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ABSTRACT

BACKGROUND AND PURPOSE: MR imaging can be used to measure structural changes in the brains of individuals with multiple sclerosis
and is essential for diagnosis, longitudinal monitoring, and therapy evaluation. The North American Imaging in Multiple Sclerosis Cooper-
ative steering committee developed a uniform high-resolution 3T MR imaging protocol relevant to the quantification of cerebral lesions
and atrophy and implemented it at 7 sites across the United States. To assess intersite variability in scan data, we imaged a volunteer with
relapsing-remitting MS with a scan-rescan at each site.

MATERIALS AND METHODS: All imaging was acquired on Siemens scanners (4 Skyra, 2 Tim Trio, and 1 Verio). Expert segmentations were
manually obtained for T1-hypointense and T2 (FLAIR) hyperintense lesions. Several automated lesion-detection and whole-brain, cortical,
and deep gray matter volumetric pipelines were applied. Statistical analyses were conducted to assess variability across sites, as well as
systematic biases in the volumetric measurements that were site-related.

RESULTS: Systematic biases due to site differences in expert-traced lesion measurements were significant (P � .01 for both T1 and T2
lesion volumes), with site explaining �90% of the variation (range, 13.0 –16.4 mL in T1 and 15.9 –20.1 mL in T2) in lesion volumes. Site also
explained �80% of the variation in most automated volumetric measurements. Output measures clustered according to scanner models,
with similar results from the Skyra versus the other 2 units.

CONCLUSIONS: Even in multicenter studies with consistent scanner field strength and manufacturer after protocol harmonization,
systematic differences can lead to severe biases in volumetric analyses.

ABBREVIATIONS: NAIMS � North American Imaging in Multiple Sclerosis Cooperative; T1LV � T1-hypointense lesion volume; T2LV � T2 lesion volume

Conventional MR imaging is an established tool for measuring

CNS lesions and tissue compartment volumes in vivo in in-

dividuals with multiple sclerosis. In the brain and spinal cord,

inflammatory demyelinating lesions appear hyperintense on T2-

weighted images. Total cerebral T2 lesion volume (T2LV) is a key

metric for the longitudinal monitoring of disease severity, as well

as a standard outcome in clinical trials of MS therapeutics.1-3

Many T2 lesions exhibit pulse-sequence-dependent hypointen-

sity on T1-weighted images, which has been shown to be associ-

ated with more severe (destructive) histopathology and worse

clinical outcomes.4-8 MR imaging is also used to measure cerebral
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atrophy, a commonly used supportive outcome measure of the

neurodegenerative aspects of the disease in both relapsing-remit-

ting and progressive forms of MS.9-18 Together, lesion and atro-

phy measures provide complementary quantitative information

about disease progression that are considered central to patient

assessment.19

Unfortunately, differences in acquisition methods have the

potential to bias MR imaging metrics. Factors such as equip-

ment manufacturer, magnetic field strength, and acquisition

protocol can affect image contrast and resultant volumetric

data. Indeed, several groups have investigated the reliability of

volumetric measurements across scanners,20-27 but little is un-

derstood about the variability in volumetric measurements of

lesions and atrophy in individuals with MS. Furthermore,

many automated segmentation algorithms depend on statisti-

cal atlases or models that are built with healthy volunteers or

that depend on registration, which can be compromised by the

presence of MS pathology.28

The North American Imaging in Multiple Sclerosis Coopera-

tive (NAIMS) was established to accelerate the pace of imaging

research. As a consortium, our first aim was to facilitate multi-

center imaging studies by creating harmonized MR imaging pro-

tocols across sites. In this article, we describe initial results from

our pilot study, which tested the feasibility of multisite standard-

ization of MR imaging acquisitions for the quantification of lesion

and tissue volumes. We compare inter- to intrasite scan-rescan

variability in various MR imaging output metrics with consis-

tently acquired 3T acquisitions.

