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ABSTRACT

BACKGROUND AND PURPOSE: Identifying cerebral microhemorrhage burden can aid in the diagnosis and management of traumatic brain
injury, stroke, hypertension, and cerebral amyloid angiopathy. MR imaging susceptibility-based methods are more sensitive than CT for detecting
cerebral microhemorrhage, but methods other than quantitative susceptibility mapping provide results that vary with field strength and TE,
require additional phase maps to distinguish blood from calcification, and depict cerebral microhemorrhages as bloom artifacts. Quantitative
susceptibility mapping provides universal quantification of tissue magnetic property without these constraints but traditionally requires a mask
generated by skull-stripping, which can pose challenges at tissue interphases. We evaluated the preconditioned quantitative susceptibility
mapping MR imaging method, which does not require skull-stripping, for improved depiction of brain parenchyma and pathology.

MATERIALS AND METHODS: Fifty-six subjects underwent brain MR imaging with a 3D multiecho gradient recalled echo acquisition.
Mask-based quantitative susceptibility mapping images were created using a commonly used mask-based quantitative susceptibility
mapping method, and preconditioned quantitative susceptibility images were made using precondition-based total field inversion. All
images were reviewed by a neuroradiologist and a radiology resident.

RESULTS: Ten subjects (18%), all with traumatic brain injury, demonstrated blood products on 3D gradient recalled echo imaging. All
lesions were visible on preconditioned quantitative susceptibility mapping, while 6 were not visible on mask-based quantitative suscep-
tibility mapping. Thirty-one subjects (55%) demonstrated brain parenchyma and/or lesions that were visible on preconditioned quantita-
tive susceptibility mapping but not on mask-based quantitative susceptibility mapping. Six subjects (11%) demonstrated pons artifacts on
preconditioned quantitative susceptibility mapping and mask-based quantitative susceptibility mapping; they were worse on precondi-
tioned quantitative susceptibility mapping.

CONCLUSIONS: Preconditioned quantitative susceptibility mapping MR imaging can bring the benefits of quantitative susceptibility
mapping imaging to clinical practice without the limitations of mask-based quantitative susceptibility mapping, especially for evaluating
cerebral microhemorrhage–associated pathologies, such as traumatic brain injury.

ABBREVIATIONS: CMH � cerebral microhemorrhage; GRE � gradient recalled-echo; mQSM � mask-based QSM; pQSM � preconditioned QSM; QSM �
quantitative susceptibility mapping; TBI � traumatic brain injury

Multiple diseases, including traumatic brain injury (TBI),1,2

stroke,3,4 hypertension, and cerebral amyloid angiopathy5

require assessment of cerebral microhemorrhage (CMH) for di-

agnosis and/or management. However, the choice of neuroimag-

ing technique can provide very different assessments of CMH

burden. While knowledge of CMH burden and distribution

should inform risk stratification and treatment choices, variabil-
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ity in CMH assessment based on the choice of neuroimaging

method produces uncertainty about how this information should

be used to inform patient management.6 This ambiguity signals

the need for an easy-to-implement, sensitive, and specific method

to identify CMHs.

Susceptibility-based (T2*) MR imaging methods (2D gradient

recalled-echo[GRE], 3D GRE, susceptibility-weighted imaging,

quantitative susceptibility mapping [QSM]) are more sensitive

than CT for CMH detection.7,8 However, all these MR imaging

CMH evaluation methods, other than QSM,9-13 will depict CMHs

as bloom artifacts instead of as actual lesion size.14 They also have

an appearance that varies on the basis of MR imaging field

strength and scan parameters9,15-18 and require an additional

phase map to distinguish blood products (diamagnetic) from cal-

cium19 (paramagnetic). Also, QSM distinguishes calcium from

blood products better than susceptibility-weighted imaging.20

QSM estimates the intrinsic susceptibility distribution of tissue by

deconvolving the blooming in the GRE phase.21

Most QSM methods, however, use a mask (mQSM) to remove

the phase of low-magnitude signal to avoid singularities and

streaking artifacts (mainly in the noise). The mask may either

include high-susceptibility regions shown as hypointense bloom-

ing artifacts on GRE or mask out regions of brain parenchyma.

