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REVIEW ARTICLE

Radiomics in Brain Tumor: Image Assessment, Quantitative
Feature Descriptors, and Machine-Learning Approaches

X M. Zhou, X J. Scott, X B. Chaudhury, X L. Hall, X D. Goldgof, X K.W. Yeom, X M. Iv, X Y. Ou, X J. Kalpathy-Cramer, X S. Napel,
X R. Gillies, X O. Gevaert, and X R. Gatenby

ABSTRACT
SUMMARY: Radiomics describes a broad set of computational methods that extract quantitative features from radiographic images. The
resulting features can be used to inform imaging diagnosis, prognosis, and therapy response in oncology. However, major challenges
remain for methodologic developments to optimize feature extraction and provide rapid information flow in clinical settings. Equally
important, to be clinically useful, predictive radiomic properties must be clearly linked to meaningful biologic characteristics and quali-
tative imaging properties familiar to radiologists. Here we use a cross-disciplinary approach to highlight studies in radiomics. We review
brain tumor radiologic studies (eg, imaging interpretation) through computational models (eg, computer vision and machine learning) that
provide novel clinical insights. We outline current quantitative image feature extraction and prediction strategies with different levels of
available clinical classes for supporting clinical decision-making. We further discuss machine-learning challenges and data opportunities to
advance radiomic studies.

ABBREVIATIONS: LBP � local binary patterns; HOG � histogram of oriented gradients; QIN � Quantitative Imaging Network; SIFT � scale-invariant feature
transform

Clinical imaging captures enormous amounts of information,

but most radiologic data are reported in qualitative and sub-

jective terms. Radiomics1,2 in neuro-oncology seeks to improve

the understanding of the biology and treatment in brain tumors

by extracting quantitative features from clinical imaging arrays.

These data can then be “mined” with machine-learning methods

and validated as quantitative imaging biomarkers3 to characterize

intratumoral dynamics throughout the course of treatment. The

recent growth of cancer imaging analytic methods4-6 has pro-

duced novel insights into early indicators of treatment response,

risk factors, and subsequent tailoring of optimal treatment strat-

egies.2,5,7,8 Image-based computational models are, thus, becom-

ing an important enabling technology that permits identification,

analysis, and validation of extracted quantitative features. In this

review, we discuss available methodologies in radiomics that can

be used as predictive markers for diagnosis, prognosis, and ther-

apeutic planning in the context of adult brain tumors. We will also

address the interpretive challenges that emerge from the compu-

tationally based data generated by radiomic methods. While sta-

tistical correlations between computational features and clinical

outcomes exist, this approach will likely not gain wide clinical

acceptance until there is a better link between the quantitative

metric and traditional imaging features and the underlying

biology.

Radiomics incorporates several important disciplines, includ-

ing radiology (eg, imaging interpretation), computer vision (eg,

quantitative feature extraction), and machine learning (eg, classi-

fier evaluation). A central goal is the identification of quantitative

imaging indicators that predict important clinical outcomes, in-

cluding prognosis and response or resistance to a specific cancer

treatment. Here, we discuss recent studies in the development of

radiomics with the following goals: 1) understanding the func-

tionality of clinical imaging as a necessary prerequisite for devel-

oping radiomic models; 2) extracting quantitative image features

extraction in computer vision that can be used to exploit tumor

imaging traits; 3) identifying radiomic signatures shown to be

surrogate markers of underlying molecular properties of tumors,

enabling a noninvasive means to characterize biologic activities of
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cancer9; and 4) performing predictive analysis with machine-

learning techniques to classify clinical outcomes and assessing the

physiologic status of cancer.10 Through this convergence of radi-

ology, computer vision, and machine-learning techniques, ra-

diomics provides a mechanism for multidisciplinary research on

brain tumors.

