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ORIGINAL RESEARCH
ADULT BRAIN

Shape Features of the Lesion Habitat to Differentiate Brain
Tumor Progression from Pseudoprogression on Routine

Multiparametric MRI: A Multisite Study
X M. Ismail, X V. Hill, X V. Statsevych, X R. Huang, X P. Prasanna, X R. Correa, X G. Singh, X K. Bera, X N. Beig, X R. Thawani,

X A. Madabhushi, X M. Aahluwalia, and X P. Tiwari

ABSTRACT

BACKGROUND AND PURPOSE: Differentiating pseudoprogression, a radiation-induced treatment effect, from tumor progression on
imaging is a substantial challenge in glioblastoma management. Unfortunately, guidelines set by the Response Assessment in Neuro-
Oncology criteria are based solely on bidirectional diametric measurements of enhancement observed on T1WI and T2WI/FLAIR scans. We
hypothesized that quantitative 3D shape features of the enhancing lesion on T1WI, and T2WI/FLAIR hyperintensities (together called the
lesion habitat) can more comprehensively capture pathophysiologic differences across pseudoprogression and tumor recurrence, not
appreciable on diametric measurements alone.

MATERIALS AND METHODS: A total of 105 glioblastoma studies from 2 institutions were analyzed, consisting of a training (n � 59) and
an independent test (n � 46) cohort. For every study, expert delineation of the lesion habitat (T1WI enhancing lesion and T2WI/FLAIR
hyperintense perilesional region) was obtained, followed by extraction of 30 shape features capturing 14 “global” contour characteristics
and 16 “local” curvature measures for every habitat region. Feature selection was used to identify most discriminative features on the
training cohort, which were evaluated on the test cohort using a support vector machine classifier.

RESULTS: The top 2 most discriminative features were identified as local features capturing total curvature of the enhancing lesion and
curvedness of the T2WI/FLAIR hyperintense perilesional region. Using top features from the training cohort (training accuracy � 91.5%), we
obtained an accuracy of 90.2% on the test set in distinguishing pseudoprogression from tumor progression.

CONCLUSIONS: Our preliminary results suggest that 3D shape attributes from the lesion habitat can differentially express across
pseudoprogression and tumor progression and could be used to distinguish these radiographically similar pathologies.

ABBREVIATIONS: C � curvedness; Gd � gadolinium; KT � measure of the total curvature; PsP � pseudoprogression; RANO � Response Assessment in Neuro-
Oncology; S � sharpness; SI � shape index; SVM � support vector machine; TP � tumor progression

The treatment of malignant brain tumors relies heavily on sur-

gical resection and chemoradiation therapy, followed by at

least 6 months of adjuvant temozolomide.1 This treatment regi-

men has been shown to improve overall prognosis in patients with

brain tumors. However, a significant challenge postchemoradia-

tion is the presence of radiation-induced side effects, such as pseu-

doprogression (PsP), which mimic the appearance of tumor pro-

gression on posttreatment MR imaging. PsP is an early-delayed

benign treatment effect that occurs in approximately one-third of

all malignant brain tumors and often stabilizes without further

treatment.2 In the absence of reliable imaging tools to distinguish

PsP from tumor progression,3 patients are typically kept on a

“wait-and-watch” protocol, causing increased patient anxiety re-

garding their disease outcome and, in some cases, leading to un-
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necessary surgical interventions in patients with PsP with risks of

morbidity. There is hence a significant clinical need to accurately

differentiate PsP from true progression to improve patients’ treat-

ment management.

