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Quantification of Gray/White Matter in Neonates and

Adults

B. C. P. Lee," B. Kneeland," R. J. R. Knowles," and P. T. Cabhill"?

Quantitation of gray/white matter is important in evaluation
of cerebral blood flow, atrophy, and development of the brain.
First-order statistical analysis of neonatal computed tomo-
graphic (CT) images revealed that there was only a 6 Hounsfield
unit (H) difference between gray and white matter compared
with the observed 3 H for the standard deviation over the field of
a skull water phantom. Scene segmentation methods based on
first-order statistics proved unsuccessful in separating gray and
white matter. A new regional clustering algorithm based on local
textural properties was developed for separation of these struc-
tures.

For the evaluation of cerebral blood flow, atrophy, and neurologic
development of the neonatal brain it is of great importance to be
able to quantitate gray and white matter on computed tomographic
(CT) scans. In adults and older infants white matter is well myelin-
ated and has less photoelectric absorption than gray matter [1]. In
premature neonates white matter has little myelin but high water
content, which accounts for lower Hounsfield numbers [2]. Although
visual differences can readily be observed in gray and white matter,
the quantification of the relative amounts of gray and white matter
(using first-order statistical image segmentation methods) has so
far proven elusive. This is due in part to small CT density differences,
the complex interdigitation of gray/white matter, the inherent noise
spectrum present in CT scanners, and partial volume effects. In
addition, statistical variations at gray/white matter borders greatly
complicate the local topography; thus scene segmentation of gray/
white matter would require greater spatial resolution and signal-to-
noise ratio than are currently available. In brief, the reason that
visual differences in gray and white matter are observed is higher-
order textural differences, not first-order statistical differences.

The purpose of this study was to develop methods of statistical
analysis of CT attenuation value that use these textural differences
to convert what is visualized into quantitative values of gray/white
matter.

Materials and Methods

Cranial CT was performed in eight neonates (1,500 g or less)
and six adults using a GE CT/T 8800. Scanning technique factors

were 480-700 mAs at 120 keV. Reconstructed CT images were
transferred to magnetic tape and analyzed on a Varian V76 com-
puter with 256 kbytes memory and 9.6 Mbytes disk space. All
images were processed either as the originally reconstructed 320
X 320 matrices or as zoomed 64 X 64 matrices. Displays (statis-
tically coded images or three-dimensional relief maps) were ob-
tained using a Statos electrostatic printer/plotter.

To investigate the sensitivity of our new texture-discrimination
scene-segmentation algorithms, several phantoms were developed
to test textural quantification of gray/white matter from CT scans.
These included plexiglass, contrast material in water, and various
mixtures of graduated pasta particles of 0.1-5 mm. A neonatal skull
filled with water was used to measure instrumental noise over the
range of miliamperage values clinically used. Formalin-fixed patho-
logic sections were photographed and digitized as well.

CT images of the phantoms and gray/white matter were analyzed
for their first- and higher-order statistical properties. First-order
parameters were the first, second, and third moments of local 16
X 16 matrices. For the higher-order parameters, the magnitude
and direction of the local gradient, the energy, inertia, and corre-
lation were calculated for overlapping and nonoverlapping local
matrices, which varied from 2 X 2 to 4 X 4 in size. To determine
the differences in both first- and second-order parameters, the
changes in gray and white matter were examined on CT images
where regions could be definitely called gray or white by visual
inspection. Since white matter predominates over gray matter, most
CT images contained several independent white-matter regions of
16 X 16 pixels (normal image, 320 X 320), while normally only
one such region could be assigned to gray matter. In addition to
these statistical parameters, the two-dimensional frequency spec-
trum was calculated using a fast-Fourier transformation and the
power spectrum was displayed as two-dimensional relief maps. The
autopower spectrum for each gray/white region also was calculated
for the skull, water, and texture phantoms.

A regional-clustering algorithm was developed to separate gray
and white matter. Because white matter predominates in CT trans-
verse images, the regional clustering algorithm is initially started
inside a white-matter region. The regional-clustering algorithm then
proceeds outward, bound by two constraints: the white region must
exhibit simple connectivity, and the region must conform to the
smooth topology imposed by anatomic structure. Subject to these
two physical constraints, a threshold determined by the local first-
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Fig. 1.—A, Relief map of flood field
of water-filled skull phantom. Note non-
uniformity of field. B, Graph shows vari-
ation in CT numbers (X axis) vs. total
number of pixels (Y axis) of flood field
before and after filtration.
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Fig. 2.—A, Plain CT of neonatal brain distinguishes between gray and
white matter. B, Zoomed magnified image of right upper quadrant. Margin
between gray and white matter is no longer obvious.

order averages of the 16 X 16 matrices can be applied to local
areas of the CT image. Normally, 3 X 3 local matrices were found
to be optimal, for the regional-clustering algorithm was repeated
one to three times until the image stabilized. The regional-clustering
algorithm considers the differences in noise spectrum or texture
between the gray and white matter and operates on white regions,
which are more uniform in texture [3].

