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REVIEW ARTICLE

Deep Learning in Neuroradiology
X G. Zaharchuk, X E. Gong, X M. Wintermark, X D. Rubin, and X C.P. Langlotz

ABSTRACT
SUMMARY: Deep learning is a form of machine learning using a convolutional neural network architecture that shows tremendous
promise for imaging applications. It is increasingly being adapted from its original demonstration in computer vision applications to medical
imaging. Because of the high volume and wealth of multimodal imaging information acquired in typical studies, neuroradiology is poised
to be an early adopter of deep learning. Compelling deep learning research applications have been demonstrated, and their use is likely to
grow rapidly. This review article describes the reasons, outlines the basic methods used to train and test deep learning models, and
presents a brief overview of current and potential clinical applications with an emphasis on how they are likely to change future
neuroradiology practice. Facility with these methods among neuroimaging researchers and clinicians will be important to channel and
harness the vast potential of this new method.

ABBREVIATIONS: AD � Alzheimer disease; ADNI � Alzheimer’s Disease Neuroimaging Initiative; ASL � arterial spin-labeling; CNN � convolutional neural network;
MCI � mild cognitive impairment; NC � normal control

Deep learning is a form of artificial intelligence, roughly mod-

eled on the structure of neurons in the brain, which has

shown tremendous promise in solving many problems in com-

puter vision, natural language processing, and robotics.1 It has

recently become the dominant form of machine learning, due to a

convergence of theoretic advances, openly available computer

software, and hardware with sufficient computational power. The

current excitement in the field of deep learning stems from

new data suggesting its excellent performance in a wide variety

of tasks. One benchmark of machine learning performance is

the ImageNet Challenge. In this annual competition, teams

compete to classify millions of images into discrete categories

(tens of different kinds of dogs, fish, cars, and so forth). A

watershed year was 2012, when the first neural network– based

entry bested the competition and prior years’ results by a wide

margin.2 Since then, every winning entry has used a deep learn-

ing framework, with performance now exceeding that of

humans.

Deep learning has the potential to revolutionize entire indus-

tries, including medical imaging. Given the centrality of neuro-

imaging in the diagnosis and treatment of neurologic diseases,

deep learning will likely affect neuroradiologists first and most

profoundly. This article will introduce deep learning methods,

overview their current successes, and speculate on the future

evolution of these methods, focusing on their application to

neuroradiology.

What is Deep Learning?
It is useful to consider where deep learning fits into the broader

context of artificial intelligence (Fig 1). One definition suggested

for artificial intelligence is any computer method that performs

tasks normally requiring human intelligence. Machine learning is

one type of artificial intelligence that develops algorithms to

enable computers to learn from existing data without explicit pro-

gramming. Examples are classification algorithms such as cluster-

ing, logistic regression, and support vector machines.

Machine learning methods can be further divided into super-

vised and unsupervised learning. In supervised learning, some

“ground truth” exists, which is used to train the algorithms. One

example is a collection of brain CT scans that a neuroradiologist

has classified into different groups (ie, hemorrhage versus no

hemorrhage). In contrast, for unsupervised learning, no criterion

standard images or classifications are used—the computer itself

must determine the classes. One example is clustering, in which

images are placed in multiple groups based on similarity metrics
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without knowing a priori what is driving the separation.3 While

unsupervised learning holds great promise for medical imaging,

this review focuses on supervised learning.

Viewed in this context, deep learning is a supervised machine

learning method that uses a specific architecture, namely some

form of neural network. The power of these techniques is in their

scalability, which is largely based on their ability to automatically

extract relevant features. In the past, constructing an image-clas-

sification algorithm took years of effort on the part of domain

experts and experienced artificial intelligence researchers. Deep

learning allows such a classifier to be created automatically from a

labeled dataset in days. These neural networks are loosely inspired

from how the brain is structured, with hidden layers representing

interneurons (Fig 2). While modern neural networks share these

similarities to the brain, whether more fidelity to known brain

structures would improve performance is an actively debated

question.4 For example, in computer vision applications, many of

the features to which hidden layers are sensitive (such as edges in

different orientations) have correlates in the mammalian visual

cortex.5

For neuroimaging, a simple deep learning model may accept

image data as a vector composed of voxel intensities, with each

voxel serving as an input “neuron.” While the examples below

assume the use of individual images, more generally, the input can

consist of entire imaging series, multiple series, or even multiple

modalities. Next, one must determine how many layers (how

deep) and how many neurons per layer (how wide) to include;