MATERIALS AND METHODS
Participant
A 45-year-old man with clinically stable relapsing-remitting

MS and mild-to-moderate physical disability was imaged at 7

NAIMS sites across the United States (Table). He developed

the first symptoms of the disease 13 years before study enroll-

ment and had been relapse-free in the previous year after start-

ing dimethyl fumarate. His last intravenous corticosteroid ad-

ministration was 5 years previously. His timed 25-foot walk at

study entry was 5.3 seconds. His Expanded Disability Status

Scale score was 3.5, both at study entry and exit, without any

intervening relapses on-study. The participant signed in-

formed consent for this study, which was approved by the in-

stitutional review board of each site.

Scan Acquisition
Through consensus agreement in the Cooperative, NAIMS devel-

oped a standardized high-resolution 3T MR imaging brain scan

protocol. All imaging was acquired with Siemens scanners, which,

at the time of the study, were used by most NAIMS sites. Scan-

rescan pairs were acquired on these scanners; the most relevant

acquisition sequences are shown in the Table. At each site, the

scan-rescan experiment was performed on the same day, with

the participant removed and repositioned between scans.

None of the participant’s scans were coregistered to each other,

to replicate a “real world” clinical trial setting. The volunteer

was also imaged at the National Institutes of Health NAIMS

site at the beginning and end of the study (5 months later) to

assess disease stability. Raw MR imaging scans were distributed

to 4 NAIMS sites for postprocessing.

Expert Lesion Tracing
De-identified images underwent manual quantification to assess

total cerebral T1-hypointense lesion volume (T1LV) and T2LV

from the native 3D FLAIR and T1 images by the consensus of

trained observers (G.K., F.Y.) under the supervision of an experi-

enced observer (S.T.). For T2LV, this process involved manually

identifying all lesions on the FLAIR images. For T1LV, lesions

were required to show hypointensity on T1-weighted images and

at least partial hyperintensity on FLAIR images. The lesions were

then segmented by 1 observer (G.K.) with a semiautomated edge-

finding tool in Jim (Version 7.0; http://www.xinapse.com/

home.php) to determine lesion volumes. Images were presented

to the same reading panel for all of the above steps in random

order in 1 batch and mixed into a stack of 50 other MS images to

reduce scan-to-scan memory effects and preserve blinding.

Automated Analysis
Several fully automated pipelines were also used to estimate

T2LV and the volumes of total brain, normal-appearing white

matter, and both cortical and deep gray matter structures. To

prevent overfitting, we used all pipelines with their default

settings, according to published recommendations for each

3T brain MRI anatomic acquisition protocolsa

3D T2 FLAIR 3D T1 MPRAGE

Siemens Skyra Siemens Verio Siemens Tim Trio Siemens Skyra Siemens Verio Siemens Tim Trio
Operation system version syngo MR D13 syngo MR B17 syngo MR B17 syngo MR D13 syngo MR B17 syngo MR B17
Coil 32 or 64 Channelb 32 Channel 32 Channel 32 or 64 Channelb 32 Channel 32 Channel
Acceleration factor for

parallel imaging
2 2 2 2 2 2

Orientation Sagittal Sagittal Sagittal Sagittal Sagittal Sagittal
FOV (cm) 25.6 � 25.6 25.6 � 25.6 25.6 � 25.6 25.6 � 25.6 25.0 � 25.0 25.0 � 25.0
Matrix size 512 � 512 512 � 512 512 � 512 256 � 256 256 � 256 256 � 256
No. of sections 176 176 176 176 176 176
TR (ms) 4800 4800 4800 1900 1900 1900
TE (ms) 353 354 355 2.52 2.52 2.52
Flip angle 120° 120° 120° 9° 9° 9°
Voxel size (mm) 0.5 � 0.5 � 1.0 0.5 � 0.5 � 1.0 0.5 � 0.5 � 1.0 1.0 � 1.0 � 1.0 0.977 � 0.977 � 1.0 0.977 � 0.977 � 1.0
Scan time (min:s) 6:53 7:00 7:00 4:15 4:16 4:16
No. of signal averages 1 1 1 1 1 1

a Each of the 7 sites used 1 of 3 different Siemens scanner models (Skyra, Verio, and Tim Trio), necessitating 3 model-specific protocols for the 2 pulse sequences.
b University of California, San Francisco � 64-channel (the other Skyra sites � 32 channel).