Clinical MR Imaging Assessment of Brain Tumors
MR imaging permits noninvasive characterization of meso-

scopic features (ie, the “radiologic phenotype”) of brain tu-

mors and is an indispensable tool for early tumor detection,

monitoring, and diagnosis.11 Radiomic analysis is built on the

central hypothesis that tumor imaging reflects the underlying

morphology and dynamics of smaller-scale biologic phenom-

ena, including gene expression patterns, tumor cell prolifera-

tion, and blood vessel formation.12

MR imaging plays an essential role in the management of pa-

tients with glioblastoma for 3 important reasons. First, MR imag-

ing has an excellent capacity for the detection of soft-tissue con-

trast by providing superior anatomic information (eg, spatial

location). Second, different MR imaging sequences can be sensi-

tive to key components of tumor physiology, such as blood flow

and cellular density, and can distinguish regions of the tumor that

contain different environments (eg, variations in blood flow) that

are likely to affect local cellular phenotypes and genotypes. Third,

MR imaging can noninvasively and nondestructively interrogate

the tumor repeatedly to assess response to treatment and can,

therefore, be integrated into therapeutic strategies. Understand-

ing these image-based features is critical because they represent a

key data resource in radiomic analysis.1

Contrast enhancement in MR imaging using gadolinium-

based contrast agents is an important and useful feature in evalu-

ating brain tumors.13 The tumor zone that enhances following

gadolinium injection typically defines the tumor region that is

well-perfused with high tumor cell density but also one in which

there is a breakdown of the blood-brain barrier. Compared with

noncontrast imaging, contrast-enhanced images are often used to

provide a delineation of gross tumor margins and allow earlier

detection of additional small metastatic lesions. In general, tumor

sizes based on these images are used for monitoring tumor re-

sponse to therapy.13 Thus, radiomic models for brain tumor anal-

ysis14-16 often focus on contrast-enhanced sequences.

Spatial heterogeneity of brain tumors is well-recognized in

MR imaging. Different MR imaging sequences exploit various

biomedical properties of brain tumors more effectively than other

imaging modalities (eg, CT can only show differences in electron

density). Postgadolinium T1-weighted images can show enhanc-

ing regions (characterized as T1-shortening or T1 high signal)

within the tumor due to gadolinium leakage from the intravascu-

lar space into the tumor because of a disrupted blood-brain bar-

rier. Consequently, necrosis and solid tumors can be visually dis-

tinguished. In addition, T2-weighted sequences are sensitive to

water tissue content and can be used to estimate cellular density

and the presence of edema. Next, fluid-attenuated inversion-re-

covery sequences are frequently used in conjunction with T2-

weighted images to provide a better distinction between edema

and solid tumor.17 In addition, diffusion-weighted imaging al-

lows characterization of tissue cellularity based on the free diffu-

sion of water molecules along structural tissue pathways in differ-

ent tissue types.18 Advanced MR imaging methods, including

perfusion, proton density–weighted, fast spin-echo, and short tau

inversion-recovery imaging, have also been applied to depict spe-

cific tissue contrast.19 Therefore, mining radiomic data from

these advanced imaging arrays will likely offer additional infor-

mation with respect to tissue discrimination, treatment measure-

ment, and clinical usefulness.

Quantitative Image Feature Extraction
While the quality, resolution, and flexibility of MR imaging tech-

nology has greatly increased in past decades, the interpretation of

images remains largely descriptive, subjective, and nonquantita-

tive. Thus, the central goal of radiomics is the development of

image analytic techniques that can reproducibly extract objective,

quantitative data from MR imaging scans. Linking these quanti-

tative features and underlying tissue dynamics that govern tumor

growth and response to therapy has the potential to rapidly ex-

pand the scope of cancer imaging research.1 Here, we focus on

many related computer vision techniques that are particularly

useful in quantitative cancer imaging science.