this is known as the network architecture (Fig 3). Each neuron

stores a numeric value, and each connection between neurons

represents a weight. Weights connect the neurons in different

layers and represent the strength of connections between the neu-

rons. A “fully connected” layer in which all neurons in one layer

are connected to all neurons in the next can be interpreted and

implemented as a matrix multiplication. Finally, it is customary to

include a nonlinear “activation function” at the output of the

neuron. This introduces nonlinearity into the equations so that

complex functions can be represented that would not otherwise

be possible. Historically, sigmoids and hyperbolic tangents have

been used on the basis of insights from neuroscience; however,

researchers have since found that the rectified linear unit is both

simpler to implement and more effective. The rectified linear unit

function outputs the value of the neuron for positive values and

zero for negative values.

The choice of network architecture for a specific application is

not always obvious, though some typical configurations and as-

sumptions exist. The number of neurons in the hidden layers

tends to be larger than that in either the input or the output layers.

The final layer encodes the desired outcomes or labeled states. For

example, if one wishes to classify an image as “hemorrhage” or

“no hemorrhage,” 2 final layer neurons are appropriate. Com-

monly, the value stored by each final neuron is interpreted as the

probability that the training example corresponds to a specific

class. The goal of training is to optimize the network weights

so that when a new sample image is input, the probabilities

FIG 1. Artificial intelligence methods. Within the subset of machine learning methods, deep learning is usually implemented as a form of
supervised learning.
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FIG 2. Parallels between artificial and biologic neural networks. Hidden layers of artificial neural networks can be thought to be analogous to
brain interneurons.

FIG 3. Example of a simple deep network architecture. The goal of this network is to classify MR images into 4 specific diagnoses (normal, tumor,
stroke, hemorrhage). Multiple different images form the training set. For each new case, the image is broken down into its constituent voxels,
each one of which acts as an input into the network. This example has 3 hidden layers with 7 neurons in each layer, and the final output is the
probabilities of the 4 classification states. All layers are fully connected. At the bottom is a zoomed-in view of an individual neuron in the second
hidden layer, which receives input from the previous layer, performs a standard matrix multiplication (including a bias term), passes this through
a nonlinear function (the rectified linear unit function in this example), and outputs a single value to all the neurons of the next layer.
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measured at the output are heavily skewed to the correct class. For

example, if we input an image with hemorrhage, we would like the

model to output a high probability for hemorrhage and low prob-

ability for other classes. How is this accomplished?

Training Simple Neural Network Deep Learning Models
Neural networks are ideally trained using large numbers of cases

that are divided into several groups. Usually the largest fraction is

used for model training (50%– 60%), with another 10%–20% for

validation and 20%– 40% for testing. The training cases are used

to set the model parameters; large training sets are important

because even relatively shallow networks may have 100,000s of

free parameters (weights). The training dataset is looped through

multiple times (epochs) until the accuracy of the model con-

verges. At first, predictions will be poor. However, the beauty of

this setup is that you can compare the output of the model with

the ground truth via the use of a “cost function,” a single number

that quantifies how far off the model is. Back-propagation, a tech-

nique whereby the strength of connections between neurons

(weights) can be adjusted on the basis of the value of the cost

function, is then used to reinforce correct predictions and penal-

ize incorrect predictions. This procedure is repeated using sepa-

rate training examples and multiple iterations, thereby optimiz-

ing the weights and effectively training the model. Once the model

is trained, there are several “hyperparameters” to optimize, in-

cluding the learning rate and number of epochs. Finally, the test-

ing set is used to assess the model accuracy on data that has not

been used for training. This assessment will yield an error rate

similar to or higher than that for the training set, and this helps to

gauge how well the final model will perform on real world data.

While training the model is often time-intensive, the application

of the final trained model to new data is usually computationally

fast.