1502 Shinohara Aug 2017 www.ajnr.org

http://www.xinapse.com/home.php
http://www.xinapse.com/home.php


method separately, in which appropriate images were inhomo-

geneity corrected, rigidly aligned across sequences from each

scan session, processed for removal of extracerebral voxels for

all processing pipelines, and intensity normalized. For lesion

measurements, several algorithms were applied by the labora-

tories that developed or codeveloped the various methods:

Lesion-TOADS (TOpology-preserving Anatomical Segmentation;

https://www.nitrc.org/projects/toads-cruise/),29 a fuzzy C-means-

based segmentation technique with topologic constraints; Auto-

mated Statistical Inference for Segmentation (OASIS),30 a logis-

tic-regression-based segmentation method leveraging statistical

intensity normalization; Subject Specific Sparse Dictionary Learn-

ing (S3DL; https://www.nitrc.org/projects/s3dl/),31 a patch-

based dictionary learning multiclass method; and White Matter

Lesion Segmentation (WMLS; https://www.nitrc.org/projects/

wmls/),32 a local support vector machine-based segmentation

algorithm developed for vascular lesions that also uses correc-

tive learning. To estimate the volume of gray matter structures,

we used Lesion-TOADS; FMRIB Integrated Registration and

Segmentation Tool (FSL-FIRST; http://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/FIRST)33 (a Bayesian appearance method); Multi-atlas

Segmentation with Brain Surface Estimation (MaCRUISE)34

(a combined multiatlas segmentation and cortical reconstruc-

tion algorithm); and MUlti-atlas region Segmentation utiliz-

ing Ensembles of registration algorithms (MUSE)35 (an en-

semble multiatlas label-fusion method). The FSL-FIRST33

analysis was applied directly to the raw T1 images according to

common practice, and OASIS30 was applied to the T1, FLAIR,

and a 3D T2 high-resolution sequence after preprocessing; all

other pipelines were applied to appropriately preprocessed T1

and FLAIR images. Not all algorithms measured volumes of

the same set of structures. Lesion-filling was not performed. Le-

sion-TOADS, MaCRUISE, and MUSE also yielded estimates for total

brain volume.

Statistical Analysis
All statistical analyses were conducted in the R software environ-

ment (http://www.r-project.org/).36 To compare estimated vol-

umes within and across sites, we computed mean volumes and

SDs. T tests were also used for differences in within-site averages

between scanner platforms. Correlations between these averages

across segmentation algorithms were also explored. The propor-

tion of variation explained by site was computed, and the associa-

tion with site was assessed with permutation testing. The coefficients

of variation were also estimated across sites. To assess associations

between session-average measured total brain and lesional volumes

and time of day (morning versus afternoon), we used Wald testing

within a linear model framework, both marginally and adjusting for

scanner platform.

RESULTS
The participant was found to be stable regarding cerebral lesion

load during the study. When we compared images acquired at the

National Institutes of Health at study entry and exit, the manually

measured T2LV in the participant was similar (17.9 mL in Sep-

tember 2015 versus 17.8 mL in February 2016). The T1LV was

also stable (15.5 versus 15.1 mL). This imaging stability paralleled

his clinical stability (see “Materials and Methods”).