Computational Image Descriptors
Radiomics relies on computational techniques in computer

vision to extract many quantitative features from radiologic

images.20 The extracted quantitative features are typically

within a defined ROI that could include the whole tumor or

specific regions within it. Computational image descriptors

quantify visual characteristics at different scales from ROIs,

which can be readily translated into radiologic image analysis

pertaining to tumor volumetric shapes and visual appearance

dynamics. For example, the scale-invariant feature transform

(SIFT)21,22 is computed through key point detection using a

difference of Gaussian function and local image gradient mea-

surement with radius and scale selections (as illustrated in Fig

1). This permits a quantitative measurement of the tumor

shape so that subtle variations during treatment (ie, increas-

ingly round or increasingly elliptic) can be observed and quan-

tified. Several recent studies have demonstrated the accuracy

and reproducibility of computational image extraction ap-

proaches to capture characteristics of tumor shape and texture

information from brain tumor MR imaging.23-25 Thus, these

approaches have the potential for large-scale, rapid through-

put and reproducible evaluation and may be applied to routine

clinical imaging studies that are widely available.

Here, we describe 2 primary image feature extraction strate-

gies with local- or global-level computations in the context of

computer vision. First, local-level feature extraction provides an

image descriptor used to compare a pixel being tested with its

immediate pixel neighborhood.26 This allows identification of a

small, but biologically important, tumor niche area (a small num-

ber of pixels) within an otherwise homogeneous, larger tumor

region. This can be achieved, for example, with local binary pat-

terns (LBP).27 These are local image descriptors sensitive to small

monotonic gray-level differences28 that may not be apparent to a

human observer. In contrast, global-level feature extraction em-
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phasizes the quantification of the overall composition of an entire

ROI. For example, a computational descriptor29 was designed to

develop a low-dimensional representation of the image, empha-
sizing spatial structure variations (eg, roughness, openness, and

expansion). In addition, high-order statistical features, known as

texture features,30 have been widely applied to brain cancer and

other cancer imaging analyses.14,31 Examples of texture features

include gray-level co-occurrence matrices32 and gray-level size

zone matrices,33 which examine the spatial relationships of pixels

through a series of statistical measures. Histogram of oriented

gradients (HOG)34 features have also proved to be efficient fea-

ture descriptors for quantifying image-gradient statistics with

multiple directions not obvious to radiologists. A recent study35

suggested that co-occurring gradients in MR imaging were useful

for distinguishing brain tumor subtypes.
Despite these advances of computational image descriptors,

they may be suboptimal because feature extraction inherently dis-

tills a complex dataset of more than a million voxels per MR

imaging sequence into a handful of numeric descriptors. To iden-

tify a strong radiomic feature, one needs 2 important factors.

First, the proposed descriptor must be able to capture distinctive

patterns correlated with the clinical outcomes of patients. More-

over, the descriptor must be stable under various image-acquisi-

tion parameters. Although MR imaging signals exhibit tumor

geometric shapes, appearances, and voxelwise variations with un-

derlying biologic characteristics at molecular, tissue, and organ

levels,12 the potential dynamics and temporal variations in blood

flow increase the difficulty in acquiring useful radiomic features.

Thus, test-retest and interobserver stability36 are strongly sug-

gested for measuring robust computational image features in ra-

diomic studies. Figure 1 highlights several hand-crafted compu-

tational descriptors that capture different visual characteristics of

brain tumor MR imaging. Despite the promise of computational

image descriptors, the underlying biologic meanings of these fea-

tures have not been fully exploited, with links to promising ther-

apies and outcome prediction of patients.

Biologically Inspired Feature
Descriptor
Biologically inspired feature descriptors

build on specific biologic hypotheses

that transfer the recognized radiology

knowledge into quantitative representa-

tion, as opposed to pure computational

approaches for feature extraction. Under-

standing disease characteristics is neces-

sary to propose biologically inspired features because they can be

disease-specific. For example, a recent study37 suggested that MR

imaging–derived pharmacokinetic features (eg, extracellular space

per unit volume of tissue) were potential biomarkers for separating

outcomes of treatment with concurrent radiation therapy and

chemotherapy.