Choosing the right cost function is important. For classifica-

tion, the value of the cost function should be low when the model

predicts the correct class and high when its predictions are off. A

popular cost function for classification is “cross-entropy loss,” an

extension of logistic regression to multiple classes that can be

implemented using the softmax function. For image prediction,

common cost functions include the root-mean-square error be-

tween the predicted and reference images and measures of simi-

larity, such as the structural similarity index metric.6,7 One prom-

ising approach is replacing the cost function itself with a network

whose goal is to make it optimally difficult to distinguish refer-

ence images from predicted images, an approach known as the

“generative adversarial network” approach.8 Generative adver-

sarial networks strive to eliminate systematic differences between

the predicted and reference images, which is highly desirable in

the radiology setting.

From Simple to Convolutional Neural Networks
Fully connected neural networks are computationally expensive

because the number of weights is very large, especially with images

of typical matrix sizes (256 � 256 � 65,536 voxels). With even just

1 slice, �4 billion weights are required to implement a fully con-

nected layer. Thus, much research in image-based deep learning

has moved to using more computationally efficient structures,

specifically convolutional neural networks (CNNs).

CNNs are well-suited for imaging. Instead of full connections,

a small “kernel” of weights is applied at each image position to

determine the value of the neuron of the next layer (Fig 4). The

approach mimics the mathematic operation of convolution. Be-

FIG 4. Example of training and deployment of deep convolutional neural networks. During training, each image is analyzed separately, and at
each layer, a small set of weights (convolution kernel) is moved across the image to provide input to the next layer. Each layer can have multiple
channels. By pooling adjacent voxels or using larger stride distances between application of the kernel, deeper layers often have smaller spatial
dimensions but more channels, each of which can be thought of as representing an abstract feature. In this example, 5 convolutional layers are
followed by 3 fully connected layers, which then output a probability of the image belonging to each class. These probabilities are compared
with the known class (stroke in the training example) and can be used to measure of how far off the prediction was (cost function), which can
then be used to update the weights of the different kernels and fully connected parameters using back-propagation. When the model training
is complete and deployed on new images, the process will produce a similar output of probabilities, in which it is hoped that the true diagnosis
will have the highest likelihood.
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tween 2 layers, the only weights required are those for the kernel,

which is then rastered across the image to obtain the next layer.

This method has several advantages. First, it markedly reduces the

number of weights. Second, it allows spatial invariance: Image

features may occur in different locations, and a CNN allows their

identification independent of their precise location. Often, CNNs

pool adjacent voxels or slide the kernel across these images at

spaced intervals (a hyperparameter known as the “stride length”),

so that the dimensions in each subsequent layer are smaller than

those in the last one. For each layer, multiple different kernels can

be trained, creating multiple “channels” in each layer; such a

structure allows the network to learn many location-invariant

features, such as edges, textures, and other nonlinear representa-

tions of the data. With pooling or increased stride lengths, it is

possible to incorporate ever larger features into the hidden layers

of the network. Indeed, the ability of CNNs to extract relevant

imaging features in a location-invariant way parallels the struc-

ture of the visual system of the brain; Hubel and Wiesel5 showed

in the 1960s that different regions of the cat brain responded

strongly to features such as edges oriented in different directions.

For classification, �1 fully connected layer is typically added

to reach the final output layer. For image prediction, upsampling

layers are used to “re-form” the smaller dimension hidden layers

back into the original size of the input image. Such an architecture

is called an “encoder-decoder” because it represents the image in

terms of increasing abstraction (encoding) in the hidden layers

and then uses them to recreate (decode) the image.

Overfitting and Data Augmentation
As described above, typical deep learning models have millions of

weights. Analogous to the idea that you need more equations than

variables to solve algebraic equations, if a deep network is trained

on too few examples, it is possible to perfectly represent the trans-

form between the input and output states. However, this ap-

proach will not generalize to new cases, a problem known as

“overfitting.” The best solution to overfitting is collecting more

training examples, though other solutions such as regularization

and drop-out can also be used.7,9 Another potential solution is

data augmentation.

Data augmentation is a method of increasing the amount of

training data. Because most image data should be recognizable

whether offset in the x-y plane, rotated, flipped, or slightly

stretched or skewed, it is conventional to perform such image

manipulations to augment the training data. While these image

alterations do not add more data, they have been shown to im-

prove the robustness of the models, possibly by preventing the

model from learning features that occur only in a specific

orientation.