The manually estimated T1LV and T2LV for each scan is

shown in Fig 1. Site explained 95% of the variation observed in the

estimated T2LV and 92% of the variation in the estimated T1LV,

indicating marked scanner-to-scanner differences despite proto-

col harmonization, which clearly exceeded scan-rescan variability

within sites. The range of T2LVs was 15.9 to 20.1 mL, indicating

that differences of up to 25% of the lesion volume were observed

across sites. The range of T1LVs was similarly wide, ranging from

13.0 to 16.4 mL. Further inspection of these volumes across plat-

forms indicated that Skyra (Magnetom Skyra; Siemens, Erlangen,

Germany) scanners showed larger lesion volumes compared with

other Siemens platforms both on T1LV (Skyra: mean T1, 15.2 mL

compared with non-Skyra: mean T1, 13.8 mL; P � .05) and T2LV

(Skyra: mean T2, 18.9 mL compared with non-Skyra: mean T2,

16.6 mL; P � .01). An example of the segmented lesions across

scanners is provided in Fig 2.

Results from the automated techniques for delineating and mea-

FIG 1. Manually measured T1 (red) and T2 (blue) lesion volumes for scan-rescan pairs at each of 7 NAIMS sites. Results from the baseline scan,
acquired on the same Skyra scanner and subsequent imaging acquired at the National Institutes of Health, are shown with circles. Points have
been slightly offset relative to one another for ease of visualization. UCSF indicates University of California, San Francisco; JHU, Johns Hopkins
University; OHSU, Oregon Health & Science University.
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suring T2LV are shown in Fig 3. The automated lesion segmentations

showed marked disagreement in the average lesional volume mea-

surements compared with the manually assessed volumes, and all

methods showed large site-to-site differences (in some cases up to 7.5

mL, or almost 50% of the manually measured lesion volume), except

for Lesion-TOADS (range, 10.5–11.0 mL), which was more stable.

For all methods, site explained �50% of the observed variation; 53%

of the variation was explained by site (permutation P � .36) for

S3DL, 54% for Lesion-TOADS (P � .41), 44% for OASIS (P � .57),

and 83% for WMLS (P � .002), which clearly was most prone to

site-related variation.

To measure brain structure volumes, we used several auto-

mated methods. As an example, results for the thalamus are

shown in Figs 4 and 5. While Lesion-TOADS estimated smaller

volumes, MUSE, FSL-FIRST, and MaCRUISE yielded similar av-

erage measurements. Nonetheless, site was strongly associated

with measured thalamic volume, explaining 96% of the Lesion-

TOADS volume variation (P � .01), 89% of MUSE (P � .01),

84% of FSL-FIRST (P � .04), and 65% of MaCRUISE (P � .17).

Similar results for the putamen, caudate, cortical gray matter,

normal-appearing white matter, and total brain volume were

found, as provided in On-line Figs 1–5. Summaries of the coeffi-

cient of variation give an intuitive measure of the scale of the

combined scan-rescan and across-site variation as shown in Fig 6.

FIG 2. Comparison of manual segmentation of cerebral T2 hyperintense lesions at 4 NAIMS sites. 3T MR imaging scans on Siemens
scanners from a single subject with multiple sclerosis showing T2 hyperintense lesions from sagittal fluid-attenuated inversion recovery
sequences from 4 different North American Imaging in Multiple Sclerosis Cooperative sites and scanner models: Brigham and Women’s
Hospital, Skyra; National Institutes of Health, Skyra; Oregon Health & Science University (OHSU), Tim Trio; Cedars-Sinai, Verio. The upper
panel shows the native images. The lower panel shows zoomed and cropped images to illustrate the key findings. The green arrow (lower
panel) shows a possible lesion detected and traced on the National Institutes of Health scan; the red arrow shows the same lesion not
detected by the expert procedure on the Brigham and Women’s Hospital scan. The purple arrow shows a similar tubular area interpreted
as a blood vessel on the Cedars-Sinai scan, which was not selected as a lesion by the expert tracing; no lesion was detected on the Oregon
Health & Science University scan in this area on this section or any of the adjacent sections (not shown). The blue arrow shows a different
lesion detected and traced on the Brigham and Women’s Hospital, National Institutes of Health, and Cedars-Sinai scans but not detected
by the expert review on the Oregon Health & Science University scan, appearing hazy/subtle (white arrow). The yellow arrow (upper
panel) shows a lesion on all scans; however, when we added the tracing of all sections showing the lesion, the 3D volume of the lesion
differed among sites: Brigham and Women’s Hospital � 0.059 mL, National Institutes of Health � 0.053 mL, Oregon Health & Science
University � 0.033 mL, Cedars-Sinai � 0.053 mL.