The Response Assessment in Neuro-Oncology (RANO) crite-

ria4 are the currently established criteria for posttreatment re-

sponse assessment in malignant glioblastomas. The most recent

RANO criteria uses semiquantitative bidirectional diametric

measurements of enhancing tumor on gadolinium contrast-en-

hanced T1WI and T2/FLAIR changes to stratify posttreatment

lesions as PsP or tumor progression. However, these semiquanti-

tative measurements result in interreader variability5 and overes-

timation of lesion volume,6 confusticating reliable differentiation

of PsP from tumor progression. Advanced imaging modalities

such as perfusion imaging,7 MR spectroscopy,8 and diffusion-

weighted imaging9 have shown some promise in distinguishing

tumor progression from posttreatment radiation effects. They,

however, are limited in clinical applicability because they are not

universally available and are often difficult to reproduce.10

Recently, “radiomics” (computational feature extraction ap-

proaches) have been used in conjunction with routinely available

MR imaging sequences for survival prediction and response as-

sessment in brain tumors.11,12 These radiomic approaches cap-

ture higher order quantitative measurements (eg, co-occurrence

matrix homogeneity, neighboring gray-level dependence matrix)

for modeling macro- and microscale textural and morphologic

attributes within the lesion area and drawing associations of these

features with clinical outcomes. While a few studies13,14 have ex-

plored distinguishing radiation necrosis (a delayed radiation-in-

duced effect) from tumor recurrence using radiomic texture anal-

ysis, relatively little work has focused on distinguishing PsP from

brain tumor recurrence, potentially on account of the poorly un-

derstood pathophysiology of PsP.3,15

Histopathologically, tumor progression is characterized by the

presence of tumor cells, increased cellularity, and vascular prolif-

eration and is known to morphologically alter white matter

structure in complex ways due to infiltration, displacement,

and blood-brain barrier disruption.16 Furthermore, some studies

have linked the presence of tumor progression with corpus callo-

sum involvement and subependymal spread on MR imaging.17

Evidence also suggests that a pronounced local inflammatory tis-

sue response may develop in patients with PsP due to inherent

and radiation therapy–induced capillary permeability, leading to

more pronounced peritumoral brain edema.18 These changes in

the pathophysiology of tumor progression and PsP are likely seen

as morphometric changes in the lesion enhancement on T1-

weighted MR imaging as well as perilesional T2WI/FLAIR hyper-

intensities but may not be appreciable using bidirectional mea-

surements obtained from the RANO criteria alone.

In this work, we attempted to evaluate the role of 3D shape

features in enhancing lesion and perilesional regions on T1WI

and T2WI/FLAIR hyperintensities to improve the differentiation

of PsP from tumor progression on routine MR imaging. We hy-

pothesized that uneven tumor growth due to irregular and aggres-

sive tumor infiltration will likely induce shape and surface differ-

ences in both the enhancing lesion and the T2WI/FLAIR

hyperintense perilesional components18-20 (together called the

“lesion habitat”); and the radiomic shape differences in the lesion

habitat will likely be different between tumor progression and PsP

on routine gadolinium-enhanced T1WI (Gd-T1WI), T2WI, and

FLAIR. To our knowledge, this is the first attempt at distinguish-

ing PsP from tumor progression through jointly interrogating

shape features of intratumoral and peritumoral regions from

posttreatment MR imaging. We first define a tumor habitat21 by

delineating 2 compartments for every posttreatment lesion: a hy-

perintense enhancing lesion on Gd-T1WI, and T2WI/FLAIR hy-

perintense perilesional components constituting both edema and

the nonenhancing lesion. We then compute changes in “local”

surface and “global” shape radiomic features individually from

each of these delineated enhancing lesion and T2WI/FLAIR hy-

perintense perilesional regions to capture morphometric differ-

ences between tumor progression and PsP. We then identify the

most differentiating features from each compartment obtained

on the training cohort and evaluate their efficacy on the test co-

hort. Additionally, we also consider features combined across

both compartments of the lesion habitat to distinguish PsP and

tumor progression.

MATERIALS AND METHODS
Study Population
This institutional review board–approved and Health Insurance

Portability and Accountability Act– compliant study comprised

independent training and test cohorts of patients with glioblas-

toma from 2 different institutions: Cleveland Clinic and Dana-

Farber/Brigham and Women’s Cancer Center. The 2 cohorts were

identified by performing a retrospective review of all patients with

brain tumors who underwent chemoradiation treatment using

the Stupp protocol at the respective institutions and had an en-

hancing lesion within 3 months of treatment. Patients who were

prescribed bevacizumab or any other treatment after receiving

the standard-of-care treatment were excluded from the study.

