
of July 17, 2025.
This information is current as

Oropharyngeal Carcinoma
Imaging and Texture Features in 
Parameters including Diffusion-Weighted
Status and Quantitative MR Imaging 
Correlation between Human Papillomavirus

Bastia, R. Maroldi, P. Nicolai and D. Farina
Leali, S. Battocchio, G.M. Agazzi, M. Buglione di Monale e 
M. Ravanelli, A. Grammatica, E. Tononcelli, R. Morello, M.

http://www.ajnr.org/content/39/10/1878
https://doi.org/10.3174/ajnr.A5792doi: 

2018, 39 (10) 1878-1883AJNR Am J Neuroradiol 

http://www.ajnr.org/cgi/adclick/?ad=57967&adclick=true&url=https%3A%2F%2Fmrkt.us-marketing.fresenius-kabi.com%2Fajn1872x240_july2025
https://doi.org/10.3174/ajnr.A5792
http://www.ajnr.org/content/39/10/1878


ORIGINAL RESEARCH
HEAD & NECK

Correlation between Human Papillomavirus Status and
Quantitative MR Imaging Parameters including Diffusion-

Weighted Imaging and Texture Features in Oropharyngeal
Carcinoma

X M. Ravanelli, X A. Grammatica, X E. Tononcelli, X R. Morello, X M. Leali, X S. Battocchio, X G.M. Agazzi,
X M. Buglione di Monale e Bastia, X R. Maroldi, X P. Nicolai, and X D. Farina

ABSTRACT

BACKGROUND AND PURPOSE: The incidence of Oropharyngeal Squampus Cell Carcinoma (OPSCC) cases is increasing especially in the
Western countries due to the spreading of human papilloma virus (HPV) infection. Radiological investigations, MRI in particular, are used
in the daily clinical practice to stage OPSCC. The aim of this study was to investigate the association of quantitative MR imaging features
including diffusion-weighted imaging and human papillomavirus status in oropharyngeal squamous cell carcinoma.

MATERIALS AND METHODS: We retrospectively analyzed 59 patients with untreated histologically proved T2–T4 oropharyngeal squa-
mous cell carcinoma. Human papillomavirus status was determined by viral DNA detection on tissue samples. MR imaging protocol
included T2-weighted, contrast-enhanced T1-weighted (volumetric interpolated brain examination), and DWI sequences. Parametric maps
of apparent diffusion coefficient were obtained from DWI sequences. Texture analysis was performed on T2 and volumetric-interpolated
brain examination sequences and on ADC maps. Differences in quantitative MR imaging features between tumors positive and negative for
human papillomavirus and among subgroups of patients stratified by smoking status were tested using the nonparametric Mann-Whitney
U test; the false discovery rate was controlled using the Benjamini-Hochberg correction; and a predictive model for human papillomavirus
status was built using multivariable logistic regression.

RESULTS: Twenty-eight patients had human papillomavirus-positive oropharyngeal squamous cell carcinoma, while 31 patients had
human papillomavirus-negative oropharyngeal squamous cell carcinoma. Tumors positive for human papillomavirus had a significantly
lower mean ADC compared with those negative for it (median, 850.87 versus median, 1033.68; P � .001). Texture features had a lower
discriminatory power for human papillomavirus status. Skewness on volumetric interpolated brain examination sequences was signifi-
cantly higher in the subgroup of patients positive for human papillomavirus and smokers (P � .003). A predictive model based on smoking
status and mean ADC yielded a sensitivity of 83.3% and specificity 92.6% in classifying human papillomavirus status.

CONCLUSIONS: ADC is significantly lower in oropharyngeal squamous cell carcinoma positive for human papillomavirus compared with
oropharyngeal squamous cell carcinoma negative for it. ADC and smoking status allowed noninvasive prediction of human papillomavirus
status with a good accuracy. These results should be validated and further investigated on larger prospective studies.

