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ADULT BRAIN

MRI Evidence of Altered Callosal Sodium in Mild Traumatic
Brain Injury

X H. Grover, X Y. Qian, X F.E. Boada, X K. Lakshmanan, X S. Flanagan, and X Y.W. Lui

ABSTRACT

BACKGROUND AND PURPOSE: Mild traumatic brain injury is a leading cause of death and disability worldwide with 42 million cases
reported annually, increasing the need to understand the underlying pathophysiology because this could help guide the development of
targeted therapy. White matter, particularly the corpus callosum, is susceptible to injury. Animal models suggest stretch-induced mecha-
noporation of the axonal membrane resulting in ionic shifts and altered sodium ion distribution. The purpose of this study was to compare
the distribution of total sodium concentration in the corpus callosum between patients with mild traumatic brain injury and controls using
sodium (23Na) MR imaging.

MATERIALS AND METHODS: Eleven patients with a history of mild traumatic brain injury and 10 age- and sex-matched controls under-
went sodium (23Na) MR imaging using a 3T scanner. Total sodium concentration was measured in the genu, body, and splenium of the
corpus callosum with 5-mm ROIs; total sodium concentration of the genu-to-splenium ratio was calculated and compared between
patients and controls.

RESULTS: Higher total sodium concentration in the genu (49.28 versus 43.29 mmol/L, P � .01) and lower total sodium concentration in the
splenium (which was not statistically significant; 38.35 versus 44.06 mmol/L, P � .08) was seen in patients with mild traumatic brain injury
compared with controls. The ratio of genu total sodium concentration to splenium total sodium concentration was also higher in patients
with mild traumatic brain injury (1.3 versus 1.01, P � .001).

CONCLUSIONS: Complex differences are seen in callosal total sodium concentration in symptomatic patients with mild traumatic brain
injury, supporting the notion of ionic dysfunction in the pathogenesis of mild traumatic brain injury. The total sodium concentration
appears to be altered beyond the immediate postinjury phase, and further work is needed to understand the relationship to persistent
symptoms and outcome.

ABBREVIATIONS: CC � corpus callosum; mTBI � mild traumatic brain injury; TSC � total sodium concentration

Mild traumatic brain injury (mTBI) is the leading cause of

death and disability in the United States and worldwide,

with approximately 42 million cases annually.1 Patients may have

a complex array of symptoms, including cognitive disturbance,

headache, and visual impairment, and there is a critical need to

gain further insight into the pathophysiology underlying the in-

jury. It is known that sodium is critical to cellular homeostasis,

which maintains fluid volume in the intracellular and extracellu-

lar compartments, maintains resting potential across membranes,

and triggers action potential. Mild TBI causes mechanical injury

to axons, resulting in widespread membrane depolarizations and

activation of cellular ionic cascades, thereby causing disruption of

sodium homeostasis.2-4 There is a resultant increase in intracellu-

lar sodium, which lowers the threshold for membrane depolariza-

tion.4-8 White matter is known to be susceptible to injury in mTBI

relating to acceleration, deceleration, and rotational forces.8,9 In

particular, the corpus callosum (CC) is at specific risk due to axon

density, transverse orientation, and connection of the 2 cerebral

hemispheres, which can experience opposing forces during com-

plex head injury.2 It is known from the biomechanical literature

that quantitative stress measures such as principal strain, strain
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rate,10 and von Mises stress11 are highest in and around the CC.

Because the CC is a group of anatomic tracts that integrate infor-

mation across cerebral hemispheres, patients with mTBI tend to

experience deficits in integrative functions (cognitive slowing,

confusion, difficulty with complex tasks) rather than focal neuro-

logic deficits.

Noninvasive imaging of brain sodium on clinical MR imaging

scanners is very challenging due to low signal-to-noise ratio. Re-

cent advances in technologies achieved at our site, such as coil

design, data acquisition, and sodium quantification, now allow us

to study ionic changes noninvasively at clinical field strengths of

3T or higher.12-16 The purpose of this pilot study was to measure

total sodium concentration (TSC) in the CC in patients with

mTBI using sodium (23Na) MRI and to compare TSC and its

spatial distribution across the CC with that in healthy controls.

MATERIALS AND METHODS
The study was performed under approval by the institutional re-

view board. Informed consent was obtained from each of the sub-

jects studied.