FIG 3. Comparison of manual and automated methods for measuring lesional volume. Scan-rescan imaging is shown by using multiple dots for
each site and algorithm. UCSF indicates University of California, San Francisco; JHU, Johns Hopkins University; OHSU, Oregon Health & Science
University.
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Finally, the proportion of variation explained by site is shown in

Fig 7. Note that in almost all cases, site explained �50% of the

variation, with most measurement techniques showing �80%

variation due to site for all structures assessed.

While all images were acquired on 3T Siemens scanners, the

model type appeared to influence the results; there was evidence

of systematic differences in many measurements between Skyra

and non-Skyra scanners. Figure 8 shows the negative log P values

for the comparison of volumes averaged across scan-rescan

measurements, with larger values indicating more systematic dif-

ferences between platforms. The largest platform-associated dif-

ferences were observed in MaCRUISE measurements of normal-

appearing white matter, cortical gray matter, and, consequently,

total brain volume. Lesion-TOADS also showed large differences

in total brain volume attributable to cortical gray matter, as did

S3DL for T2LV measurements. MUSE showed major differences

in thalamic volume across scanner models, and FSL-FIRST

showed similar discrepancies in the thalamus and caudate. The

correlation between site-averaged measurements varied dramat-

ically, especially for lesional and total brain volume measure-

ments (On-line Fig 6); this variation indicates that site differences

resulted in contrasting effects on output from the different algo-

rithms. While the other measurements showed less scanner model–

related variation, most still showed prominent differences between

Skrya and non-Skrya scanners.

The time of day of scan acquisition was not associated with

manually segmented T1 lesion volumes (t � 0.45) or T2 lesion

volumes (t � 0.38) or total brain volume, as measured by any of

the automated algorithms (On-line Figs 7 and 8).

DISCUSSION
Clinical MS therapeutic trials have traditionally used 1.5T MR

imaging platforms to provide metrics on cerebral lesions and at-

rophy as supportive outcome measures. However, there is grow-

ing interest in the use of high-resolution 3T imaging to assess

disease activity and disease severity in MS. Such 3T imaging has

the potential for increased sensitivity to lesions37,38 and atro-

phy,39 higher reliability,39,40 and closer relationships to clinical

status,38,39 compared with scanning at 1.5T. The purpose of this

study was to evaluate the consistency of metrics obtained from a

single MS participant with a high-resolution 3T brain MR imag-

ing protocol distributed to 7 sites. The results of our study indicate

that even in multicenter acquisitions from the same scanner ven-

dor after careful protocol harmonization, systematic differences

in images led to severe biases in volumetric analyses. These

biases were present in manually and automatically measured

volumes of white matter lesions, as well as in automatically

measured volumes of whole-brain and gray and white matter

structures. These biases were also highly dependent on scan-

ning equipment, which resulted from a higher sensitivity to

lesions in newer scanners from the same manufacturer com-

pared with earlier models, even at the same field strengths.

FIG 4. FSL-FIRST automated segmentation results: thalamus. Representative anatomic section showing segmentation of the thalamus
(green) in the single subject. The segmentation maps are overlaid to the original raw 3D T1-weighted images after re-orientation to the
axial plane. Segmentation was performed by the fully automated FSL-FIRST pipeline. The scan site and 3T Siemens model are shown for
each image. The first 2 scans are from the scan/re-scan at Brigham and Women’s Hospital. OHSU indicates Oregon Health & Science
University.