ABBREVIATIONS: HPV � human papillomavirus; OPSCC � oropharyngeal squamous cell carcinoma; SSF � spatial scaling factor; VIBE � volumetric interpolated
brain examination

Oropharyngeal squamous cell carcinoma (OPSCC) is probably

the most studied head and neck neoplasm in the past decade,

mainly due to the discovery of the role of human papillomavirus

infection in carcinogenesis. This led to identification of a subset of

patients with human papillomavirus (HPV)-positive OPSCC with

specific demographic characteristics (younger and with fewer co-

morbidities) and better prognosis compared with those with HPV-

negative OPSCC (usually older with more comorbidities, smokers,

and alcohol consumers).1-4 Other characteristics of HPV-positive

OPSCC are the high ratio between nodal and primary tumor bur-

den5 and the greater presence of intranodal cystic degeneration.6-8

MR imaging is routinely used for staging OPSCC in many centers. In

addition to standard morphologic sequences, diffusion-weighted

imaging offers an insight in tumor ultrastructure. Some recent stud-

ies have suggested that HPV-positive tumors are associated with

lower apparent diffusion coefficient compared with HPV-negative

ones.9-11 However, these results are equivocal.12

Texture analysis allows quantitative parameters to be ex-
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tracted from CT, MR imaging, or PET images by applying various

mathematic computations and algorithms.13 The technique has

been recently introduced in medical imaging research and has

provided promising results for cancer prognostication14-19 and a

noninvasive signature of relevant genotypic and phenotypic tu-

mor patterns.20-22 Bogowicz et al23 recently demonstrated that a

radiomic CT signature can predict HPV status in head and neck

cancer, even if its accuracy was not high enough to represent a

valid alternative to p16 immunohistochemistry (a surrogate bio-

marker) and direct viral DNA or messenger RNA studies, which

remain the criterion standard. To the best of our knowledge, no

study has used MR imaging texture analysis to noninvasively de-

termine HPV status in oropharyngeal cancer. The first objective

of this study was to test the correlation between ADC and HPV

status on a larger and more homogeneous OPSCC sample com-

pared with previous studies. The second objective was to investi-

gate correlations between HPV status and a set of texture features

extracted from both morphologic and DWI sequences.

MATERIALS AND METHODS
Patients
This retrospective study included patients with untreated histo-

logically demonstrated T2–T4 OPSCC assessed by the Multidis-

ciplinary Head and Neck Group of our institution between March

2010 and April 2017. HPV status was determined by direct viral

DNA study on tissue samples. Pretreatment MR imaging was

available for all patients. Patients with primary tumors too small

to be analyzed or with a low quality of MR images due to artifacts

were excluded from image analysis. Tumor, Node, Metastasis

classification was performed according to the eighth edition of the

TNM classification of head and neck cancer.24

HPV Status Assessment
HPV status was evaluated with the digene HC2 High-Risk

HPV DNA Test (QIAGEN; https://www.qiagen.com/us/

shop/detection-solutions/human-pathogens/digene-hc2-high-

risk-hpv-dna-test/#orderinginformation), an in vitro nonradio-

active nucleic acid hybridization assay with signal amplification

using a chemiluminescent microtiter plate. This test is able to

detect 18 HPV types, including high-risk (16, 18, 31, 33, 35, 39, 45,

51, 52, 56, 58, 59, 68) and low-risk types (6, 11, 42, 43, 44). The

Hybrid Capture 2 test shows a sensitivity and specificity equiva-

lent to that of the polymerase chain reaction.25

MR Imaging Protocol
MR imaging was performed using a 1.5T scanner (Magnetom

Aera; Siemens, Erlangen, Germany). The MR imaging protocol

included: axial TSE T2 (TR, 5570 ms; TE, 102 ms; slice thickness,

3 mm; matrix, 448 � 224), axial echo-planar DWI (TR, 3900 ms;

TE, 59 ms; slice thickness, 3 mm; matrix, 132 � 132) with b-values

of 0 and 1000 s/mm2, and contrast-enhanced 3D fat-saturated

gradient-echo T1 (volumetric interpolated brain examination

[VIBE]) with an isotropic resolution of 0.7 mm. Apparent diffu-

sion coefficient maps were automatically generated using an op-

timized noise filter.

Texture Analysis
Texture analysis was performed on primary tumors. MR images

were transferred to an off-line PC and analyzed using proprietary

texture analysis software TexRAD (TexRAD; Cambridge, UK).

