sub-

jects 1000 times to obtain 95% confidence intervals.44 The effect

of a clear outlier (high parietal amyloidosis and low GSH) on the

association was examined by performing the analyses both with

and without this data point. To assess the effect sizes of our asso-

ciations, we estimated the correlation coefficients between GSH

and amyloidosis, with �0.1 indicating a small effect, 0.1– 0.5 in-

dicating a medium effect, and �0.5 indicating a large effect.45 We

also calculated the partial eta-squared for GSH on the basis of the

regression models,46 with �0.06 indicating a small effect, 0.06 –

0.14 indicating a medium effect, and �0.14 indicating a large

effect.47
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To assess whether there was an association between GSH levels

and memory, we again used ordinary least-squares regression

analysis with GSH as the predictor and the age-adjusted subscores

from the RBANS as the outcome variable. Because APOE �4 car-

rier status is known to be a risk factor for AD,48,49 it was again

included as a covariate.

Finally, we explored the associations between GSH and poten-

tial mediators of oxidative stress, including obesity, hypercholes-

terolemia, hypertension, and exercise, again by using ordinary

least-squares regression analyses.

RESULTS
Subjects ranged in age from 55 to 72 years (mean, 63 � 5 years),

and 5 (33%) of the subjects were women. All subjects completed

at least a year of college, with a mean of 16 � 3 years of education.

Five (33%) subjects had a family history

of dementia. Ten (67%) subjects had the

APOE �3/�3 genotype, 2 (13%) subjects

carried the APOE �2/�3 genotype, and 3

(20%) subjects had the APOE �3/�4 ge-

notype. Eight (53%) subjects had co-

morbid hypercholesterolemia, and 7

(47%) subjects had comorbid hyperten-

sion. Body mass index ranged from 22 to

37, with a mean of 29 � 4. Subjects re-

ported exercising 0 –14 hours per week,

with a mean of 3 � 4 hours.

The results of the regression analyses

evaluating the association between
1H-MR spectroscopy GSH and amy-

loidosis as assessed by PiB PET are pro-

vided in Table 1 and shown in Fig 2.

There were no significant associations

between tissue proportions and GSH

levels or amyloidosis. After we adjusted

for APOE �4 status, GSH levels were in-

versely associated with levels of amy-

loidosis in both the temporal region

(P � .03, coefficient � �209; 95% con-

fidence interval, �395 to �23) and pa-

rietal region (P � .05, coefficient �

�308; 95% confidence interval, �621 to

3). Post hoc bootstrapping yielded a P

value of .08 (95% confidence interval,

�441 to 23) for the temporal region and

0.1 (95% confidence interval, �705 to

88) for the parietal region. In addition,
the association between parietal region
amyloidosis and GSH appears to have
been primarily driven by 1 subject with

high amyloidosis and low GSH. The as-

sociation was no longer significant when

this outlier was excluded (coefficient �

�62, P � .60). There was no significant

association between GSH levels and ei-

ther frontal (P � .67) or cingulate (P �

.88) region amyloidosis.

The correlation coefficient between

GSH and temporal region amyloidosis was �0.51, indicating a

large effect size. The correlation coefficient between GSH and

parietal region amyloidosis was �0.47, indicating a medium ef-

fect size. In the regression models, the effect sizes for GSH were

large, explaining a greater proportion of the variance in amyloid-

osis than in APOE �4 status. The partial eta-squared for GSH and

APOE �4 was 0.33 and 0.25, respectively, for the temporal region.

The partial eta-squared for GSH and APOE �4 was 0.28 and 0.23,

respectively, for the parietal region.

The results of the regression analyses evaluating the associa-

tion between GSH and cognition are provided in Table 2 and

shown in Fig 3. None of the associations were statistically

significant.