Human Subjects and Clinical Assessments
Eleven patients (5 men and 6 women; age range, 19 –70 years)

with a history of mTBI (as defined by the American Congress of

Rehabilitation Medicine9) and 10 age- and sex-matched healthy

controls were prospectively recruited for sodium (23Na) MRI. Re-

view of clinical charts was performed for pertinent clinical history

and assessment, including postconcussive symptoms, neurologic

examination, and scores on the Standardized Assessment of

Concussion.

MR Imaging Acquisition
Sodium (23Na) MRI scans were performed on a clinical 3T scan-

ner (Magnetom Prisma; Siemens, Erlangen, Germany) with a cus-

tom-built 8-channel dual-tuned (1H-23Na) transmit/receive head

array coil.13 The twisted projection imaging pulse sequence15,17

was applied to a 3D volume covering the whole head (FOV � 220

mm, matrix size � 64, 3D isotropic, nominal resolution � 3.44

mm, rectangular radiofrequency pulse duration � 0.5 ms, TE/

TR � 0.3/100 ms, flip angle � 90°, rings � 28, P [key parame-

ter] � .4, projections � 1595, averages � 4, TA [time of acquisi-

tion] � 10.6 minutes). This scheme of data acquisition produced

a typically high SNR of 55 in gray matter, 35 in white matter, and

57 in CSF in the square-root of the sum-of-squares sodium image

of healthy controls before the correction for coil sensitivities. A

magnetization-prepared rapid acquistion of gradient echo
1H-MR imaging pulse sequence was performed for structural im-

aging of the brain (FOV � 256 � 216 mm2, matrix size � 384 �

324, slice thickness � 1 mm at 144 slices, TE/TR � 3.56/2,220 ms,

acceleration factor � 3, TA � 4.6 minutes).

Image Preprocessing
Sodium images were corrected for intensity inhomogeneity relat-

ing to the array coil by dividing by a low-resolution version of the

images reconstructed from the k-space center of an optimally se-

lected diameter of 9.0/FOV.18 Normalization was then accom-

plished with conversion of image intensity into sodium concen-

tration in millimoles per liter on a pixel-by-pixel basis through a

2-point linear calibration16 with a noise-only background region

set at 0 mmol/L and an ROI within the posterior chamber of the

ocular globe set at a known (previously established) human vitre-

ous sodium concentration of 145 mmol/L.19,20

ROI Analysis
Circular ROIs of 5-mm in diameter were placed by 2 reviewers (1

research associate specifically working on neuroimaging and 1

neuroradiologist with �10 years of experience) in consensus in

the genu, body, and splenium of the CC. A small-sized ROI was

chosen to avoid volume averaging. The mean TSC was compared

between subjects with mTBI and controls using a 2-tailed Student

t test and a significance level of .05.

For further assessment of the TSC spatial distribution across the

corpus callosum, a TSC ratio of genu to splenium was calculated and

compared between patients and controls. A TSC color map was

created using MR Viewer software (MRI Research Lab, Mayo

Clinic and Foundation) (https://cortechsolutions.com/emse/

software/mr-viewer/).

RESULTS
Five men and six women with an age range 19 –70 years and a

history of mTBI were studied, with an average time since injury of

16 weeks. All patients were symptomatic at assessment. Ten of 11

subjects with mTBI had formal clinical assessments at our insti-

tution. One subject declined this assessment.

All of the 10 patients who underwent clinical assessment were

symptomatic at time of imaging (detailed in the On-line Table).

FIG 1. The TSC of the genu was higher in patients with mTBI com-
pared with controls (P � .01).

FIG 2. The TSC in the splenium was lower in patients with mTBI com-
pared with controls (P � .08).
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Of note, most patients reported headaches, sleep disturbances,

dizziness, decreased concentration, and an average Standardized

Assessment of Concussion score of 27.5 (highest Standardized

Assessment of Concussion score � 30, normal score � 25).21

The mean TSC in the genu, body, and splenium of the CC in

patients with mTBI was 49.28 � 0.51 mmol/L, 46.04 � 0.43

mmol/L, and 38.35 � 0.36 mmol/L, respectively, compared with

43.29 � 0.46 mmol/L, 45.25 � 0.38 mmol/L, and 44.06 � 0.46

mmol/L in controls. There were statistically significant differ-

ences between patients with mTBI and controls with respect to the

callosal TSC in the genu (49.28 versus 43.29 mmol/L, P � .01)

(Fig 1). No significant differences in the average TSC were found

between patients and controls in the body (P � .32) and splenium

of the corpus callosum (P � .08) (Fig 2).

