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ORIGINAL RESEARCH
ADULT BRAIN

Improved White Matter Cerebrovascular Reactivity after
Revascularization in Patients with Steno-Occlusive Disease

X L. McKetton, X L. Venkatraghavan, X C. Rosen, X D.M. Mandell, X K. Sam, X O. Sobczyk, X J. Poublanc, X E. Gray, X A. Crawley,
X J. Duffin, X J.A. Fisher, and X D.J. Mikulis

ABSTRACT

BACKGROUND AND PURPOSE: One feature that patients with steno-occlusive cerebrovascular disease have in common is the presence
of white matter (WM) lesions on MRI. The purpose of this study was to evaluate the effect of direct surgical revascularization on impaired
WM cerebrovascular reactivity in patients with steno-occlusive disease.

MATERIALS AND METHODS: We recruited 35 patients with steno-occlusive disease, Moyamoya disease (n � 24), Moyamoya syndrome
(n � 3), atherosclerosis (n � 6), vasculitis (n � 1), and idiopathic stenosis (n � 1), who underwent unilateral brain revascularization using a
direct superficial temporal artery–to-MCA bypass (19 women; mean age, 45.8 � 16.5 years). WM cerebrovascular reactivity was measured
preoperatively and postoperatively using blood oxygen level– dependent (BOLD) MR imaging during iso-oxic hypercapnic changes in
end-tidal carbon dioxide and was expressed as %� BOLD MR signal intensity per millimeter end-tidal partial pressure of CO2.

RESULTS: WM cerebrovascular reactivity significantly improved after direct unilateral superficial temporal artery–to-middle cerebral
artery (STA-MCA) bypass in the revascularized hemisphere in the MCA territory (mean � SD, �0.0005 � 0.053 to 0.053 � 0.046
%BOLD/mm Hg; P � .0001) and in the anterior cerebral artery territory (mean, 0.0015 � 0.059 to 0.021 � 0.052 %BOLD/mm Hg; P � .005).
There was no difference in WM cerebrovascular reactivity in the ipsilateral posterior cerebral artery territory nor in the vascular territories
of the nonrevascularized hemisphere (P � .05).

CONCLUSIONS: Cerebral revascularization surgery is an effective treatment for reversing preoperative cerebrovascular reactivity defi-
cits in WM. In addition, direct–STA-MCA bypass may prevent recurrence of preoperative symptoms.

ABBREVIATIONS: ACA � anterior cerebral artery; BOLD � blood oxygen level– dependent; CVR � cerebrovascular reactivity; MMD � Moyamoya disease; PCA �
posterior cerebral artery; PETCO2 � end-tidal partial pressure of CO2; STA � superficial temporal artery

The superficial temporal artery (STA)-middle cerebral artery

(MCA) bypass is a surgical revascularization technique often

used to bypass upstream in symptomatic steno-occlusive disease.

Cerebrovascular reactivity (CVR) is defined as the change in ce-

rebral blood flow (CBF) in response to a vasoactive stimulus, and

reflects the ability of the cerebral vasculature to augment CBF

when cerebral perfusion pressure is reduced (pressure autoregu-

lation)1 and when neural activity is increased (neurovascular cou-

pling).2 Surgical revascularization can improve CVR and reverse

the paradoxic reduction in regional blood known as “steal physi-

ology” in the ipsilateral and often in contralateral gray matter

(GM) hemispheres,3,4 reverse cortical thinning,5 improve neu-

rocognitive function,6 and reduce further ischemic events.7

White matter (WM) may also be adversely affected by steno-

occlusive disease. Chronic hypoperfusion can result in ischemic

injury, leading to axonal degeneration and glial proliferation.8

This effect can result in WM lesions or WM hyperintensities on

T2-weighted imaging or FLAIR imaging. WM lesions signify a

progressive cerebral small-vessel disease that is often observed in

patients with Moyamoya disease (MMD), patients with stroke,

and in aging. Age-related reductions in CVR and perfusion have

been found in WM lesions,9 and WM abnormalities have been

associated with reductions in cognitive function.10 In addition,

there has been a link among impaired WM CVR, cognitive decline
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in Alzheimer disease,11 and cognitive dysfunction and hemody-

namic impairment due to steno-occlusive disease.12 A previous

study reported that WM lesions became reversible by revascular-

ization surgery in MMD partly due to regional CBF increase.13

Thus, revascularization surgery may help improve WM CVR that

could lead to the conservation of or improvement in cognitive

function.