The results of the exploratory regression analyses evaluating

FIG 2. Scatterplots showing the relationship between glutathione levels and brain amyloidosis by
region. After we adjusted for APOE4 carrier status, lower glutathione levels were associated with
higher levels of amyloidosis in the temporal (A) (P � .03) and in the parietal (B) (P � .05) regions, but
not in the frontal (C) (P � .67) or cingulate (D) (P � .88) regions. Fitted lines and 95% confidence
intervals (shaded area) are also shown.

Table 1: Results of the regression analyses showing associations between glutathione and
regional brain amyloidosis

Regression Coefficients

Frontal
Amyloidosis

Cingulate
Amyloidosis

Parietal
Amyloidosis

Temporal
Amyloidosis

Glutathione levels (�SE) �39 � 90 �27� 174 �308 � 143 �209 � 85
P value .67 .88 .05 .03

Note:—SE indicates standard error.

Table 2: Results of the regression analyses showing associations between glutathione and
age-adjusted cognitive scores on the Repeatable Battery for the Assessment of
Neuropsychological Status

Regression Coefficients (×102)

Immediate
Memory
Subscore

Delayed
Memory
Subscore

Visuospatial/
Construction

Subscore
Language
Subscore

Attention
Subscore

Glutathione levels (�SE) 317 � 198 232 � 171 113 � 183 �24 � 242 361 � 247
P value .14 .20 .55 .92 .17

Note:—SE indicates standard error.
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the association between GSH levels and risk factors for AD are

shown in Table 3. There was a trend-level inverse association be-

tween body mass index and GSH levels (P � .08). Exercise, hy-

percholesterolemia, and hypertension were not significantly asso-

ciated with GSH levels (P � .05).

DISCUSSION
The value of noninvasive measurement of GSH by 1H-MR spec-

troscopy lies in its potential to directly implicate and support a

role for oxidative stress in the early stages of AD development.

Using this technique, the present study sought to identify a role

for oxidative stress in a prospective cohort of healthy older sub-

jects, assessing potential associations between cortical GSH levels

and brain amyloidosis and between GSH and memory. The major

finding was that GSH levels, measured with 1H-MR spectroscopy,

are negatively associated with brain amyloidosis, as assessed with

PiB PET, in the temporal and parietal regions. In this cognitively

healthy cohort, there were no associations between GSH levels

and immediate and delayed memory.

The inverse association between levels of GSH and temporal

and parietal amyloid levels supports a role for oxidative stress in

amyloid plaque formation—a finding that is consistent with prior

laboratory and preclinical studies.5,6-8,46-49 An association be-

tween oxidative stress and amyloidosis has also been suggested by

clinical studies on AD. Mandal et al50 found that GSH levels mea-

sured by 1H-MR spectroscopy could accurately discriminate among

healthy subjects, individuals with mild
cognitive impairment, and patients with
AD, with decreased GSH levels being as-
sociated with increased levels of cogni-
tive impairment. In postmortem AD
brains,51 depleted GSH levels accompa-
nied the diagnosis of AD. There have

also been reports associating GSH de-

pletion with mitochondrial dysfunction52,53 and neuronal degen-

eration.54,55 On the other hand, increased GSH levels have been

reported in those with mild cognitive impairment compared with

healthy subjects, suggesting that there may be a compensatory

up-regulation of GSH in the early stages of AD.56 However, no

direct relationship between oxidative stress and amyloidosis was

established in any of the prior clinical studies because subject

groups were defined clinically without quantifying the degree of

underlying amyloidosis. In the present study, with an advanced
1H-MR spectroscopy editing technique that enables reliable in

vivo measurements of GSH, we have obtained strong preliminary

evidence of an inverse relationship between GSH levels and amy-

loidosis in older adults, even before the onset of mild cognitive

impairment. Replication in larger cohorts would both solidify this

result and support measurement of brain GSH levels with 1H-MR

spectroscopy as a noninvasive biomarker of AD risk early in dis-

ease development.