Three head and neck radiologists in consensus (M.R., M.L., E.T.),

blinded to HPV status, drew an ROI on a single section of axial T2,

ADC map, and postcontrast VIBE images (Fig 1), encompassing

the primary tumor on its largest axial area. TexRAD software uses

the filtration-histogram method as described by Miles et al.26 The

filtration-histogram method comprises an initial filtration step

that highlights image features of a specified size, followed by his-

togram analysis of the filtered image. The size of highlighted im-

age features is denoted by the spatial scaling factor (SSF), ex-

pressed in millimeters. Histograms generated from unfiltered and

filtered images were quantified by the following parameters: mean

(average value of the pixels within the ROI), SD (a measure of how

much variation or dispersion exists from the average), mean of

positive pixels (average value of the pixels greater than zero within

the ROI), entropy (a metric that reflects texture irregularity and

positively correlates with tumor heterogeneity), skewness (a mea-

sure of histogram asymmetry; positive values indicate histograms

skewed to the right, while negative values indicate histograms

skewed to the left; skewness � 0 indicates a perfectly symmetric

histogram), and kurtosis (a measure of the peakedness of the his-

togram; positive kurtosis indicates a histogram that is more

peaked than a Gaussian distribution, while negative kurtosis in-

FIG 1. Example of freehand contouring of the tumor across its largest cross-sectional area on T2 (A), b�1000 (B), and ADC map (C) images. Tumor
segmentation on ADC maps has been helped by side-by-side visualization of other sequences, including b�1000 DWI.

AJNR Am J Neuroradiol 39:1878 – 83 Oct 2018 www.ajnr.org 1879

https://www.qiagen.com/us/shop/detection-solutions/human-pathogens/digene-hc2-high-risk-hpv-dna-test/#orderinginformation
https://www.qiagen.com/us/shop/detection-solutions/human-pathogens/digene-hc2-high-risk-hpv-dna-test/#orderinginformation
https://www.qiagen.com/us/shop/detection-solutions/human-pathogens/digene-hc2-high-risk-hpv-dna-test/#orderinginformation


dicates that the histogram is flatter than a Gaussian distribution).

In this study, SSFs of 1, 2, 3, and 4 mm were used. A total of 30

parameters [6 � (unfiltered � 4 SSF)] were computed for each

sequence.

Statistical Analysis
Texture parameters were compared between HPV-positive and

HPV-negative groups using the Mann-Whitney U or Student t

test (when normally distributed). The Benjamini-Hochberg cor-

rection was applied to control the false discovery rate. The �2 test

was used to compare categoric variables. Patients were divided in

4 subclasses, according to smoking and HPV status, which were

considered as classification variables in a second step: smokers

and HPV-negative (class 1), nonsmokers and HPV-positive (class

2), smokers and HPV-positive (class 3), and nonsmokers and

HPV-negative (class 4). Multivariable logistic regression was used

to build a predictive model for HPV status. The statistical signif-

icance level was set at P � .05. Statistical tests were performed

using MedCalc for Windows, Version 17.8.6 (MedCalc Software,

Mariakerke, Belgium).

RESULTS
Sixty-eight patients with OPSCC were enrolled; however, 4 were

excluded because of the small size of the primary tumor and 5 for

the low quality of MR images due to motion artifacts. Thus, 59

patients were analyzed (43 men and 16 women); 28 were HPV-

positive (47%), and 31 patients were HPV-negative (53%). Table

1 summarizes baseline patient characteristics. Twenty-six HPV-

negative lesions were found in smokers (class 1); 20 HPV-positive

lesions, in nonsmokers (class 2); eight HPV-positive lesions, in

smokers (class 3); and 5 HPV-negative lesions, in nonsmokers

(class 4). Use of tobacco was observed in a significantly higher

ratio of patients with HPV-negative OPSCC (P � .0001, �2 test).

Age was not different between the 2 groups.

MR imaging texture analysis was performed on all 3 sequences

(T2, DWI, and VIBE) in 50 patients. DWI was not analyzed in 5

patients (because of artifacts in 3 and because the sequence was

not available in 2). The VIBE sequence was not analyzed in 3

patients (2 because of artifacts, 1 because the sequence was not

available). In 1 patient, neither T2 nor DWI was analyzed because

of low image quality.

Table 2 summarizes the texture features that were significantly

associated with HPV status. Mean ADC was the parameter with

the highest discriminatory power, while other parameters had sig-

nificant but higher P values. After Benjamini-Hochberg correc-

tion for the false discovery rate, only mean ADC maintained sta-

tistical significance. If one combined mean ADC and smoking

habit in multivariable logistic regression, the resulting model al-

lowed correctly classifying 88.2% of cases, corresponding to an

area under the receiver operating characteristic curve of 0.944

(sensitivity, 83.3%; specificity, 92.6%) (Fig 2). When subclasses

Table 1: Baseline characteristics of patients and tumors
Total (n = 59) HPV+ (n = 28) HPV− (n = 31) P Value