The purpose of this retrospective study was to determine the

effects of revascularization on WM CVR in patients with intracra-

nial steno-occlusive disease. We identified 35 patients who fit our

selection criteria. We measured WM CVR before and after surgi-

cal revascularization in the intervened and nonintervened hemi-

spheres to investigate whether regaining CBF would improve WM

CVR.

MATERIALS AND METHODS
Patients
The study was approved by the research ethics board of the Uni-

versity Health Network, and all patients signed informed consent.

The patients included in this study were selected from a prospec-

tively maintained data base of patients who underwent CVR

blood oxygen level– dependent (BOLD) MR imaging testing as

part of a series of research ethics board–approved studies at Toronto

Western Hospital. The inclusion criteria for this study were the fol-

lowing: 1) patients with intracranial steno-occlusive disease who had

a unilateral direct extracranial-intracranial bypass of the superfi-

cial temporal artery to MCA (STA-MCA); 2) the presence of steal

physiology on the prerevascularization CVR map; 3) an available

preoperative CVR study and at least 1 postoperative CVR study at

3 months or later postsurgery; 4) both preoperative and postop-

erative CVR studies performed with the same CO2 stimulus pro-

tocol and acquisition parameters; and 5) all patient CVR data

being sufficiently free of artifacts to be comparable, as determined

by a neuroradiologist experienced in BOLD MR imaging CVR

assessment (D.J.M.). Thirty-five patients were selected on the ba-

sis of inclusion criteria in this study (19 women; mean age at time

of bypass, 45.8 � 16.5 years). Pathology included MMD (n � 24),

Moyamoya syndrome (n � 3), atherosclerosis (n � 6), vasculitis

(right ICA stenosis) (n � 1), and idiopathic stenosis (n � 1).

Further details are shown in the On-line Table.

Imaging
MR imaging was performed on a 3T system (Signa HDx platform;

GE Healthcare, Milwaukee, Wisconsin) using an 8-channel

phased array head coil. For each patient, an anatomic T1-

weighted 3D spoiled gradient-echo sequence was acquired with

the following parameters that varied from before to after 2009:

voxel size � 0.781 � 0.781 � 2.2 mm/0.85 � 0.85 � 1 mm; TR �

7.88 ms; TE � 3 ms; matrix size � 256 � 256; 60/146 slices;

FOV � 22 � 22 cm; flip angle � 12°. Each patient had the same

pre- and postoperative BOLD MR imaging parameters acquired.

As end-tidal partial pressure of CO2 (PETCO2) was manipulated,

BOLD MR imaging data were acquired using a T2*-weighted sin-

gle-shot spiral gradient-echo sequence with an echo-planar read-

out. Ten out of 35 patients were scanned before 2010 and had the

same acquisition protocol for both pre- and postbypass CVRs,

and 25 patients were scanned after 2010 and had a different ac-

quisition protocol for their pre- and postbypass CVR BOLD

scans. The only differences between protocols included the reduc-

tion of a 2-mm gap, lowering the flip angle by 5°, and increasing

the slices from 20 to 30. Therefore, the BOLD parameters that

varied from before 2010 to after 2010 were the following: voxel

size � 3.75 � 3.75 � 5 mm, 2-mm gap/no gap, TR � 2 seconds,

TE � 30 ms, matrix size � 64 � 64, 20/30 slices, FOV � 24 � 24

cm, flip angle � 90°/85°.