The average ratio (genu/splenium) was 1.3 in patients and 1.01

in controls (P � .001) (Fig 3).

DISCUSSION
The results of this investigation show differences in the callosal

TSC between a small group of symptomatic patients with mTBI

and age- and sex-matched healthy controls. Differences in the

TSC between study groups varied depending on the location

within the CC, with higher genu TSC and a trend that did not

reach statistical significance of lower splenial TSC in patients with

mTBI (Fig 4).

The findings corroborate a growing body of literature that

underscores the importance of cytosolic sodium as a marker of

tissue injury after trauma. In mTBI, twisting and stretching of

axons results in mechanical disruption of membranes, altered

function of voltage-gated sodium channels and sodium-potas-

sium adenosine triphosphatase,4,5,22 and changed regulation of

the expression of sodium channels,6,7 with potential persistent

sodium abnormality.

It is not fully clear what caused the change of TSC in the CC:

TSC has contributions from both intracellular and extracellular

compartments, and derangements in either of these compart-
FIG 3. The TSC of the genu/splenium ratio was higher in patients
compared with controls (P � .001).

FIG 4. The TSC heat color map of the corpus callosum superimposed on a midline MPRAGE image in a control subject (top) and a patient with
mTBI (bottom) shows that the TSC is higher in the genu and lower in the splenium in the patient with mTBI.

2202 Grover Dec 2018 www.ajnr.org



ments could contribute to the altered TSC. Because the extracel-

lular compartment rapidly equilibrates with a larger plasma so-

dium pool, changes in intracellular sodium concentration could

certainly affect TSC measures.23,24 Alterations in the relative size

of the compartments would also be expected to affect TSC

measurements. Work is currently underway to attempt to esti-

mate intracellular and extracellular contributions to the TSC

signal.16,23,25,26

Why injury may affect sodium differently across various parts

of the CC is unclear. There is variable myelination across the

CC,27-29 and expression of some specific voltage-gated sodium

channels is known to track with myelination.30 In addition, von

Reyn et al3 demonstrated anatomic redistribution of voltage-

gated sodium channels in the CC in an animal model of mTBI.

These factors may contribute to anatomic differences in TSC

across the CC after injury.

Many medications may affect sodium homeostasis. The most

relevant ones were specifically screened and included in the chart

review. Patient 5 was on the antidepressant escitalopram (selec-

tive serotonin reuptake inhibitor). There are a few recent reports

of escitalopram causing a syndrome of inappropriate antidiuretic

hormone secretion and hyponatremia. Our patient exhibited no

signs of the syndrome of inappropriate antidiuretic hormone se-

cretion and had normal serum chemistry values. Patient 3 was

treated with lamotrigine, a central nervous system voltage-gated

sodium channel blocker, for posttraumatic dystonia. In this sub-

ject, the TSC genu/splenium ratio among the mTBI group was the

closest to that of the control cohort (Fig 5).

Limitations of this study include the small sample size; how-

ever, here we show proof of concept that TSC can be measured in

vivo, noninvasively, on a clinical 3T scanner in subjects with

mTBI after injury. This represents the first report we are aware of

suggesting sodium homeostasis abnormality in human subjects

with mTBI using a noninvasive method. Already discussed is the

need to estimate cellular compartmental contributions to the TSC

to further elucidate ionic abnormalities in mTBI. This pilot work

included a heterogeneous population of patients with respect to

time since injury, history of prior mTBI, and medications that

may affect the sodium balance. In this preliminary study, no

T2WI/FLAIR was performed in these subjects.

CONCLUSIONS
This study shows complex differences in the TSC in the CC in

symptomatic patients with mTBI compared with age- and sex-

matched healthy controls. Specifically, the TSC in the genu of the

CC was elevated. Further work is needed to understand the rela-

tionship between the TSC change and symptom resolution or

outcome prediction.
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