Selecting a brain mask can be challenging, especially near the

brain boundary, where large tissue-air or tissue-bone susceptibil-

ity differences can cause substantial signal loss on the magnitude

images used to define the mask.21 This signal loss can be made

even worse when hemorrhage is near the boundary. Using a mask

for mQSM that is too small can include noisy phase information

and lead to streaking, while a mask that is too large results in

nonvisualized brain. Erosion of the brain mask can especially pre-

vent visualization of important structures at the brain boundaries.

Although numerous skull-stripping algorithms can be applied to

generate an optimal mask for any individual case, there is no one

automated method that will uniformly generate the optimal mask

for all cases. Even optimal masks can be made suboptimal after

application of extreme intensity masking by some algorithms,

which can lead to nonvisualized CMHs. These mask issues can

result in variable portions of brain nonvisualization, impeding the

application of mQSM methods in clinical practice.

A potential solution to this problem is application of the pre-

conditioned QSM (pQSM) method with total field inversion,22

which produces whole-head quantitative susceptibility maps

without skull-stripping, reduces the error propagation associated

with imprecise background field removal, and suppresses streaking

artifacts in intracerebral hemorrhage on QSM images.22 pQSM cal-

culates tissue-susceptibility values for the entire FOV (including the

otherwise hypointense areas). We hypothesize that removing the

need for a brain mask will enable pQSM imaging to generate robust

brain susceptibility imaging, which can more reliably identify brain

parenchyma and characterize CMHs relative to mQSM. To test this

hypothesis, we evaluated the visualized brain parenchyma and le-

sions generated from a single multiecho 3D GRE MR image in a

cohort of patients with TBI and controls, comparing the images of

the resulting three 3D GRE magnitude images (each at a different

TE), mQSM using a standard mask method,23 and pQSM.

MATERIALS AND METHODS
Subjects
Under an institutional review board protocol approved by the VA

Palo Alto Health Care System and Stanford University, subjects

with a history of TBI and control subjects without TBI were re-

cruited through the Santa Clara Valley Medical Center, VA Palo

Alto Health Care System, and surrounding communities. All sub-

jects were evaluated for a history of prior TBI using the Ohio State

University Traumatic Brain Injury Identification Method score

(Ohio TBI score), which was then used to classify subjects as hav-

ing no, mild, moderate, or severe TBI.24 Subjects also underwent

neuroimaging.

A total of 81 subjects were recruited, of which only 63 sub-

jects could tolerate the entire MR imaging protocol to undergo

multiecho 3D GRE for QSM imaging. Of these 63 subjects,

mQSM and pQSM images could only be produced for 56 sub-

jects (89%) due to erroneous lines of k-space present in the raw

data files. Subjects’ ages, sex, and TBI demographic informa-

tion are summarized in Table 1. There was no significant dif-

ference between non-TBI subjects and TBI subgroups (mild,

moderate, or severe, as defined from the Ohio TBI score24) for

age (1-way ANOVA, F[3,52] � 0.74, P � .53) or sex (�2 � 0.17,

P � .98, Table 1).

Image Acquisition
Images were obtained with a Discovery MR750 3T MR imaging

scanner (GE Healthcare, Milwaukee, Wisconsin), using a 3D

Table 1: Subject demographics across Ohio TBI Scores23 (n � 56)

Ohio TBI Score

Sex Age (yr) Blood on
GRE

Nonvisualized Brain

Male Female Mean Age SD Age Range on mQSM on pQSM
All 34 22 42.1 14.42778 20–74 10 31 5

1 (none) 13 9 41.7 14.6878 20–74 1 13 3
2 (mild) 2 2 44.0 15.71623 27–58 1 3 0
3 (mild) 8 5 47.0 14.94434 30–71 4 8 1
4 (moderate) 2 1 45.7 13.50309 32–59 0 1 0
5 (severe) 9 5 37.9 13.96621 23–64 4 5 1