Broad Classes of Applications
Deep learning can address many aspects of neuroradiology. The

overall flow of work in neuroradiology is a useful framework in

which to consider these applications. This starts with referring

clinicians ordering studies and then moves to image acquisition.

Next, the images are put before radiologists, and tasks surround-

ing detection and segmentation of lesions and differential diagno-

sis arise. Each link in this chain can potentially benefit from a deep

learning approach.

Imaging Logistics
After a study is ordered, it needs to be triaged to a specific neuro-

imaging protocol. This process often involves the precious time of

radiologists and relies on their knowledge of imaging protocols

and attention to clinicians’ specific requests, which are often en-

capsulated in the order history as free text. Deep learning methods

to interpret natural language are already mature, making automa-

tion of the protocoling process quite feasible. In theory, this prob-

lem is just about classification, with the different protocols being

the classes to predict and the input being the order itself and

patient metadata. The protocolling application is ideal for deep

learning because of the immense amount of training data that

already exists; all prior studies that have been protocolled by hu-

mans can be used for training.

Another promising application is to triage image review in the

order of suspected acuity. For example, if models can be trained to

identify critical findings on images, it is possible to prioritize ra-

diologic review of these studies, even if they were not initially

ordered as “stat” studies. For large organizations, such triage of-

fers the potential to reduce the time between acquisition and in-

terpretation for critical cases, with presumably positive effects on

patient outcome.

Image Acquisition and Improvement
Deep learning methods can be used to perform image reconstruc-

tion and improve image quality. Deep learning frameworks are

capable of “learning” standard MR imaging reconstruction

techniques, such as Cartesian and non-Cartesian acquisition

schemes.10 Combining deep learning to k-space undersampling

with model-based/compressed sensing reconstruction schemes

holds the potential to revolutionize imaging science by optimiz-

ing how image data are collected.11-13

Also, one could apply deep learning methods to improve im-

age quality. If images at low-resolution and high-resolution are

available, it is possible to use a deep network for super-resolu-

tion.14 If paired image sets of low and high quality are available,

learning the optimal nonlinear transformation between them can

be considered. This has already been applied to CT imaging and

has been demonstrated to be of value on a dataset consisting of

normal-dose and simulated low-dose CT.15 Another approach

uses paired MR images of the same anatomy, which are acquired

at different field strengths. A study using 3T input data and 7T

output data showed that a deep network can be trained to create

simulated “7T-like” images from 3T data.16 Often obtaining a cer-

tain imaging sequence can be very time-consuming; an example is

DTI, in which the need for multiple angular directions lengthens the

examination beyond what many patients can tolerate. A deep learn-

ing approach can reduce imaging duration 12-fold by predicting final

parameter maps (fractional anisotropy, mean diffusivity, and so

forth) from relatively few angular directions.17 By acquiring paired

arterial spin-labeling (ASL) CBF images with 2 and 30 minutes of

acquisition time, our group has trained a deep network to boost the

SNR of ASL significantly (Fig 5).18
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Image Transformation
An extension of this is to create images with different contrast or

with features of different modalities. For example, using the

National Alliance for Medical Imaging Computing data base

(http://www.insight-journal.org/midas/community/view/17), Ve-

mulapalli et al19 used a deep network to predict T1 images from T2

images, and vice versa. Another application is to PET/MR imag-

ing; unlike PET/CT, in which CT is used to calculate an attenua-

tion map, MR images do not directly yield attenuation images.

However, if there is information about soft tissue, air, and bone in

the MR images, these sequences can be used as input to a deep

network. Crucially here, the image to predict is no longer another

MR image, but rather a coregistered CT scan of the same subject.