The training cohort consisted of 59 MR images obtained from the

Cleveland Clinic, where 38 tumor-progression cases and 21 PsP

cases were confirmed for disease presence using the criteria pro-

vided below. All 59 cases in the training cohort were IDH wild-

type and were acquired from a 1.5T scanner. The testing cohort

was obtained from Dana-Farber/Brigham and Women’s Cancer

Center and included 46 cases in which 33 tumor progression cases

and 13 PsP cases were confirmed for disease presence using crite-

ria similar to that used for the training cohort. Informed consent

was obtained for all patients involved in the study. Forty-two cases

in the test cohort were IDH wild-type, whereas the remaining 4

were IDH mutant. For T2WI and FLAIR scans, slice thickness was

4 mm; slice gap, 0.8 mm; and FOV, 210 mm, whereas for

MPRAGE, the volumetric acquisition had a voxel size of 1 � 1 �

1 mm. The acquisition matrices for T2, FLAIR, and MPRAGE

scans were 224 � 320, 168 � 256, and 256 � 256, respectively.

Table 1 summarizes the demographics for this study population.

Confirmation for Disease Presence
Our inclusion criteria consisted of the following: 1) patients

treated with standard-of-care chemoradiation with no additional

follow-up treatment; 2) availability of all 3 routine MR imaging

sequences (Gd-T1WI, T2WI, FLAIR); 3) MR images with diag-
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nostic image quality as determined by collaborating radiologists;

and 4) patients with posttreatment enhancing lesions with �5

mm of rim enhancement and the availability of diagnostic reads

of the lesion as belonging to PsP or tumor progression following

disease confirmation. Confirmation for progression or pseudo-

progression was obtained by either histologic analysis in some

cases or follow-up imaging. Continued enhancing tumor size in-

crease on follow-up MR imaging within the subsequent 6-month

period was considered progression, while reduction in tumor size

or growth within the subsequent 6-month period was considered

pseudoprogression.

Preprocessing
For every patient study, the 3 MR imaging sequences, Gd-T1WI,

T2WI, and FLAIR, were coregistered to a T1-weighted brain atlas

(Montreal Neurological Institute 152) using 3D Slicer (http://

www.slicer.org). Registering every study to an average standard

brain atlas allowed us to perform reliable cross-patient shape

analyses across the 2 sites. Bias field correction was then con-

ducted using a nonparametric nonuniform intensity normaliza-

tion technique.22 Skull stripping was finally performed via the

skull-stripping module in 3D Slicer.23

Segmentation of Lesion Habitat
Segments were conducted for every MR imaging slice with �5

mm of rim enhancement as recognized by an expert radiologist

(V.S.). Every lesion was annotated into 2 regions: an enhancing

lesion and a T2WI/FLAIR hyperintense perilesional component.

T1WI scans were used to delineate the enhancing lesion, while

both T2WI and FLAIR scans were used to annotate the T2WI/

FLAIR hyperintense perilesional compartment. Scans were man-

ually annotated across contiguous slices by 2 experienced board-

certified neuroradiologists with �10 years of experience, V.H.

and V.S. (1 for each site), via a hand-annotation tool in 3D Slicer.

All segmentations of MR images were conducted on a standard

desktop computer, with 24 GB RAM, and GT 730 GPU (NVIDIA,

Santa Clara, California), with a Cintiq 22HD touchscreen moni-

tor (Wacom, Saitama, Japan).

Feature Extraction

Global Features. Fourteen global shape features were extracted

from the enhancing lesion and T2WI/FLAIR hyperintense perile-

sional compartments for each subject. These features aim to char-

acterize the global contour of the ROI, such as volume (number of

voxels in the ROI), major and minor axes (longest and shortest

diameters of the shape), and elongation (ratio between major and

minor axes of the ROI). Extracted features are based on an Insight

Segmentation and Registration Toolkit (ITK) implementation

(www.itk.org). Descriptions of the 14 global shape features are

provided in the On-line Table and Appendix.