FIG 5. Comparison of automated methods for measuring thalamic volume. Scan-rescan imaging is shown by using multiple dots for each site
and algorithm. UCSF indicates University of California, San Francisco; JHU, Johns Hopkins University; OHSU, Oregon Health & Science University.
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In comparison with past estimates of reliability of volumetric

measurements of brain structures, our findings point to higher

between-site variation than previously documented. In particu-

lar, Cannon et al27 reported that between 3% and 26% of the

observed variation in global and subcortical volumes were attrib-

utable to site; this was a study of 8 healthy participants imaged on

2 successive days across 8 sites with 3T Siemens and GE Health-

care scanners. However, the proportion of explained variation has

a different interpretation from that reported here. The total vari-

ation in Cannon et al consisted of 4 contributors to variance: first,

across-site differences; second, across-scan differences; third,

across-day differences; and fourth,

across-subject differences. In our single-

participant study, we isolated only the

first 2 variance components, allowing us

to compare variation because it is rele-

vant for precision medicine (subject-

specific) applications.

Previous work indicated that the ob-

served variation attributable to scanning

occasion was small25,27; indeed, Cannon

et al27 found this to constitute �1% of

the variation. Thus, we did not scan our

participant on subsequent days but

rather simply repositioned the partici-

pant between scans during the same im-

aging session. A notable difference be-

tween our study and that of Cannon et al

is that we did not use data from a stan-

dardized phantom concurrently ac-

quired for correction of between-scan-

ner variations in gradient nonlinearity

and scaling. Cannon et al found that this

correction improved between-site intra-

class correlations and greatly reduced

differences between scanner manufac-

turers. Similarly, Gunter et al41 reported

the usefulness of a phantom for scanner

harmonization and quality control in

the Alzheimer’s Disease Neuroimaging

Initiative (http://www.adni-info.org/).

In future studies, we will focus on apply-

ing phantom calibrations across NAIMS

sites to extend our current observations.

Despite the growing literature on the

importance of diurnal variation and

hydration status for volumetric analy-

ses,42-45 we found no significant associ-

ations between time of day and mea-

sured volumes. This may indicate that in

single-participant analyses, time of day

and day-to-day variation may be of less

concern than the much larger source of

variation of scanner platform. Most in-

teresting, Cannon et al also found that

measurements acquired with scanners

from the same manufacturer and similar

receive coils had higher reliability. In our study, we found that

even scanner models (ie, Skyra versus non-Skyra) from the same

manufacturer varied markedly in their estimates of lesion volume;

this variation highlights the importance of between-scanner dif-

ferences for assessing MS-related structural changes.

To assess differences across processing pipelines, we used a

variety of techniques for automated segmentation of lesion and

white and gray matter volumes. Different segmentation algo-

rithms showed a range of variability in their estimates, as well as

their sensitivity to differences between scanners. For example,

Lesion-TOADS showed much less variable lesion measurements

FIG 6. Estimated across-site coefficient of variation for each structure with various methods for
volumetric measurement. cGM indicates cortical gray matter; NAWM, normal-appearing white
matter; TBV, total brain volume.

FIG 7. Estimated proportion of variation explained by site for using various segmentation meth-
ods for different structures in the brain. cGM indicates cortical gray matter; NAWM, normal-
appearing white matter; TBV, total brain volume.
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than any other technique and was not as sensitive to differences in