Proof of principle was recently demonstrated for brain MR imag-

ing attenuation correction, with performance superior to that of

competing techniques.20 Another study demonstrated a similar

use of MR imaging to create synthetic CT for radiation therapy.21

In clinical trials, situations arise in which patients may not be

able to undergo a certain diagnostic technique, such as patients

with MR imaging–incompatible implants. Alternatively, they

may lack images at specific time points. While statistical tech-

niques can be used to account for such missing data, if enough

patients drawn from the same population have completed all

imaging examinations, it is possible to train a deep learning

network to recreate these data. Li et al22 demonstrated this

using the Alzheimer’s Disease Neuroimaging Initiative (ADNI;

http://www.adni-info.org/). They trained a CNN on patients with

both FDG-PET and T1-weighted MR imaging and then used this

network on a test set to predict the expected PET images from

patients’ MR imaging studies,22 showing that the CNN method

outperformed more traditional methods.

Lesion Detection and Segmentation
Detecting and segmenting lesions is an onerous task for humans

but is well-suited to machine learning. While related, they are

really 2 different tasks. The former starts with an unlabeled image

and marks potential abnormalities. The goal of the latter is to

circumscribe the regions encompassing the abnormal structures.

Identifying and delineating the margins of a lesion is important

because neuroradiologists are often tasked with monitoring the

change in size or activity of known lesions across time or in re-

sponse to treatment. Deep learning also has advantages for seg-

menting normal brain structures because existing methods are

time-consuming and may not generalize to younger or older sub-

jects.23-25 Furthermore, many research projects rely on manual

delineation of image lesions. One can train a deep network to take

images as input and hand-drawn manually segmented masks as

output. Indeed, such an approach has shown great early success.

While there are many examples in different neurologic disease

conditions, we will reference 3 representative areas: detecting mi-

crohemorrhages, identifying infarcts and predicting final infarct

volumes in patients with stroke, and segmenting brain tumors.

Dou et al26 described a process to detect brain microhemor-

rhages by training a CNN on an annotated dataset of susceptibil-

ity-weighted images. They proposed a cascaded, 2-step approach,

in which candidate lesions are first identified by the CNN and

then only these lesions are input to a discriminatory CNN (ie, true

microhemorrhage or mimic). With this approach, they achieved a

sensitivity of �93%, with an average of about 3 false-positive

identifications per subject.

Automatic identification and outlining of infarcted brain tis-

sue would be useful in the acute stroke setting. Chen et al27 used

DWI as input to a 2-stage deep learning algorithm and were able

to detect 94% of all acute infarcts. Using the Dice coefficient as a

marker of accuracy, they showed a mean score of 0.67 in a large

cohort of patients 2 days after stroke. Another study using a 3-

layer-deep CNN followed by 2 fully connected layers showed sim-

ilar results and outperformed several other machine learning

methods.28 Another intriguing application is to predict final in-

farct volume from early DWI and/or PWI in patients with acute

stroke. Currently, the diffusion-perfusion mismatch approach is

FIG 5. An example of improving the SNR of arterial spin-labeling MR imaging using deep learning. The model is trained using low-SNR ASL images
acquired with only a single repetition, while the reference image is a high-SNR ASL image acquired with multiple repetitions (in this case, 6
repetitions). Proton-density-weighted images (acquired routinely as part of the ASL scans for quantitation) and T2-weighted images are also
used as inputs to the model to improve performance. The results of passing the low-SNR ASL image through the model are shown on the right,
a synthetic image with improved SNR. In this example, the root-mean-squared error (RSME) between the reference image and the synthetic
image compared with the original image is reduced nearly 3-fold, from 29.3% to 10.8%.
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the dominant paradigm, which states that DWI lesions represent

irreversibly damaged tissue, while PWI identifies tissue at risk of

infarction. Rather than using such hand-crafted features, a deep

neural network can be trained using initial DWI and PWI maps as

input and final infarct size measured several days later as the out-

put. Using such a framework, Nielsen et al29 demonstrated that a

deep learning architecture outperforms traditional state-of-the-

art lesion prediction methods in acute stroke. They also showed

that a 37-layer architecture outperformed a shallower 3-layer ar-

chitecture, highlighting the importance of the depth feature of the

network. One exciting application of this approach is to train

separate networks based on different treatments. In stroke, one

could train networks in patients who received stroke treatment

and those who did not. New predictions using these 2 different

models could give insight into whether treatment would lead to a

reduced infarct volume (Fig 6).