Local Features. The local features were mainly derived from cur-

vature measures computed for the surface of every 3D segmented

compartment (enhancing lesion or T2WI/FLAIR hyperintense

perilesional regions) on a voxel basis. An isosurface is first con-

structed from each 3D compartment, followed by computing the

first and second fundamental forms of the surface. Gaussian and

mean curvatures are computed from these fundamental forms for

each voxel.24 Four measures that capture the local curvature

changes are then derived from Gaussian and mean curvatures;

curvedness (C), sharpness (S), shape index (SI), and total curva-

ture (KT).

For each segmented compartment, the mean, median, kurto-

sis, and SD of curvedness, shape index, sharpness, and total cur-

vature were extracted (ie, a total of 16 local features were extracted

per compartment per subject). Computations were implemented

using in-house software implemented in Matlab R2016a platform

(MathWorks, Natick, Massachusetts). A detailed description of

the local features is provided in the On-line Table and the

Appendix.

Feature Selection and Classification
A sequential feed-forward feature-selection algorithm25 was used

so that only a subset of the top discriminative features is automat-

ically selected for classification, and at each iteration, an addi-

tional feature is sequentially included in the feature set. The

scheme starts from an empty feature vector and then gradually

adds features that are most discriminative between the 2 groups

until there is no improvement in the prediction. The selection

algorithm was used along with a support vector machine (SVM)

classifier,26 a robust machine-learning classifier that is commonly

used for classification of biomedical data. In this work, we used a

nonlinear radial basis function kernel within the SVM. To avoid

training bias, we used a 4-fold cross-validation scheme within the

training set, in which 3 folds were used for training and the fourth

fold was held out for testing. The experiment was run 100 times,

and the features that appeared most frequently across all runs

were identified as the top discriminative features within the train-

ing cohort. Top performing features were then used within the

independent test cohort for distinguishing PsP from tumor pro-

gression. Specifically, we used the following experiments:

Experiment 1: Distinguishing PsP from Tumor Progression Using
the Shape Features of the Enhancing Lesion Alone. Local and

global features extracted from the lesion compartment (30 in to-

tal) were used to train an SVM classifier. The top 5 features chosen

by the classifier across the 100 runs were identified as the most

discriminative subset from a total of 30 features for the enhancing

lesion regions and used within the independent test set to distin-

guish PsP from tumor progression.

Experiment 2: Distinguishing PsP from Tumor Progression Using
T2WI/FLAIR Hyperintense Perilesional Shape Features Alone.
Local and global features extracted from the T2WI/FLAIR hyper-

intense perilesional compartment (30 in total) were used to train

an SVM classifier. The top 5 features selected by the classifier

across the 100 runs were identified as the most discriminative

Table 1: Summary of study population across the training and
test cohorts

Characteristic Training Testing
No. of patients 59 46

Women 20 16
Men 39 30

Mean age (yr) 60.6 55.6
Age range (yr) 26–74 25–76
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subset from a total of 30 features extracted from T2WI/FLAIR

hyperintense perilesional regions and used within the indepen-

dent test set for distinguishing PsP from tumor progression.

Experiment 3: Distinguishing PsP from Tumor Progression Using
Integrated Tumor Habitat Shape Features. All 60 features ex-

tracted from both the enhancing lesion and T2WI/FLAIR hyper-

intense perilesional compartments were used in conjunction to

train an SVM classifier. The top 5 features selected by the classifier

from both enhancing lesion and T2WI/FLAIR hyperintense peri-

lesional features across 100 runs of cross-validation were identi-

fied as the most discriminative from the 60 features extracted

across the lesion habitat and used within the independent test set

to distinguish PsP from tumor progression.

Statistical Analysis
Statistical analysis was performed using a nonparametric Wil-

coxon signed ranked test to further evaluate whether there are

significant differences in PsP and tumor progression, across the

top performing features that were selected by the classifier.

Evaluating Variability of Top Shape Radiomic Features
across the 2 Sites
To test the variability of the top features selected by the classifier

across the 2 sites, we computed their correlation coefficients be-

tween the training and testing sets across true progression and

PsP. The correlation coefficients were computed for every feature,

separately for every class (PsP or tumor progression) across the 2

sites, with high correlation values reflecting less variability across fea-

tures across the 2 sites and low values reflecting more variability.