Age (yr) 64.9 64.4 65.4 .904
Sex

Male 43 19 24 .413
Female 16 9 7

Smoker 34/59 8/28 26/31 �.0001
Site 38, Palatine tonsil 20, Palatine tonsil 18, Palatine tonsil .611

17, Tongue base 7, Tongue base 10, Tongue base
3, Soft palate 1, Soft palate 2, Soft palate
1, Posterior wall 1, Posterior wall

TNM classification
T T2 � 25 T2 � 16 T2 � 9 .084

T3 � 2 T3 � 1 T3 � 1
T4 � 32 T4 � 11 T4 � 21 (16, T4a; 5, T4b)

N N0 � 14 N0 � 7 N0 � 7 .002
N1 � 15 N1 � 13 N1 � 2
N2 � 18 N2 � 6 N2 � 12 (8, N2b; 4, N2c)
N3 � 12 N3 � 2 N3 � 10 (N3b � 10)

M M0 � 57 M0 � 27 M0 � 30 .144
M1 � 2 M1 � 1 M1 � 1

Note:—HPV� indicates human papillomavirus-positive; HPV�, human papillomavirus-negative.

Table 2: Quantitative MR imaging features significantly different between patients positive and negative for HPV

Variable

HPV− HPV+ P Value

No. Mean No. Mean Uncorrected Corrected
Mean ADC 29 1045.2072 24 860.0675 .000112 .00168
MPP T2 SSF 4 31 149.4606 27 192.3400 .0064 .108
MPP T2 SSF 3 31 136.8981 27 173.5967 .0072 .108
Mean T2 SSF 2 31 17.6865 27 52.8400 .0182 .15525
Mean T2 SSF 3 31 34.4752 27 82.4037 .0207 .15525
Mean T2 SSF 1 31 5.8284 27 19.9081 .031 .1625
Mean T2 SSF 4 31 54.0761 27 107.7759 .0325 .1625
Kurtosis VIBE SSF 4 30 0.3773 26 �0.09423 .0358 .446

Note:—HPV� indicates human papillomavirus-negative; HPV�, human papillomavirus-positive; MPP, mean of positive pixels.
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determined by a combination of HPV status and history of smok-

ing were considered, some texture parameters were significantly

different between class 3 (HPV-positive, smoking) and classes 1

and 2; class 4 (HPV-negative, nonsmokers) was excluded because

of the very low patient numbers. In particular, patients in class 3

(HPV-positive, smokers) had a significantly higher skewness:

SSF � 2 mm on VIBE sequences compared with the other 2 classes

(Table 3). This association maintained its statistical significance

after Benjamini-Hochberg correction.

DISCUSSION
Our study confirms the preliminary results obtained by previous

publications regarding the correlation between ADC derived

from DWI and HPV status in OPSCC; finding that HPV-positive

tumors had a significantly lower ADC than HPV-negative tu-

mors. Even if the reason for this finding remains unknown, sev-

eral possible explanations may be conceived. On the basis of their

previous study, Driessen et al27 hypothesized that the low stromal

volume observed in HPV-positive head and neck cancer could

explain the cancer lower ADC. Furthermore, cancer cell nests in

HPV-driven cancer are often surrounded by zones of lymphoid

cells,28 which could increase tissue cell density, thus leading to

lower ADC. This hypothesis is supported by a very recent pilot

study published by Swartz et al,29 who found a strongly significant

negative correlation between ADC and CD3-positive cell count in

20 patients with OPSCC.

In addition, HPV-positive OPSCC seems to be more fre-

quently associated with higher Ki-67 levels,30 which have been

found to be negatively correlated to ADC in several cancer

types.31-35 The same aforementioned study by Swartz et al29 also

demonstrated a negative correlation between ADC and Ki-67

expression.

The increasing evidence for the relationship between the ADC

value and HPV status is relevant given that the results from several

preliminary studies36-43 suggest an association between higher

tumor pretreatment ADC and a poor response to chemoradiation

and prognosis in head and neck cancer, though none considered

HPV status in multivariable analysis. Therefore, our results em-

phasize the need for future studies on DWI to include HPV status

as a possible important confounder for ADC in OPSCC. The pres-

ent study was performed on a larger patient cohort than previous

studies.10-12 The number of HPV-positive and HPV-negative tu-

mors is better balanced (28 and 31, respectively) compared with

the group analyzed by Driessen et al,9 which included only 6

HPV-positive tumors. Furthermore, the latter study included a

miscellanea of head and neck cancers, while our study was selec-

tively directed to analyze oropharyngeal cancer. Different from

articles published by Chan et al,10 Nakahira et al,11 and Schouten

et al,12 HPV status in our study was defined by direct viral DNA

and messenger RNA studies rather than by p16 immunohisto-

chemistry. This is an important strength because p16 immuno-

staining is a surrogate marker of HPV status and, despite its high

sensitivity, has only moderate specificity because p16 may be con-

stitutively activated in HPV-negative OPSCC.44 Remarkably, the

absolute ADC values that we found are compellingly lower than

those obtained in the previously cited studies in both HPV-posi-

tive and HPV-negative OPSCC. Even if the reason for these dis-

crepancies cannot be fully explained, they may be conceivably

imputed to differences in sequences and segmentation strategy.