Automated segmentation of brain tumors, not just their en-

hancing margins, but also other features such as regions of en-

hancement and necrosis, would be useful for a wide range of

indications, including diagnosis, presurgical planning, and fol-

low-up. The Brain Tumor Image Segmentation dataset is a pub-

licly available dataset of brain tumor images with expert manual

segmentations that has been a useful proving ground for new

segmentation algorithms.30 The highest performance on the

Brain Tumor Image Segmentation dataset in 2016 was achieved

using a fully convolutional residual neural network, built on the

structure that won the 2015 ImageNet Challenge, with Dice coef-

ficients for complete tumor, core tumor, and enhancing tumor

between 0.72 and 0.87.31 In a separate study, Korfiatis et al32

trained a deep autoencoder-decoder to segment T2-FLAIR le-

sions on the Brain Tumor Image Segmentation dataset, which

included manually drawn outlines in 186 patients. They then ap-

plied their model to a separate group of 135 patients with tumor in

which they had 3 expert segmentations and measured a Dice co-

efficient of 0.88 based on a method that incorporated the individ-

ual tracings of the 3 readers. They did note significant variability

among their readers’ segmentations, pointing out the importance

of how the segmentation criterion standard is implemented.

Deep Learning for Image-Based Diagnosis
The “Holy Grail” of machine learning in radiology is the so-called

“end-to-end” solution, in which images are used as input and the

output is a draft radiology report encompassing all the salient

features of the image that an expert radiologist would include. As

improbable as this might seem, progress is being made on this

front with deep learning. Such approaches require tremendous

amounts of annotated training data, which exist currently in

many heterogeneous forms. Structured reporting, use of standard

lexicons (such as RadLex; http://www.rsna.org/RadLex.aspx),

and the standardization of electronic medical record platforms

are all steps that are enabling the formation of the required large

imaging/diagnosis datasets. This section will deal with some early

applications of deep learning to neuroradiologic diagnosis.

Gao et al33 classified 285 noncontrast brain CT examinations

with a deep network into 1 of 3 categories (normal aging, lesion

[such as tumor], or Alzheimer disease [AD]). With an average

classification accuracy of 88%, the approach performed margin-

ally better than other approaches that relied on hand-crafted fea-

tures. Another study34 showed that a multimodal stacked deep

polynomial network using the ADNI dataset could classify pa-

tients into different binary groups (ie, AD versus healthy control

[NC], or mild cognitive impairment converters [MCI-C] versus

nonconverters [MCI-nonconverters]). Instead of using images as

input, they used the volumes of 93 structures segmented from

T1-weighted images along with the [18F] FDG-PET signal inten-

sity in these same regions. For distinguishing patients with AD

FIG 6. An example of the predicted risk of final infarct for 2 patients with acute ischemic stroke using 2 neural networks trained, respectively,
on patients with and without rtPA administration. Patient A is a 76-year-old woman with an admission NIHSS score of 10 scanned 1.5 hours after
symptom onset. The �rtPA network estimates a negligible permanent lesion, consistent with the acute DWI suggesting little permanent tissue
damage at follow-up. The �rtPA network indicates that without treatment, a considerable volume of the acute ischemic region will progress
to a permanent lesion. Patient B is a 72-year-old man also with an admission NIHSS score of 10, scanned 2 hours after onset. In this case, the 2
networks indicate little expected impact of treatment, likely due to the progression at the time of imaging of the ischemic event as seen on the
DWI. CMRO2 indicates cerebral metabolic rate of oxygen; Tmax, time-to-maximum. Figure courtesy of Kim Mouridsen and Anne Nielsen/Aarhus
University, Combat Stroke.
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from NCs, they showed an impressive area under the curve of

0.97. For the more challenging task of predicting MCI converters

from nonconverters, they still showed areas under the curve of

�0.80. Suk et al35 showed that similar features could be combined

with CSF data in the ADNI dataset using a deep-weighted sparse

multitask learning framework to improve classification, showing

95% accuracy to distinguish patients with AD from NCs. How-

ever, when trying to predict among 3 classes (AD, NC, and MCI),

the accuracy dropped to 63%, which further dropped to 54%

when trying to classify among 4 groups (AD, NC, MCI-C, and

MCI-nonconverter). This latter point speaks to the challenges of

moving beyond simple binary classifications into the kinds of

tasks in which many diagnostic groups are possible, a situation

familiar to neuroradiologists.