Biologically inspired MR imaging features can be used to de-

fine organ-level tumor data variation and distribution, offering an

opportunity to observe spatial variations and temporal evolution

of tumors.12 For example, a spatial distance measurement38 was

defined to quantitatively explore brain tumor heterogeneity. The

proposed spatial distances suggested that the variations among

biologically defined tumor subregions can reflect distinct prog-

nostic information. Also, early temporal changes and spatial het-

erogeneity during radiation therapy in heterogeneous regions of

high and low perfusion in gliomas might predict different physi-

ologic responses to radiation therapy.39 Other work16 has pro-

posed a novel concept of imaging habitats that quantifies distinc-

tive tumor subregions by their local contrast enhancement,

edema, and cellularity in MR imaging. Moreover, a recent study

measured the relationships between MR signal and cell density

using radiographically localized biopsies,40 revealing that T2-

FLAIR and ADC sequences were inversely correlated with cell

density. The Table highlights several feature descriptors with their

clinical potentials.

Biologically inspired features correlate with corresponding

MR imaging sequences because different MR imaging sequences

come with various clinical imaging protocols. As a result, selec-

tion of MR imaging sequences can directly affect image feature

definition and corresponding biologic interpretation. For exam-

ple, 1 study41 used apparent diffusion coefficient histograms for

the early prediction of drug treatment responses of glioblastomas.

In this study, diffusion- and T1-weighted data were used sepa-

rately for ADC computation and tumor segmentation. The ADC

was used to describe the diffusion processes that reflect different

Examples of quantitative features with their potential clinical relevance
Quantitative Feature Descriptors Potential Clinical Relevance

Histogram of contrast-enhanced tumor MRI45 Distinguish molecular subtypes
Contrast information between co-occurring

subregions5
Survival predictor

Pretreatment ADC histograms82 Indicator to bevacizumab treatment
HOG34 Measure tumor microenvironment
LBP27 Measure tumor microenvironment
SIFT22 Measure tumor spatial characteristics

FIG 1. Visualization of computational image feature descriptors. A T1-weighted brain tumor section (A and B) is displayed, and feature
visualizations (C–E) are given of LBP (C), HOG (D), and SIFT (E) descriptors. LBP quantifies local pixel structures through a binary coding scheme.
HOG computes block-wise histogram gradients with multiple orientations. SIFT detects distributed key points with radius on tumor images.
These multiparametric features create a rich image-driven data base to characterize tumors in MR imaging at different scales.
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biomedical mechanisms.42 These biologically inspired features

are quantitative rather than qualitative semantic features anno-

tated by radiologists to describe the tumor environment.43 The VA-

SARI semantic feature set (https://wiki.cancerimagingarchive.

net/display/Public/VASARI�Research�Project), for example, is

used to describe the morphology of brain tumors (eg, tumor lo-

cation, shape, and geometric properties) on contrast-enhanced

MR imaging.7

Imaging and Genomics in Glioblastoma
Imaging genomics, also known as radiogenomics, is a growing

field that studies the association between imaging biomarkers and

genomic characteristics of a disease.7,44,45 Inherent in this defini-

tion is the goal of enabling noninvasive imaging assessment as a

surrogate for molecular signatures that were previously only

available through molecular testing. A handful of studies7,44,45

identified associations between quantitative image features and

gene expression profiles of glioblastoma (eg, TP53, EGFR, NF1,

and IDH1) and its molecular subtypes (eg, classical, mesenchy-

mal, proneural, and neural). Additional studies indicated that

quantitative MR imaging features derived from entire tumor vol-

umes can be used to identify glioblastoma subtypes with distinct

molecular pathway activities.15,46 The value of such whole-tumor

comparisons is limited by the spatial variations in both the

imaging features and molecular tumor properties of tumor

cells in, for example, glioblastoma multiforme. However, this

extensive intratumoral heterogeneity also provides a compel-

ling research opportunity if spatial characteristics in MR im-

aging, largely governed by mesoscopic tumor properties (eg,

blood flow and cell density), could be used to define the spatial

distribution of glioblastoma molecular subtypes within the

same tumor.47 To better define imaging-to-genomic relation-

ships, the development of subregional imaging analysis en-

abling spatial characterization is biologically valuable (Fig 2)

because it provides a means to characterize molecular varia-

tions in the spatially distinct tumor fragments.