Kolff-Gart et al45 demonstrated that ADC values measured on

different head and neck tissues differ significantly among differ-

ent MR imaging systems and sequences. Juan et al46 demonstrated

that non-echo-planar sequences (like those used by Schouten et

al12) produce significantly higher ADC values for the major sali-

vary glands compared with echo-planar sequences. Choices of

different b-values and intrinsic signal-to-noise ratio might also

influence ADC. Finally, ROI segmentation on B0 images (as per-

formed by Driessen et al9and Chan et al10) might include peritu-

moral edema, leading to increased ADC mean values.

This is the first study investigating the correlation between MR

imaging texture features and HPV status in head and neck cancer.

The relationship between texture parameters and HPV status was

weaker than that observed between mean ADC and HPV status.

Even if some parameters showed raw P values � .05 (1 below .01),

they lost significance after correction for the false discovery rate,

which is strongly recommendable when a large number of

FIG 2. Receiver operating characteristic (ROC) curve of the predic-
tive model based on mean ADC and smoking status. The classification
variable was HPV status, while the variable was the predicted proba-
bility produced by multivariable logistic regression. AUC indicates
area under the curve.

Table 3: Quantitative MR imaging features significantly different between patients in class 3 (HPV� and smokers) and those in classes 1
and 2 (smokers only and HPV� only, respectively)

Variable

Class 1 or 2 Class 3 P Value

No. Mean No. Mean Uncorrected Corrected
Skewness VIBE SSF 2 42 0.165 8 0.769 .000798 .02394
Kurtosis VIBE SSF 2 42 0.4544 8 1.4763 .0076 .114
Skewness VIBE SSF 3 42 0.1713 8 0.5788 .0184 .184
Skewness VIBE SSF 1 42 0.1119 8 0.4038 .0364 .273
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variables without a priori validation are tested.47 Conversely, a

strongly significant association was found between skewness

SSF � 2 mm (a descriptor of histogram asymmetry) on postcon-

trast VIBE and groups derived from the combination of HPV and

tobacco smoking status. In particular, the patients in the group of

HPV-positive/smokers had a significantly higher skewness when

comparing the HPV-positive/nonsmoker and HPV-negative/

smoker groups. Even if this result has no obvious explanation,

it is interesting in line with previous observations that the com-

bination of HPV infection and tobacco smoking leads to a

higher risk of treatment failure48 and an accumulation of ge-

netic mutations.49

This study has some limitations. It is retrospective and based

on ROIs traced on a single slice rather than on volumetric tumor

analysis. Due to the relatively low number of patients, analysis of

texture data did not include complex classification algorithms,

which would have required both training and validation sub-

groups, each with sufficient numbers of patients. Thus, further

information regarding relevant texture patterns could still be

studied within our data. A more comprehensive approach will be

adopted when our sample size reaches an adequate size. Even if

the identification of a noninvasive detection method for HPV

status was not the objective of the present study, the good perfor-

mance of the simple regression model based on mean ADC and

smoking status (which led to correct classification in 88% of

cases) is an interesting result that deserves to be validated on ex-

ternal datasets. Furthermore, the accuracy of the model could be

further improved by the addition of texture information.

CONCLUSIONS
Our study confirms the correlation between ADC derived from

DWI and HPV status in OPSCC with a significantly lower ADC in

HPV-positive tumors compared to HPV-negative.

Bases on these findings, we developed a simple predictive

model based on ADC and smoking status that can be used as a

non-invasive and cost-effective detection method for HPV status.

This model deserves to be validated on external datasets and to be

perfected with other parameters to increase its sensitivity.

A further noteworthy observation was that patients who are

both HPV-positive and smokers have significantly higher MRI

skewness, which is in line with published literature. This result

does not yet have an obvious explanation and therefore would

require confirmation by adding more patients and to be validated

on external datasets.
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