This study also investigated whether GSH levels are associated

with memory because memory deficits are known to be the earli-

est clinical manifestation of AD57 and predict time-to-progres-

sion from cognitively healthy to mild cognitive impairment.58

Because oxidative stress can exert deleterious effects on mito-

chondrial function and neuronal integrity, we surmised that GSH

depletion could also lead to memory dysfunction. Two prior stud-

ies that included subjects with mild cognitive impairment and AD

FIG 3. Scatterplots showing the relationship between glutathione levels and scores on the Repeatable Battery for the Assessment of Neuro-
psychological Status. There were no significant associations between higher glutathione levels and higher age-adjusted immediate (A) (P � .14)
and delayed (B) (P � .20) memory subscores. Higher glutathione levels were not associated with attention (C) (P � .17), visuospatial/construction
(D) (P � .55), or language (E) (P � .92) subscores. Fitted lines and 95% confidence intervals (shaded area) are also shown.

Table 3: Association between Alzheimer risk factors and glutathione levels
Regression Coefficients (×10−5)

Body
Mass Index

Exercise
(hr per wk)

Comorbid
Hypertension

Comorbid
Hypercholesterolemia

Glutathione levels (�SE) �2.2 � 1.23 �1.3 � 1.4 �5.5 � 9.9 �8.4 � 11.0
P value .08 .36 .59 .46

Note:—SE indicates standard error.

1134 Chiang Jun 2017 www.ajnr.org



reported conflicting results, with one reporting GSH deficits in

mild cognitive impairment and AD50 and the other reporting a

potential compensatory increase of GSH in mild cognitive im-

pairment.56 Our study found no associations between GSH levels

and cognitive scores in our cognitively healthy cohort, necessitat-

ing further studies in larger cohorts.

In exploring associations between GSH and AD risk factors,

we found a trend-level inverse association between GSH levels

and body mass index. Barnes and Yaffe15 previously reported that

up to 54% of AD cases may be attributable to modifiable risk

factors, with 21% attributable to physical inactivity and 7% attrib-

utable to obesity. In the present cohort, we explored the associa-

tion between these risk factors and GSH levels and found a trend-

level negative association with body mass index, which could be

consistent with a prior large cohort study of �2000 subjects,

which found increased markers of oxidative stress, which would

deplete GSH, with increased body mass index.59 If this finding is

validated, monitoring GSH levels by 1H-MR spectroscopy could

also serve as a biomarker of the potential benefits of various life-

style-modification regimens, without the radiation risk and cost

of PET imaging.

Finally, this study has a number of limitations. First, the sam-

ple size was relatively small, potentially limiting both statistical

power and generalizability of the findings. Replication of these

findings in larger cohorts will be necessary. Second, our cohort

consisted of cognitively healthy individuals. As a result, subjects

did not have significant memory deficits, possibly limiting our

ability to detect statistically significant associations between GSH

and memory, particularly in a small cohort. Third, we targeted the

precuneus for GSH measurement with MR spectroscopy because

this region is affected early in AD pathology. However, there may

be abnormalities in other brain regions, which would need to be

investigated to obtain a more complete understanding of oxida-

tive stress–associated brain damage in AD and its prodromal

stages. Furthermore, although we found associations between

GSH and amyloidosis, longitudinal studies are necessary to deter-

mine whether decreased GSH levels increase subsequent risk of

developing AD. Finally, we did not enroll a control group for

comparison with our cognitively healthy cohort. As a result, it is

not known whether the GSH levels detected in our cohort are

significantly abnormal.

CONCLUSIONS
This is the first study, to our knowledge, to explore in vivo asso-

ciations between GSH and brain amyloidosis, as well as GSH and

memory in a cognitively healthy cohort. This supports a role for
1H-MR spectroscopy measures of cortical glutathione as a poten-

tial early biomarker of AD pathology and therapeutic response

monitoring of existing or future disease-modifying interventions

targeting oxidative stress.
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