To account for variations in equipment performance for different
studies, each patient served as his own control. The functional
parameters used in the regional clustering were determined for
each study using unambiguous local regions of both white and gray
matter.

Results
Spatial Resolution and Noise Spectrum of CT Scanner

The resolution and intrinsic instrumental noise spectrum was
determined using a plexiglass GE water phantom [4]. Variations of

A B

Fig. 3.—CT section of adult brain. A, Plain CT. Gray and white matter are
distinct, but margins are indistinct. B, Postcontrast CT. Gray/white matter
now clearer, but texture of white matter is reduced compared with A.

about 10 Hounsfield units (H) across the field were normally ob-
served in the water phantom with 3-5 SD. Using a pediatric skull
phantom filled with water, the observed standard deviation varied
from 2.8 to 3.5 H depending on the milliamperage values (fig. 1).
This reduction is in part due to the shaped bow-tie filter where a
better image reconstruction is achieved due to partial correction of
beam hardening. When the regional-clustering algorithm was ap-
plied to the skull phantom, the standard deviation was further
reduced to 1.4-1.6 H.

Gray/White Differences in CT Density

Although gross regional differences in gray and white matter can
be readily discerned on CT slices with appropriate window settings,
visual scene segmentation on zoomed sections by several different
observers was unsuccessful because of the complex interdigitations
between white and gray matter (fig. 2). Measurements in regions
visually identified as gray or white showed about 6 H separating the
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first moments of the white and gray zones. Since the standard
deviation of the skull phantom fields was 3 H, separation depending
on first-order statistics was therefore exceedingly difficult, consid-
ering the partial-volume effect of the scanner and the complex
topography of gray/white matter. Studies with intravenous contrast
material showed that although the white matter is distinctly en-
hanced visually, the average difference in Hounsfield numbers
between the gray and white matter is not increased (fig. 3). There
is also a reduction in the white-matter texture.

Therefore, quantitative scene segmentation based on first-order
differences could not be made either with or without intravenous
contrast media. On the other hand, it is a well known fact that the
human visual system is sensitive to second- and third-order statis-
tics. For these reasons, methods of image processing that use more
sophisticated scene segmentation methods involving higher-order
statistics are needed to quantitate the relative amounts of gray/
white matter.

Fig. 4. —Texture phantom. Conical plexiglass cylinder contains matter of
similar CT numbers but different textures.
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Scene Segmentation Based on Textural Differences

A direct comparison of the CT slices with pathologic sections
proved more difficult than originally expected due to scaling of the
images and difficulty in matching the CT sections with the anatomic
sections. The pathologic slices were digitized as 128 X 128 matri-
ces, and matching them to the 320 X 320 CT image’'s anatomic
landmarks proved exceedingly difficult. Again, this is because the
boundaries between the gray and white matter are very complex.
Currently, a 512 X 512 digitizing system is being evaluated for
matching with 320 X 320 CT images. Scaling is being performed
by appropriate zooming of known anatomic distances determined
by the size of the ventricles and the outer border of the brain.

In order to test the ability of the regional-clustering algorithm to
quantitate gray/white matter differences, cylindrical plexiglass
phantoms were constructed so that the central conical defect could
be filled with material that had Hounsfield numbers within 3-6 H of
plexiglass, but had significantly different textural properties (fig. 4).
(The conical shape permits an analysis of the effectiveness of both
first-order and higher-order scene-segmentation algorithms.) Our
validated nearest-neighbor edge-detection algorithm [5] was unable
to separate the edges of the cone on a first-order test. The criterion
for scene segmentation is the linearity of the two conical edges,
which is not dependent on partial-volume effects, milliamperage
values, or field uniformity, as shown in figure 5. On the other hand,
our regional-clustering algorithm functioning on the differences
between the texture properties of the outside plexiglass and inside
conical zone could easily delimit this boundary.

In figure 6, a zoomed (64 X 64) statistical map is shown of the
CT numbers of the left frontal lobe of figure 3. Each symbol differs
by 3H, which is consistent with the observed standard deviation of
the noise level in the skull phantom. At the statistical confidence
level of 1 SD, separation of gray/white structure is not evident;
however, if our regional-clustering algorithm is applied to the same
data, the typical gray/white separation observed on pathologic
sections is clearly demonstrated.

Discussion

Because CT number variation caused by instrumental noise is
very close to the difference between gray- and white-matter read-
ings, quantitative separation of these structures based on first-order
statistics (using methods such as the nearest-neighbor edge-detec-
tion algorithms) was unsuccessful, even though it is visually possible
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Fig. 5.—Conical plexiglass phantom
filled with water (A) and with material of
similar CT number but with texture (B).
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