Correlation across TBI
severity

�2 � 0.17, P � .98a ANOVA F(3,52) � 0.74, P � .53 P � .11b �2 � 2.20, P � .53a P � .88b

Correlation with blood
products on 3D GRE

�2 � 0.04, P � .86a P � .49c – �2 � 2.99, P � .08a P � .10b

a �2 test.
b Fisher exact test.
c Student t test.
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multishot multiecho EPI acquisition (TR � 98 ms; echoes � 3;

TE � 14.3–19.7/33.1– 46.99/51.8 –74.28 ms; matrix � 224 �

224; resolution � 1 � 1 � 1mm3), and a 3D fast-spoiled gra-

dient-recalled acquisition (TR/TE/TI � 9.5/3.8/900 ms, reso-

lution � 1 � 1 � 1 mm3) using an 8-channel Signa head coil

(GE Healthcare). Multicoil phase reconstruction was per-

formed using the method of Bernstein et al.25 Magnitude 3D

GRE images were produced automatically with the MR imag-

ing scanner. mQSM images were created with the MEDI tool-

box using the default mask (genmask.m).23 pQSM images were

created using the method described by Liu et al.22,26

Image Interpretation
The images derived from the 3D multiecho GRE (the three 3D

GRE magnitude volumes— each at 1 of 3 TE values [TE � 14.3–

19.7/33.1– 46.99/51.8 –74.28 ms], the mQSM, and pQSM) and

the T1-weighted fast-spoiled gradient-recalled images were ex-

amined by a neuroradiologist and a radiology resident, evaluating

the presence of lesions and absent/distorted brain parenchyma,

blinded to patient TBI status. Images were reviewed in 4 sessions

(the T1 images were available for all sessions): 1) the three 3D

GRE magnitude volumes, 2) the three 3D GRE volumes and

mQSM, 3) the three 3D GRE volumes and pQSM images, and 4)

all images. For each subject, consensus reading by the neuroradi-

ologist and radiology resident resulting in scores of yes or no were

created for the image pair attributes listed in Tables 1 and 2.

Statistics
The Student t test, ANOVA, and �2 statistics with contingency tables

were used to calculate statistical differences between groups on the fol-

lowing variables: age, sex, a history of TBI, blood on 3D GRE, and tissue

missing on mQSM that was preserved on pQSM. The Fisher exact test

was performed on the detection of blood on pQSM that was not seen on

mQSM and blood on mQSM that was preserved on pQSM.

RESULTS
Subjects with blood products did not show a significant difference

from those without regarding age (P �

.49), sex (�2 � 0.04, P � .86, Table 1), or

TBI severity (P � .11). Ten subjects

demonstrated blood products on at least

1 of the three 3D GRE volumes in the

occipital, temporal, parietal, or frontal

lobes, as well as the basal ganglia or cer-

ebellum (Figs 1–3). Nine of these 10 sub-

jects had a history of TBI.

Of the 10 subjects with blood on a 3D

GRE image, these cases had pQSM images

depicting those lesions, but only 4 of these

lesions were visible on the mQSM images,

due to nonvisualized brain parenchyma,

which was a statistically significant differ-

ence (P � .01).

Thirty-one subjects (55%) demon-

strated brain parenchyma (some con-

taining lesions) preserved on pQSM but

eroded on mQSM due to masking. Five

subjects (9%) demonstrated areas of

more nonvisualized brain parenchyma

on mQSM compared with that same re-

gion on pQSM images (P � .88, Table 1

and Fig 3). In subjects in whom there

was brain parenchyma nonvisualization

on mQSM or pQSM, none demon-

strated greater areas of nonvisualized

brain parenchyma on pQSM relative

to mQSM images. Overall, there was

more brain parenchyma visualization

on pQSM images compared with corre-

FIG 1. Paramagnetic right temporal hemorrhage is hypointense on magnitude 3D GRE (TE � 17.3
ms) (A) and hyperintense on mQSM (B) and pQSM (C) images (white dashed arrows). The diamag-
netic calcification in bone (white solid arrows) is mostly hypointense on 3D GRE (A) and pQSM (C)
and not present on mQSM (B) secondary to masking. Some areas of hyperintensity within the
bone may represent diamagnetic structures, such as veins or artifacts. Left temporal lobe paren-
chyma next to hemorrhage is eroded on the mQSM (B), but preserved on magnitude and pQSM
(C) images (white circles).