Another application is to use deep networks to identify the

presence of hemorrhage on noncontrast brain CT. While general

machine learning techniques have been applied to these cases with

great success,36,37 only recently have deep learning methods been

evaluated. Phong et al38 demonstrated a particularly interesting

approach, using several “pretrained” deep networks as starting

points for their training. Specifically, they used the optimal

weights from the GoogLeNet (http://deeplearning.net/tag/

googlenet/) or Inception-ResNet (https://keras.rstudio.com/

reference/application_inception_resnet_v2.html) that were

trained on nonmedical images and then used their data to train a

final fully connected layer. This approach (called “transfer learn-

ing”) is attractive, given that it allows networks to be trained with

less data than if they were trained from scratch.39 Trained on 80

cases and tested on 20 cases, they showed classification accuracies

of �98%.

Plis et al40 examined both structural and functional MR imag-

ing as input to deep networks for predicting various neurologic

diseases. For structural imaging, they showed that they could dis-

tinguish patients with schizophrenia and Huntington disease

from healthy subjects. For fMRI, they showed that deep networks

performed similar to independent component analysis for iden-

tifying functional networks but tended to preserve edge details

better. Similar results using a temporal-autoencoding neural net-

work to predict the next time point in a resting-state fMRI time-

series were applied to the Human Connectome Project data and

showed a similar ability to identify task-specific networks.41

Impact of Deep Learning on Neuroradiology Practice
One concern is that if these approaches are successful, some work

that radiologists have traditionally performed may become obso-

lete. Recently, a framework for inputting medical images (in this

case, pathology slides) and outputting diagnostic text-based re-

ports has been reported.42 While this technology is still very rudi-

mentary, it is not difficult to imagine training a similar network

with CT scans and their reports. While deep learning does hold

much promise to automate tasks that radiologists find unpleas-

ant, ways of checking and verifying results will be needed. Another

concern with deep learning is that we have little insight into the

inner workings of the models; they work well for prediction, but

precisely how they accomplish this is unclear. This contrasts with

much prior radiology research, which relied heavily on domain

knowledge and the building of realistic models. Understanding

how and why deep networks perform so well is an active area of

research in the artificial intelligence community.

Also, the application of deep learning is still limited by require-

ments for large amounts of annotated training datasets and the

challenge of keeping models current as source data and practice

patterns change. Among applications that are amenable to dis-

ruption, it is still unclear which applications are supported by

sufficient clinical need to drive widespread adoption. Thus, it is

important that radiologists remain engaged with artificial intelli-

gence scientists to both understand the capabilities of existing

methods and direct future research in an intelligent way. Al-

though this technology is still developing, state-of-the art deep

learning models show little evidence that they could replace all

functions of radiologists, though this issue is contentious. For the

foreseeable future, they will likely serve as powerful image-pro-

cessing and decision-support tools that will augment the accuracy

and efficiency of radiologists.

Outlook
The wealth of applications of deep learning will likely lead to

increased use of this technology. How fast this will happen de-

pends on a few key factors: Deep learning can learn more from

larger datasets, usually by adding additional hidden layers. As

larger labeled datasets become available, the power of deep learn-

ing approaches will increase. The importance of data-sharing ini-

tiatives such as ADNI and the Cancer Imaging Archive (https://

public.cancerimagingarchive.net/ncia/legalRules.jsf) cannot be

overstated. Second, the computer hardware required to run these

methods continues to improve and become less expensive. The

availability of open-source software frameworks, such as Caffe,

Tensorflow, PyTorch, and Keras, is greatly facilitating progress.

However, before these methods become a routine part of clinical

practice, vendors will need to provide “turn-key” systems that

integrate well into current workflow patterns. As more neurora-

diology researchers and practitioners become comfortable with

these methods, through exposure at medical imaging conferences

and conversations with colleagues, applications will branch out

from the current “low-hanging fruit” to address more complex

and specialized questions. Therefore, we can expect further ad-

vances in this field with accompanying benefits in many areas of

radiology.
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