Vasodilatory Stimulus
The control of PETCO2 and the end-tidal pressure of O2 were

achieved during MR imaging using an automated gas blender that

regulates gas composition and flow to a sequential gas-delivery

breathing circuit (RespirAct™; Thornhill Medical, Toronto, On-

tario, Canada) according to the methods previously described.14

The automated gas blender was connected to a soft plastic mask

sealed to the face using transparent dressing film (Tegaderm Film,

1626W; 3M Health Care, St. Paul, Minnesota). Before and after

2013, the patients underwent either a 2-square wave (step) proto-

col or 1-square wave followed by a ramp (step and a ramp) pro-

tocol for manipulating PETCO2 (from resting partial pressure of

CO2 to 10 mm Hg above resting) as previously detailed.3,15 Both

PETCO2 and end-tidal pressure of O2 values were selected from

the raw partial pressure of carbon dioxide and partial pressure of

O2 tracings and were confirmed post hoc by visual inspection and

corrected if needed by a custom-written program (LabVIEW; Na-

tional Instruments, Austin, Texas). Of the 35 patients studied, 2

patients (P14 and P21) had their first CVR fail due to excessive

motion and had their CVR scan restarted with no motion arti-

facts. This scan was used for analysis. One patient (P11) had the

initial postoperative CVR scan fail due to technical issues with the

scanner freezing, causing patient distress with the emergency but-

ton pressed. The patient returned for their follow-up the follow-

ing month.

Data and Statistical Analyses
MR imaging and PETCO2 data were imported to an independent

workstation and preprocessed using AFNI software (http://

afni.nimh.nih.gov/afni),16 SPM8 (http://www.fil.ion.ucl.ac.uk/

spm/software/spm12), and Matlab R2015a (MathWorks, Natick,

Massachusetts). PETCO2 data were time-shifted to the point of

maximum correlation between the rapid changes in PETCO2 and

BOLD signal. CVR was calculated as the slope of the line of best fit

between the percentage change in BOLD signal versus PETCO2.

CVR was calculated on a voxel-by-voxel basis from the slope of a

linear least-squares fit of the BOLD signal data series to the

PETCO2 values and was expressed as the percentage change in

BOLD signal per change in PETCO2 (%/mm Hg). The magnitude

of the slope in each voxel was color-coded from a color spectrum

in which yellow to red denoted a small-to-large positive slope

relating to an increase in CBF, and light to dark blue denoted a

small-to-large negative slope relating to reversal of CBF (ie, para-

doxic vascular steal physiology) (Fig 1).

Anatomic T1-weighted images were segmented into cerebro-

spinal fluid (CSF), GM and WM. CVR masks were generated

containing only WM, and were subsequently transformed into

Montreal Neurological Institute space. Unihemispheric WM
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probability maps were thresholded at 70% probability and were

used as a template for calculating CVR in each hemisphere. These

were transformed into Montreal Neurological Institute space us-

ing SPM8. Unihemispheric statistical parametric mapping GM

probability maps were thresholded at 70% in AFNI and served as

a template for calculating hemispheric CVR for each participant.

Each major arterial vascular territory comprising the MCA, pos-

terior cerebral artery (PCA), and anterior cerebral artery (ACA)

was identified by 2 neuroradiologists (D.J.M. and D.M.M.) and

manually traced, creating ROIs. A Wilcoxon matched-pairs

signed rank test (2-sided, � �.05) was used for statistical analysis

comparing the prerevascularization and postrevascularization

WM CVR values (Fig 2). Results were considered significant after

accounting for multiple comparisons by a Bonferroni correction

if the per-comparison P value �.05/(3 comparisons) was .017.

Additional analyses on GM CVR values pre- and postrevascular-

ization are reported in the On-line Figure.

RESULTS
The mean duration between STA-MCA bypass surgery and the

postoperative CVR study was 8.3 months (median, 5 months).

Each patient’s STA-MCA bypass was patent. There was no corre-

lation between follow-up time and WM CVR changes in the re-

vascularized MCA (r � �0.14, P � .42), PCA (r � �0.12, P �

.47), and ACA (r � 0.012, P � .94) territory. The mean time

between preoperative and postoperative CVR studies was 12.6

months (median, 8 months) (On-line Table).