scanner platform. Lesion-TOADS was the only unsupervised le-

sion-segmentation technique used. Contrast differences between

the participant data and the training data of the other supervised

methods could be associated with greater sensitivity to scanner

differences, and this might be mitigated by specific (albeit poten-

tially laborious) tuning to individual platforms. However, while

sensitivity to biologic change is generally higher for methods

yielding less noisy estimates, because only a single individual was

studied here, our data cannot be taken to indicate that Lesion-

TOADS is superior to other methods of estimating thalamic vol-

ume, for example. Additionally, both purely intensity-based seg-

mentation algorithms, OASIS and WMLS, appeared to be more

sensitive to site differences, which may indicate that methods that

rely more on topology, shape, or spatial context may be more

stable across scanners. This finding indicates that across-scanner

differences may be driven by contrast differences rather than geo-

metric distortions. Future investigation to extend these findings

could involve quantitative contrast-to-noise and signal-to-noise

comparisons across scanners. Allowing segmentation parameters

to vary across sites could also help stability.
A limitation of this study is its single-subject and single time

point design, which makes the generalizability of the findings de-

pendent on further investigation. In particular, the degree to

which across-site differences might vary by lesion burden and

degree of atrophy, as well as demographic variables, requires ad-

ditional study. Future larger studies of multiple participants

across disease stages, including longitudinal measurements, are

necessary for understanding the implications of the biases de-

scribed in this pilot study. Indeed, such studies would also allow

the assessment of the trade-off between stability in measures

across sites, with sensitivity to biologic differences. Differences

between scanning equipment and scanner software versions have

also been noted in past studies of reli-

ability,23,25,27,46,47 but their implica-

tions for the assessment of pathology re-
main unclear. In particular, repeat
acquisitions on scanners with different
receive coils could provide additional

insight concerning reliability. In addi-

tion, our study was from a single time

point across scanners, whereas clinical

trials rely on the quantification of intra-

subject longitudinal change.48 Each par-

ticipant is typically scanned on the same

platform, which may limit the variability

in on-study change between partici-
pants. Further studies are necessary to

assess whether scan platform introduces
the same level of acquisition-related

variability when assessing longitudinal

changes.

Given the intersite differences ob-

served in lesional measurements, across-

site-inference statistical adjustment for

site is clearly necessary when analyzing

volumetrics from multisite studies, even

when images are acquired with a harmo-

nized protocol on 3T scanners produced by the same manufac-

turer. From a single participant, it is unclear what the role of

differential sensitivity to lesions might be across individuals with

heterogeneity in lesion location. For example, while lesion detec-

tion in the supratentorial white matter might be more straightfor-

ward and comparable across individuals, detection of lesions in

the brain stem, cerebellum, and spinal cord may be more sensitive

to differences in equipment. New statistical methods for measur-

ing and correcting systematic biases are warranted, especially for

studies in which patient populations may differ across sites. In-

deed, intensity normalization and scan-effect removal tech-

niques49-55 (akin to batch-effect removal methods in genomic

studies56) are an active area of methodologic research and prom-

ise to improve comparability of volumetric estimates from auto-

mated segmentation methods. After volumes are measured, sta-

tistical techniques for modeling estimated volumes from

multicenter studies are also rapidly evolving.18,57 These tech-

niques bring the potential to mitigate site-to-site biases in group-

level analyses, with better external validity at the cost of increased

sample size.

CONCLUSIONS
By imaging the same subject with stable relapsing-remitting MS

during 5 months, we assessed scanner-related biases in volumetric

measurements at 7 NAIMS centers. Despite careful protocol har-

monization and the acquisition of all imaging at 3T on Siemens

scanners, we found significant differences in lesion and structural

volumes. These differences were especially pronounced when

comparing Skyra scanners with other Siemens 3T platforms. The

results from this study highlight the potential for interscanner and

intersite differences that, unless properly accounted for, might

FIG 8. Negative logarithm (base 10) P value from t tests describing the difference in average
volume between Skyra-versus-non-Skyra platforms explained by site with various segmentation
methods for different structures in the brain. cGM indicates cortical gray matter; NAWM,
normal-appearing white matter; TBV, total brain volume.
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confound MR imaging volumetric data from multicenter studies

of brain disorders.

Our findings raise a key issue of the interpretability of MR

imaging measurements in the context of personalized medi-

cine, even in carefully controlled studies with harmonized im-

aging protocols.
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