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COMMENTARY

What Causes Deep Gray Matter Atrophy in Multiple Sclerosis?

Multiple sclerosis is a chronic neuroinflammatory and neuro-

degenerative disease of the central nervous system. Patients

often experience a complex combination of physical and cogni-

tive symptoms, both of which are strongly disabling. Unfortu-

nately, progression of disability and cognitive decline has been

difficult to understand using neuroinflammatory markers such as

lesion volumes. Neurodegenerative components of MS and espe-

cially deep gray matter (DGM) atrophy continue to progress with

time1 and have a strong predictive potential for disability2 and

cognitive impairment.3 Thalamic atrophy occurs very early4 and

continues linearly during the disease course,5 with especially

strong clinical correlations.6 Therefore, it is clear that deep gray

matter and especially thalamic atrophy is of great relevance for

MS, and its measurement may even become reliable enough to

include in routine neuroradiologic practice. What drives this typ-

ical neurodegenerative pattern in MS, however, remains unclear,

probably including a combination of network disconnection,7

Wallerian degeneration, and local damage.8

The study by Pontillo et al,9 published in the current issue of

the American Journal of Neuroradiology, represents a comprehen-

sive way to investigate the possible correlates of deep gray matter

atrophy. The authors apply several MR imaging measures of dif-

fusion, perfusion, and susceptibility in the DGM in relapsing-

remitting MS (RRMS, n � 52) and progressive MS (n � 25),

which were compared with those in healthy controls (n � 44).

Results show that white matter lesion burden was the main cor-

relate of DGM atrophy in RRMS, possibly indicating a role for

Wallerian degeneration of connected fiber bundles, resulting in

structural network disconnection and atrophy. In progressive

MS, however, the most important correlates of atrophy were local

microstructural damage and thalamic susceptibility, while lesion

volumes did not strongly relate to atrophy.

These results highlight an important point, namely that the

cause and consequence of atrophy could vary among the different

MS phenotypes and that these should be studied separately.10

This point is supported by recent findings that while some thera-

peutic options that target neuroinflammation in the white matter

may impact thalamic atrophy in RRMS,11 these do not impact

disease progression in progressive MS.12 Nonetheless, recent

studies have shown that thalamic atrophy rates are similar in all

phenotypes,5 indicating that neurodegeneration continues in

progressive MS even when the formation of new neuroinflamma-

tory lesions may become less apparent. These findings could re-

flect an entirely different local pathologic process or may indicate

a second-order disconnection effect10 induced by an accelerated

cortical degeneration of important networks such as the default

mode network,2 causing additional waves of disconnection lead-

ing to a so-called network collapse.13

This notion of network disconnection was also supported by a

recent study using experimental autoimmune encephalomyelitis,

showing inflammation and demyelination in the spinothalamic

tracts to be related to thalamic neuronal loss, while lesions within

the thalamus itself were scarce.14 In MS, focal lesions within DGM

structures also do not seem to be that common and appear to be

poorly related to DGM atrophy.15 In fact, neuronal loss in non-

demyelinated DGM tissue can be as severe as 35%.16 Other

work17 has also indicated that the DGM has a less severe neu-

roinflammatory profile than the white matter. However, dif-

fuse microglial activation within the thalamus has also been

noted using PET research, especially in progressive MS,18

which was also related to cortical thinning and clinical dys-

function,19 again indicating a network effect. It remains un-

clear, however, whether microglial activation is a cause of neu-

rodegeneration or a consequence of it, or both. Susceptibility-

weighted imaging as used in the present study by Pontillo et al9

has also been indicated to reflect both microglial activation (ie,

through changes in iron levels) and myelin content, further

complicating matters.20

As Pontillo et al9 note, future longitudinal multimodal

studies are now required to disentangle the causal chain of

events for these different local and network-based pathologic

processes. It seems apparent, however, that the cause and con-

sequence of DGM atrophy will remain a complex combination

of primary and second-order effects. Thus, future treatment

strategies aiming to impact DGM atrophy may need to impact

the disease early, to prevent the network collapse from happen-

ing altogether.
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