WM CVR significantly improved after direct unilateral STA-

MCA bypass in the revascularized hemisphere in the MCA terri-

tory (mean � SD, �0.0005 � 0.053 to 0.053 � 0.046

%BOLD/mm Hg; P � .0001) and in the ACA territory (0.0015 �

0.059 to 0.021 � 0.052 %BOLD/mm Hg; P � .0053). There was

no difference in WM CVR after bypass in the ipsilateral PCA

territory (0.128 � 0.059 to 0.13� 0.062 %BOLD/mm Hg; P �

.98) and in the nonrevascularized MCA (mean � SD, 0.091 �

0.057 to 0.092 � 0.055 %BOLD/mm Hg; P � .74), ACA (0.041 �

0.052 to 0.043 � 0.055 %BOLD/mm Hg; P � .87), or PCA

(0.149 � 0.051 to 0.145 � 0.054 %BOLD/mm Hg; P � .62) ter-

ritory (Fig 2).

GM CVR significantly improved after direct unilateral STA-

MCA bypass in the revascularized hemisphere in the MCA terri-

tory (mean � SD, 0.034 � 0.07 to 0.11 � 0.059 %BOLD/mm Hg;

P � .0001). There was no difference in GM CVR after bypass in

FIG 1. BOLD MR imaging CVR maps in standard space overlaid on an
anatomic T1-weighted image of 5 representative patients (P3, P12, P20,
P31, and P32) who underwent a left (P3) and right (P12, P20, P31, and P32)
STA-MCA bypass. The first column shows CVR maps before bypass,
and the second column shows CVR maps within a 1-year follow-up
after revascularization surgery. CVR units are %�BOLD MR signal in-
tensity per millimeter mercury �PETCO2. Areas shown in blue dem-
onstrate decreased and paradoxic (negative) CVR as shown in P3 in the
left hemisphere and P12, P20, P31, and P32 in the right hemisphere (left
column). The resulting CVR maps visually demonstrate improvement
(reduction of steal) postbypass (right column).

FIG 2. Comparisons of pre- and post-unilateral STA-MCA bypass on
white matter CVR in the ipsilateral revascularized and contralateral
nonrevascularized hemispheres in patients with MMD, Moyamoya
syndrome, and steno-occlusive and atherosclerotic disease. The
white matter CVR in revascularized and nonrevascularized hemi-
spheres is shown in different vascular territories: MCA (A), ACA (B),
and PCA (C). The box denotes the interquartile range (25%–75%), the
horizontal line in the box denotes the median, and the whiskers de-
note the minimum and maximum values. Double asterisks indicate
P � .01; 4 asterisks, P � .0001.
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the ipsilateral ACA territory (0.08 � 0.10 to 0.09 � 0.08

%BOLD/mm Hg; P � .21), PCA territory (0.25 � 0.1 to 0.23 �

0.1 %BOLD/mm Hg; P � .23), or in the nonrevascularized MCA

(0.17 � 0.1 to 0.16 � 0.08 %BOLD/mm Hg; P � .1), ACA (0.26 �

0.09 to 0.25 � 0.09 %BOLD/mm Hg; P � .12), or PCA (0.25 �

0.08 to 0.25 � 0.1 %BOLD/mm Hg; P � .09) territory (On-line

Figure).

DISCUSSION
This study shows that the ipsilateral WM CVR improved after

unilateral revascularization of the affected hemisphere with a �10

time increase in the MCA and ACA territories. In addition, there

were some negative changes postbypass in the nonrevascularized

hemisphere. For example, of 35 patients, 18 patients had a nega-

tive change ranging from a 0.18%–10.1% decrease in CVR post-

bypass in the nonrevascularized MCA territory (Fig 2A). This

could be due to the disease progression affecting the contralateral

side and because the WM CVR signal is noisier (ie, the range of

0%–10% pre- and postoperative differences cannot be detected

with confidence). Previous studies have shown that revasculariza-

tion surgery improves cortical GM CVR and reduces the risk of

acute ischemia.3,4 The importance of our findings suggests that

WM CVR impairment, that is related to WM lesions and

associated with chronic ischemia, is also improved with

revascularization.

Previous studies reported WM CVR characteristics in healthy

controls. Sam et al,3 reported the mean WM CVR to be 0.17% �

0.06 %/mm Hg in 27 healthy control subjects (age range, 19 –71

years). Thomas et al17 found that WM CVR was about 4 – 8 times

lower than GM CVR. There is a paucity of literature pertaining to

WM CVR postrevascularization.