Table 2: 3D GRE, mQSM, and pQSM image review results (n � 56)
Feature Count %

Blood products
3D GRE 10 18
mQSM 4 7
pQSM 10 18

Nonvisualized brain tissue on
mQSM, pQSM visible 31 55
mQSM and pQSM, less on pQSM 5 9
pQSM, mQSM visible 0 0

Pons probable artifacts, more visible on
pQSM 6 11
mQSM 0 0
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sponding mQSM images. The differences in parenchymal depiction

on pQSM compared with mQSM were statistically significant (P �

.01). There was not a statistically significant difference in age (P �

.76), sex (�2 � 0.04, P � .84), TBI severity (�2 � 2.20, P � .5, Table

1), or the presence of blood products on 3D GRE (�2 � 2.99, P � .08,

Table 1) for cases demonstrating nonvisualized brain parenchyma

on mQSM relative to cases that did not. Six subjects (11%) demon-

strated mQSM and pQSM pons hypointensity with no correspond-

ing 3D GRE finding suggestive of artifacts, all larger on pQSM than

on corresponding mQSM images (Fig 4).

DISCUSSION
This report shows that pQSM can depict more brain parenchyma

than masked-based QSM using the same acquisition data. Com-

paring these images generated from a

single multiecho 3D GRE scan allowed

evaluation of imaging features while

holding other acquisition parameters

constant (eg, field strength, flip angle,
sampled TEs, and so forth.). Addition-

ally, our results demonstrate that some

of these areas of brain visible on pQSM

but not present on mQSM contained

clinically relevant pathology, such as

CMHs. This difference in brain depic-
tion is consistent with the expectation
that variations in skull-stripping perfor-

mance and variations of intensity that

threshold-based masking algorithms

use, especially near hemorrhages (as

demonstrated in Figs 2 and 3), can result

in areas of nonvisualized brain on

mQSM methods. This contrasts with

pQSM, which uses magnitude informa-

tion to differentiate weak from strong

sources of susceptibility over the entire

head for reconstruction. Instead of split-

ting the QSM problem into background

field removal and local field fitting (in

which errors are propagated from the
first into the second), preconditioned
QSM solves them together. Demonstra-
tion of better preservation of brain pa-
renchyma in pQSM compared with

mQSM in subjects was independent of

age, sex, and the presence of hemorrhage

or history of prior trauma; this finding

suggests generalizability across patients.

The preservation of anatomic land-
marks, such as skull margins, on pQSM

images also has the potential to aid in

clinical interpretation. The feature of

preserving skull and scalp in pQSM may

also allow better depiction of calvarial

and skin masses if challenges regarding

scalp SNR and implementation of a ro-

bust water/fat separation algorithm can

be managed.
Like other neuroimaging studies evaluating cerebral microhe-

morrhage presence, this study used an accepted GRE imaging

sequence as the reference standard for CMH presence.8,15,27,28

Here, the 3 echoes of the 3D GRE magnitude images were used as

ground truth for the presence of CMHs, given that direct patho-

logic correlation was not possible (as is the case in many clinical

imaging studies). Across the 3 TE volumes, more subtle suscepti-

bility changes are likely to be visible at higher TEs, but often with

corresponding increased artifacts. The three 3D GRE magnitude

whole-brain volumes were each interpreted as they would be clin-

ically for the presence of a lesion across the 3 TEs. However, in

routine clinical practice, only 1 volume would likely be reviewed,

leaving the possibility that smaller or subtler CMHs may have

FIG 2. Right cerebellar hemorrhage is hypointense on magnitude 3D GRE (TE � 14.3 ms) (A). This
part of the cerebellar parenchyma has been eroded on mQSM (B) and so is not visible due to
masking. The same anatomy is preserved on pQSM (C), and hemorrhage is demonstrated (white
solid arrows and circles). Additionally, an absent section of the right temporal brain parenchyma
on mQSM (B) is partially preserved on the pQSM (C) relative to the 3D GRE image (A) (white
dashed arrows and dashed circles). Note areas of black pixels within the white dashed circles on
the mQSM and pQSM images (B and C) that correspond to brain tissue seen on 3D GRE image (A)
indicate areas of nonvisualized brain.