Machine Learning in Radiomics
Machine learning offers an approach for discovering predictive

radiomic features. Here, the investigator does not begin with an a

priori biologic hypothesis. Thus, the parameter space is searched

for an imaging feature statistically associated with clinical out-

come. Before one evaluates machine-learning models, a specifica-

tion for the medical diagnostic task is needed so that models can

be appropriately trained. For example, supervised, unsupervised,

and semisupervised learning models are fundamental learning

strategies used in accordance with the different levels of available

clinical outcome labels. In supervised learning, the goal is to learn

from a certain portion of trained samples with known class labels

and to predict classes or numeric values for unknown patterns

from large and noisy datasets.47 Conversely, unsupervised learn-

ing finds the natural structure from data without having any prior

labels. As a hybrid setting, semisupervised learning needs only a

small portion of labeled training data. The unlabeled data sam-

ples, instead of being discarded, are also used in the learning pro-

cess. More recently, the rise of deep learning as a new frontier in

machine learning has advanced large-scale medical image analy-

sis.48 We describe these learning strategies and highlight specific

clinical applications in the context of brain tumors.

Supervised Learning
Supervised learning is a primary learning scheme that has been

applied in recent radiomic studies.16,23 Supervised learning is

conceptually divided into 2 phases. First, training samples with

available class labels are used to build a classifier by finding a set of

parameters to define a decision boundary among classes. Second,

the learned classifier is used to predict class labels of unknown

testing samples. Notably, the selection of classifiers depends on

the desired properties of the classifier, including convergence and

modeling assumptions.49 An example of this approach is a study50

that showed the selection of machine-learning classifiers for su-

pervised radiomic applications in detecting radiomic biomarkers.

More examples include tumor-subtype classification and survival

FIG 2. Linking subregional imaging to molecular profiles in glioblastoma. In this example, tumor subregions (B) are defined by jointly clustering
on contrast-enhanced T1WI and T2WI (A). These subregions correspond to red (high T1WI and high T2WI), yellow (high T1WI and low T2WI), blue
(low T1WI and high T2WI), and pink (low T1WI and low T2WI) areas. The defined tumor subregions enable quantitative spatial characterization,
offering a means to noninvasively assess specific molecular activities (C) with enriched molecular pathways (D).
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time prediction, and these are discussed in clinical applications

below.

Unsupervised Learning
Without knowing any prior labels of data, unsupervised learning

algorithms group the data according to their similarity. For exam-

ple, a knowledge-based unsupervised fuzzy clustering approach51

was proposed to automate brain tumor segmentation. It showed

that tumor and healthy intracranial regions could be grouped

using this clustering algorithm through a rule-based expert sys-

tem. The growth of clinical imaging results in the onerous task of

manually annotating tumors on imaging volumes. Therefore,

there has been growing interest in exploring scalable algorithms

for annotating large volumes of tumor imaging data15 and evalu-

ating human interrater variability.52

Semisupervised Learning
Semisupervised learning is designed specifically for tasks for

which it is difficult to obtain class labels for certain patients (eg,

the estimation of tumor progression). In other words, the advance

of semisupervised learning overcomes a limitation of conven-

tional supervised learning that is incapable of using data with

missing labels in training. Semisupervised models have a great

potential to effectively enable predictive analysis with uncom-

pleted clinical labels in training. For example, 1 study53 predicted

states of brain tumor prognosis using a semisupervised learning

model. With �26% of the available staging labels, a discrimina-

tive analysis was performed using the staging labels of patients

with glioblastoma.

Deep Learning
Recently, deep learning54,55 has emerged as a powerful technique

that defines a network architecture, concatenating multiple neu-

ral-like processing layers with multiple levels of abstraction. Deep

learning methods have achieved record-breaking performances

for numerous computer vision applications when the number of

available training samples is sufficiently large.56 Convolutional

neural networks,57 for example, are deep learning models that

incorporate concatenated convolutional layers and pooling lay-

ers, followed by fully connected layers to learn the high-level rep-

resentation of input data. A growing set of studies has shown

superior results in the field of medical image analysis by applying

convolutional neural networks models.48,58-60 A recent study61

specifically introduced a convolutional neural networks– based

approach for brain tumor segmentation. With the designed net-

work architecture containing multiple small 3 � 3 kernels and

deep layers, the model achieved strong segmentation perfor-

mance (DICE score � 0.88) on the Brain Tumor Segmentation

Challenge 2013 data base (http://braintumorsegmentation.org/).