RESULTS
Experiment 1: Distinguishing PsP from Tumor Progression
Using Enhancing Lesion Shape Features Alone

Classification in the Training Cohort. Following SVM classifica-

tion using shape features of the enhancing lesion alone, the fol-

lowing 5 features were identified as the top discriminative features

between tumor progression (TP) and PsP cases: 3 global features

constituting roundness (0.5 � 0.16 TP, 0.33 � 0.15 PsP), eccen-

tricity (0.8 � 0.1 TP, 0.912 � 0.08 PsP), and compactness (0.3 �

0.2 TP, 0.1 � 0.24 PsP) and 2 local features including the mean of

KT (0.11 � 0.01 TP, 0.09 � 0.01 PsP), and the SD of S (4 � 2 TP,

1 � 0.9 PsP). Adding additional features to this subset did not

improve the classification accuracy. Three of the top 5 features,

compactness, roundness, and the SD of S, also were statistically

significantly different between PsP and tumor progression (Table

2). Figure 1 demonstrates color maps of the enhancing lesion

subcompartment of a tumor progression case and a PsP case,

reflecting 3 of the top discriminative local and global features.

Using the shape features of the enhancing lesion within the SVM

classifier, we correctly classified 50 of 59 subjects (accuracy �

84.75%). Five of the misclassified cases were tumor progression,

while the other 4 were PsP.

Classification in the Test Cohort. When we applied the top 5

discriminative features obtained on the training set for enhancing

lesions to the test set (n � 41, 29 tumor progression cases and 12

PsP cases), the classifier missed 3 tumor progression cases and 4

PsP cases (accuracy � 83%).

Experiment 2: Distinguishing PsP from Tumor Progression
Using the T2WI/FLAIR Hyperintense Perilesional Shape
Features Alone

Classification in the Training Cohort. For the T2WI/FLAIR hy-

perintense perilesional regions, the top 5 discriminative shape

features as identified by the SVM classifier were the following: 2

global features constituting the elongation shape factor (0.29 �

FIG 1. Color maps visualizing the significant local features on an enhancing lesion region for a TP case (upper row) and a PsP case (lower row). The
KT measure is shown in A, whereas the S measure is shown in B. C, Surface-rendering for the 2 cases shows the compactness global feature that
was discriminative by the classifier. The PsP mass is more elliptic, whereas the tumor appears to be more compact.

Table 2: Statistically significant features using the Wilcoxon rank
sum test for the training cohort

Compartment Feature P Value
Enhancing lesion SD of S .05
Enhancing lesion Roundness .0057
Enhancing lesion Compactness .00027
T2WI/FLAIR hyperintense perilesion Minor axis length .02
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0.2 TP, 0.6 � 0.43 PsP) and minor axis length (0.5 � 0.23 TP,

0.4 � 0.24 PsP) and 3 local features including a median of S

(0.1 � 0.03 TP, 0.09 � 0.01 PsP), a median of C (0.05 � 0.03 TP,

0.03 � 0.03 PsP), and a median of SI (0.05 � 0.01 TP, 0.03 � 0.01

PsP). These features correctly classified 52 of 59 patients (accu-

racy � 88.14%), with 4 PsP cases and 3 tumor progression cases

misclassified. Minor axis length was statistically significant as well

(Table 2). Figure 2 demonstrates the SI and the elongation shape

factor features for T2WI/FLAIR hyperintense perilesional areas of

both a TP and a PsP case.

Classification in the Test Cohort. Of the 46 test studies that in-

cluded the T2WI/FLAIR hyperintense perilesional compartment,

the top 5 features obtained by the classifier from the T2WI/FLAIR

hyperintense perilesional areas as identified on the training set

correctly classified 27 of the 33 subjects with tumor progression,

as well as 11 of the 13 PsP cases (accuracy � 82.6%).

Experiment 3: Distinguishing PsP from Tumor Progression
Using Integrated Lesion Habitat Features

Classification in the Training Cohort. When integrating shape

and surface features from the enhancing lesion as well as the

T2WI/FLAIR hyperintense perilesional regions within an SVM

classifier, we selected a set of top 5 features from the training set.