FIG 3. Magnitude 3D GRE (TE � 14.3 ms) (A), mQSM (B), and pQSM (C) images demonstrating
partial pQSM image depiction relative to mQSM. An area of the right inferior frontal lobe present
on the 3D GRE image is present on the pQSM image and absent on mQSM image (black solid
arrows). An adjacent inferior frontal lobe is present on the 3D GRE image, distorted on the pQSM
image, and absent on the mQSM (white dashed arrows).
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been visible at a longer TE, which is not the case for QSM-based

images. Also, reviewing those magnitude images without phase

maps would leave room for doubt as to whether the lesions were

blood products or calcification, as is often the case in current

clinical practice. Because the pQSM images did not show any

lesions that did not appear on at least 1 of the 3D GRE images, no

false-positives were encountered.

While our work found pQSM to always depict more brain

parenchyma than mQSM, there was still omission of some brain

areas on pQSM relative to at least 1 of the 3 TE 3D GRE images.

These areas of pQSM failure may be related to the magnitude

image of the first echo (14.3–19.7 ms in this study) not being

sufficiently short, impacting the ability of pQSM to differentiate

strong and weak sources. At this level of first TE, the cortex might

already experience R2* decay due to field inhomogeneity at air/

tissue interfaces. QSM may only reduce blooming artifacts to the

amount in the first echo. Future work should study the ability of a

shorter first TE to remedy this problem. The instances in which

pQSM demonstrates brain parenchyma more than mQSM, but

with some distortion or some nonvisualized brain tissue, do raise

the concern about whether it is better to not demonstrate tissue at

all rather than show it with distortion. Future work incorporating

lower TE information should consider this question as well.

Overall, the osseous structures on QSM appear hypointense,

compatible with paramagnetic calcification. However, some hy-

perintense areas in bone were noted (Figs 1– 4). These findings

may be related to intraosseous venous structures or artifacts (be-

cause, in the case of skull bone, there is little local phase signal to

aid in identifying its susceptibility value). Although the current

implementation of pQSM is not optimized for bone, improve-

ment could be made by acquiring the first echo at an earlier TE,

similar to acquisitions such as ultrashort TE, to more reliably

characterize bone properties.

This study did not evaluate the quantitative aspects of pQSM.

Although QSM is a quantitative method, current clinically used

susceptibility-based neuroimaging methods are interpreted solely

on a qualitative basis, assessing hypointense foci, with the occa-

sional addition of phase maps to distinguish blood from calcifi-

cation. Future work could assess the additional clinical value of

mQSM/pQSM quantitative lesion analysis.

Limitations of this study include the small sample size of pa-

tients with hemorrhage. While this work did not clearly demon-

strate instances of CMHs visible on pQSM or mQSM that were

not seen on 3D GRE images, only 10 (18%) subjects had CMHs,

despite having 34 subjects (61%) with a

history of TBI. Future studies would

benefit from larger subject cohorts, with

more subjects demonstrating suscepti-

bility-based pathologies, such as CMHs.
An additional limitation is that categori-
zation of brain loss in the current study
was performed by only 2 readers provid-
ing a consensus read, and subsequent
studies would benefit from using an au-
tomated or multireader evaluation. The

6 cases (11%) in which pQSM demon-

strated greater pontine tissue contrast
relative to mQSM, with no definite cor-

responding anatomic or pathologic finding on 3D GRE images

(Fig 4), also represent an important area for future evaluation.

Further investigation of pQSM specificity for CMH evaluation

would also advance defining the clinical role that pQSM can play

in managing patients in whom identifying CMHs is clinically

relevant.

CONCLUSIONS
pQSM can improve the evaluation of CMH-associated patholo-

gies, such as TBI.
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