Specific Clinical Applications of Radiomics

Survival Time Prediction. Predicting prognostic performance of

glioblastomas using clinical imaging alone is challenging due to

the radiographic heterogeneity of tumors. Stratification of clinical

groups will directly impact image-guided diagnosis and targeted

treatment.16 In contrast to qualitative assessment (enhancing tu-

mor, edema, and multifocal lesions)62 made by radiologists, a

recent study5 introduced quantitative spatial imaging biomarkers

to predict survival time for patients with glioblastomas. Such

work requires a labeled training set with survival information. It

suggested that contrast information gained from co-occurring

subregions on FLAIR and T2-weighted images was useful to sep-

arate long-term (�400 days) and short-term (�400 days) sur-

vival groups .

Classification of Glioblastoma Subtypes. An example of the clas-

sification of brain tumor histologic groups25 demonstrated the

usefulness of radiomic features to rapidly classify gliomas, metas-

tases, and high- (grade III and grade IV) and low-grade (grade II)

neoplasms. The quantitative image analysis collected brain tumor

identification, raw intensity values, and MR imaging– based tex-

ture features to demonstrate the capability of multiparametric

MR imaging features to separate histologic classes of brain tu-

mors. In addition, a recent study45 showed the possibility of clas-

sifying molecular subtypes of glioblastomas using radiomic fea-

tures alone. In this approach, histograms of MR imaging intensity

in enhanced tumors were identified to provide added value for

predicting molecular subtypes of glioblastoma.45

Tumor–Tissue Discriminative Analysis. Differentiating radiation

necrosis from tumor recurrence is difficult in patients with glio-

blastoma undergoing chemoradiation because traditional quali-

tative interpretation of conventional contrast-enhanced MR

imaging is unlikely to differentiate chemoradiation-induced ne-

crosis and pseudoprogression.63 By contrast, quantitative MR im-

aging features64 were shown to differentiate radiation necrosis

from recurrent tumor. Results revealed that a set of quantitative

intensity features obtained from multiple MR imaging arrays (eg,

T1, T2, relative CBF, and ADC) was useful for detecting radiation

necrosis tissue in resected patients with glioblastoma multiforme

undergoing chemoradiation.

Research Opportunities and Challenges
Substantial progress has been made from recent radiomic studies

to deepen our understanding of imaging characteristics in can-

cer.1,2 The identified quantitative features can be used to alert

radiologists to suspicious abnormalities because radiomic models

can even capture subtle variations in tumor environment not eas-

ily perceived by human experts. We highlighted the convergence

of quantitative image feature extraction and machine-learning

techniques for supporting diagnosis, prognosis, and treatment

predictions. Next, we discuss challenges and opportunities that

are not only related to brain tumor MR imaging but also applica-

ble to other types of cancer studies in radiomics.

Development of Treatment-Specific Radiomics
There is a growing need to develop radiomic signatures that can

be used to directly inform specific treatment options. With diffu-

sion-weighted MR imaging, emerging evidence revealed that

ADC maps were useful to differentiate treatment outcomes in

glioblastoma with radiation therapy concurrent with temozolo-

mide.65 Also, early changes of ADC maps were identified for pre-

dicting glioblastoma recurrence.66 In addition, a decrease in the

volume of FLAIR signal and contrast enhancement67 was shown

to predict the response to bevacizumab treatment for patients
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with glioblastomas. To better understand the biologic implica-

tions of these imaging findings, the collection of temporal imag-

ing at multiple diagnostic periods will offer an opportunity to

consistently characterize biologic tumor evolution before and af-

ter treatment.68 Currently, distinguishing tumor response be-

tween pseudoprogression and pseudoresponse continues to be

challenging in tumor MR imaging69; thus, development of ra-

diomic features to contribute to treatment outcome analysis will

be appealing. Although the type of radiomic features that will

eventually be validated as true predictors responsive to different

treatments is still to be determined, the vast quantity of radiomic

findings, in conjunction with the growth of molecular data, will

increase the possibility of a redefinition of tumor subtypes and

novel biomarker discovery to inform treatment decisions in the

coming years.