The top 5 features included the T2WI/FLAIR elongation shape

factor of the perilesion, and the median of C as well as the mean of

KT, roundness, and eccentricity of the enhancing lesion. These top

features correctly identified 54 of 59 subjects (accuracy � 91.5%),

with 2 tumor progression and 3 PsP cases misclassified. A sum-

mary of the top discriminative features for all the 3 experiments is

provided in Table 3.

Classification in the Test Cohort. Using integrated top features

from both enhancing lesion and T2WI/FLAIR hyperintense peri-

lesional areas (5 in total across both compartments) on the test

cases resulted in 37 of the 41 cases being correctly classified (ac-

curacy � 90.2%). All 29 tumor-progression cases were correctly

classified, and 8 of 12 PsP cases were correctly classified, suggest-

ing that including T2WI/FLAIR hyperintense perilesional shape

features along with the enhancing lesion shape features improved

the performance of the classifier.

Evaluating Variability of Top Shape Radiomic Features
across the 2 Sites
The On-line Figure shows boxplots for the top 3 features (SD of S

of the enhancing lesion and T2WI/FLAIR median of C and me-

dian of S of the hyperintense perilesion) for both true progression

and PsP classes across the 2 cohorts. The correlation coefficients

for the lesion SD of S for both true progression and PsP across the

2 sites were 0.88 and 0.77, respectively, whereas they were 0.75 and

FIG 2. A, Color maps visualizing a significant local feature (shape index) on a peritumoral region for a tumor progression case (upper row) and
a PsP case (lower row). B, Surface-rendering for 2 other cases that visualize the elongation shape factor feature as a discriminative feature
between tumor progression and PsP. The higher elongation shown in the lower row for the PsP case is aligned with the previous findings
reporting a rather elongated and elliptic shape of benign masses.31

Table 3: Experiments conducted on the training and testing cohorts and the corresponding classifier performance
Compartment Features Training Testing

Enhancing lesion Mean of KT, SD of S, roundness, eccentricity,
compactness

38 TP, 21 PsP: Accuracy � 84.75% 29 TP, 12 PsP: Accuracy � 83%

T2WI/FLAIR hyperintense
perilesion

Median of C, median of S, median of SI, minor
axis length, elongation shape factor

38 TP, 21 PsP: Accuracy � 88.14% 33 TP, 13 PsP: Accuracy � 82.6%

Lesion habitat Lesion: Mean of KT roundness, eccentricity
T2WI/FLAIR hyperintense

Perilesion: median of C, elongation shape factor

38 TP, 21 PsP: Accuracy � 91.5% 29 TP, 12 PsP: Accuracy � 90.2%
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0.81 for T2WI/FLAIR median of C of the hyperintense perilesion

and 0.9 and 0.775 for T2WI/FLAIR median of S of the hyperin-

tense perilesion. These relatively high values of correlation coef-

ficients between the 2 sites for both groups seem to suggest low

variability across the 2 sites (Cleveland Clinic and Dana-Farber/

Brigham and Women’s Cancer Center) for the best performing

features.

DISCUSSION
Distinguishing tumor progression from PsP is currently one of

the greatest clinical challenges in neuro-oncology.2 We present

the first approach at assessing the effectiveness of 3D shape and

surface radiomic features extracted from the tumor habitat (en-

hancing lesion and T2WI/FLAIR hyperintense perilesional re-

gions) to differentiate tumor progression from PsP on conven-

tional MR images (Gd-T1WI, T2WI, FLAIR). Our work was

based on the rationale that there are observable 3D shape and

surface irregularities encountered on the enhancing lesion as well

as the perilesional boundaries in patients with tumor recurrence

(potentially due to aggressive tumor infiltration and disruption)