Machine Learning
Extracting large-scale radiomic features from a variety of imaging

arrays creates a rich data base containing clinically relevant infor-

mation. Both computational and biologically inspired feature de-

scriptors are important and useful for machine learning. Thus,

development of scalable machine-learning techniques is vital to

search for and identify useful image features associated with out-

come variables and clinical records. We discuss 2 representative

techniques to address this need. First, a suggested approach is to

investigate sparse-learning models, also known as lasso regular-

ization,70 for finding a useful set of reduced features from a high-

dimensional feature vector. Emerging evidence suggests that

sparse learning is useful for identifying multiparametric prognos-

tic imaging biomarkers in non–small cell lung cancer.71

Second, recent breakthroughs in deep learning with applica-

tions in radiology, such as lung nodule malignancy classifica-

tion58,59 and lymph node detection,72 have been encouraging in

finding disease-specific imaging biomarkers. However, the avail-

ability of labeled medical data poses a challenge for developing

efficient deep-learning models. For example, cancer images with

pathologically proved labels are costly to collect at scale; thus, data

integration with different types of clinical labels may present an

alternative means to overcome such obstacles for deep-learning

models, which need large datasets as input.73 Although how we

gain clinical insight from these deep-learning outcomes and how

we optimize network architectures for the better use of multiscale

medical data (eg, serial MR imaging, genomics, and clinical data)

are uncertain,74 the extraction of compact patterns via hierarchi-

cal networks presents enormous opportunities for large-scale ra-

diomic applications (Fig 3).

The Role of Radiomics in Big Data
Radiomic studies follow the theme of emerging big data in health

care that concerns mining vast quantities of biomedical data.75,76

A typical concern of radiomics in big data relates to the manage-

ment of growing image data, gene expression profiles, and the

associated clinical records. Multiple data sources (eg, medical in-

stitutions) and various data types (eg, multitechnique imaging

data) make data sharing and collective administration an espe-

cially complex problem. Enabling data standardization across dif-

ferent image protocols and parameters becomes a prerequisite for

collective study. The pilot project of the Cancer Genome Atlas77 is

an initiative to provide a large portion of clinical data and generic

information. As a parallel effort, The Cancer Imaging Archive4 is

growing rapidly for sharing radiologic images. Also, the Quanti-

tative Imaging Network78 is designed to promote efficient data

integration that helps validate imaging biomarkers that are im-

pactful in treating cancer. More recently, MR fingerprinting 79

was introduced to advance the role of quantitative MR imaging

using pseudorandomized acquisition parameters. However,

large-scale, high-quality benchmark datasets, including complete

clinical labels, standard radiomic features, and molecular profiles,

are not widely available for data sharing, experimental evaluation,

and reproducibility of radiomics toward precision medicine.80,81

CONCLUSIONS
The rapid discovery rate of novel imaging biomarkers in radiom-

ics allows integrating information from interdisciplinary ap-

proaches in radiology, computer vision, and machine learning.

With the growth of clinical imaging data, novel image-based com-

putational models are playing an increasingly important role for

precise diagnosis and treatment guidance in neuro-oncology.

Only when these models align well with tumor biology will ra-

diomic findings maximize their likelihood for clinical utility. Re-

search challenges remain for exploring cancer heterogeneity, scal-

able computational models, and the clinical significance of

FIG 3. Illustration of the convolutional neural networks model using imaging and other biomedical data for brain tumor analysis. The convo-
lutional neural networks model consists of multiple convolutional layers, pooling layers, and fully connected layers to learn an abstraction of the
input data, such as imaging and clinical features for a variety of outcome evaluations.
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radiomic findings. We believe that the newly emerging diagnostic

hypotheses and scalable machine-learning algorithms have the

potential for enhancing the current performance of predictive

cancer diagnosis and accelerating quantitative cancer imaging

findings to reach their true clinical potential.
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