compared with those with benign pseudoprogression, which will

likely have more regular boundaries.16,19,20

Multiple experiments were conducted, including using shape

features from the enhancing lesion alone and from T2WI/FLAIR

hyperintense perilesional areas alone and finally using the feature

set of both compartments for distinguishing tumor progression

from PsP. Results summarized in Table 3 suggest that using the

integrated set of features from the lesion habitat provided the best

classification accuracies in distinguishing PsP from tumor pro-

gression. When we used integrated shape features from the lesion

habitat, classification accuracies were improved for both training

and testing cohorts, with significant improvement in the test co-

hort (90.2% accuracy versus 83% for the lesion alone and 82.6%

for T2WI/FLAIR hyperintense perilesion). One hundred percent

sensitivity was obtained for identifying tumor progression cases

for the test cohort, and only 2 cases of 38 in the training cohort

were misclassified. A study has previously suggested the presence

of more defined peritumoral edema in patients with PsP due to

local inflammatory tissue response caused by inherent and radia-

tion therapy-induced capillary permeability.18 These changes are

likely seen as changes in shape features in the perilesional com-

partment contributing to improved distinction of PsP from tu-

mor progression.

For the global radiomic features, minor axis length and the

elongation shape factor of T2WI/FLAIR hyperintense perilesional

areas were the most discriminative between tumor progression

and PsP. The elongation shape factor had higher values in PsP,

which agree with previous findings that benign masses tend to be

more elongated and elliptic than tumor-progression cases.20,27

The discriminative features of the enhancing lesion compartment

(eccentricity, roundness, and compactness) also agree with pre-

vious findings that emphasized the anisotropic, irregular struc-

ture of lesion regions in tumor progression compared with a

rather elliptic shape of benign brain masses.20 This finding was

supported by the higher eccentricity values of PsP cases (ie, more

elliptic and elongated) than tumor progression cases shown in our

results. Our reported findings in global shape differences between

tumor progression and PsP are also supported by findings in

breast tumors that aimed at quantifying tumor boundaries using

various shape descriptors (eg, compactness, moments) for tumor

classification.27,28 Other studies showed that measures of circu-

larity (ie, roundness), size, and irregularity could distinguish pri-

mary glioblastomas and metastases.16,29

Surface features measuring local curvatures showed higher

dominance in the enhancing lesion and in T2WI/FLAIR hyperin-

tense perilesional regions of tumor progression cases (Fig 1). This

could be attributed to tumors tending to alter the structure of

white matter through infiltration and disruption, which eventu-

ally causes many shape irregularities leading to notable tumor

surface changes.16 A study on local curvature analysis for classify-

ing breast tumors similarly demonstrated that malignant tumor

masses had more variations in their local curvature measures than

benign masses.30

The stability analysis of the top features showed relatively high

values of correlation coefficients of the top features across the 2

sites for tumor progression and PsP. This finding suggests that the

most discriminative shape features of PsP versus tumor progres-

sion are also likely stable across the 2 sites.

This study, however, has its limitations. The results reported

are preliminary because our training and testing cohorts were

limited to a relatively small sample size. A large independent mul-

tisite validation should be performed to further validate our find-

ings. While the training and test data within the respective sites

were largely consistent, the potential variability introduced due to

differences in imaging sequence parameters (ie, slice thickness,

scanner) across the training and test sets was not explicitly studied

in this work and will be a part of a future study. Additionally, the

cohorts included in this study did not have information regarding

the administration of steroids posttreatment; hence, this could

not be studied. The ground truth for most of the studies was

obtained from follow-up imaging scans and lacked histologic

confirmation.

While this study is preliminary, the top features identified in

the training cohort (an overall accuracy of 91.5%) seemed to per-

form well in the independent cohort, with an accuracy of 90.2%.

Future studies will involve a large-scale validation of these find-

ings to create a “lockdown” classifier by identifying the most dis-

criminative and stable features using data cohorts from multiple

institutions.

Future work will also focus on integrating the most discrimi-

native shape features with radiomic texture features13 as well as

other clinical parameters (age, sex, Karnofsky performance score)

and investigating their performance in distinguishing PsP from

tumor progression.

CONCLUSIONS
The results presented suggest that a combination of local surface

and global shape attributes from the enhancing lesion and T2WI/

FLAIR hyperintense perilesional areas (lesion habitat) from

routinely acquired MR images could improve the distinction

of PsP from tumor progression over using features from en-

hancing lesions or T2WI/FLAIR hyperintense perilesional re-

gions alone.
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