Our results are in agreement with those of a previous study

that found significant improvement in WM CVR in the inter-

vened MCA hemisphere but not in the nonintervened hemi-

sphere after revascularization surgery.3 Additionally, Sam et al,3

showed that WM CVR improved bilaterally in both ACA and

PCA territories in 20 patients with steno-occlusive disease,

whereas our findings showed improvement only in the ipsilateral

MCA and ACA territories after revascularization. We suggest that

these discrepancies may have resulted from sample size differ-

ences, heterogeneity in the pathologies of patients, and variability

in revascularization techniques in the form of extracranial-intra-

cranial bypass, carotid endarterectomy, and

encephaloduroarteriosynangiosis.

Patients with steno-occlusive disease have an increased risk of

cerebral hypoperfusion that could consequently lead to brain at-

rophy, cognitive impairment, and dementia.12 The most frequent

presentation of intracranial steno-occlusive diseases such as

MMD is transient ischemic attack or ischemic stroke.18 In MMD,

the risk of recurrent stroke is as high as 10% per year.19 Steal

physiology in MMD and other steno-occlusive diseases is associ-

ated with a high risk of stroke.20 Furthermore, impaired CVR with

steal physiology in steno-occlusive disease has been associated

with cognitive dysfunction,12 ipsilateral cortical thinning,21 and

increased diffusion in WM22; the latter is likely related to in-

creased water diffusivity due to axonal degeneration.23 In patients

with atherosclerotic disease, CVR deficits are associated with in-

creased risk of future ischemic attacks.24 However the clinical

efficacy of revascularization surgery in decreasing this risk re-

mains controversial.25

As a potential benefit to neurocognition, extracranial-intra-

cranial bypass has previously been reported to significantly im-

prove cognitive function in steno-occlusive disease26,27; our study

suggests that WM reperfusion may contribute to the improve-

ment. Additionally, revascularization surgery has been shown to

improve cognitive function in patients with symptomatic primary

carotid stenosis undergoing carotid endarterectomy and carotid

artery stent placement28 and in patients with ICA stenosis under-

going carotid endarterectomy.29 The caveat is that these reported

results were variable and were part of nonrandomized studies.

However, the Randomized Evaluation of Carotid Occlusion and

Neurocognition trial reported no significant difference in 2-year

cognitive changes between 16 patients who underwent current

best medical therapy and 13 patients who underwent extracra-

nial-intracranial bypass.30 In both arms, patients had symptom-

atic ICA occlusion and increased oxygen extraction fraction on

PET. Further studies are needed to assess CVR in patients who

underwent extracranial-intracranial bypass compared with pa-

tients who underwent medical therapy (ie, consistent use of st-

atins and antihypertensives).

The mechanism of restoration of WM CVR requires further

investigation, but the phenomenon has been shown previously.

Patients with steno-occlusive disease who had undergone ex-

tracranial-intracranial arterial bypass surgery had an increase in

their total brain blood supply, particularly the restoration of per-

fusion in hemodynamically compromised brain tissue.31 Revas-

cularization surgery was also previously found to improve cere-

bral perfusion in MMD in the ipsilateral MCA territory in

children32 and adults.33

The assessment of cerebral hemodynamic insufficiency in

steno-occlusive disease has remained a complex issue due to the

lack of suitable methods and consistency between study centers.34

Various imaging methods are used to evaluate cerebral hemody-

namics, including CVR or oxygen extraction fraction using

PET,35 xenon-enhanced CT36, perfusion-weighted MR imag-

ing,37 transcranial Doppler,34 and SPECT.38 BOLD CVR MR im-

aging and oxygen extraction fraction using PET are the most com-

monly used mapping methods. However, PET is costly, not

widely available, more invasive, uses ionizing radiation,39 and

provides no indication of dynamic autoregulation.40 Standard-

ized BOLD MR imaging CVR using CO2 as a vasodilatory stimu-

lus is noninvasive, requires no exposure to ionizing radiation (im-

portant for use in the pediatric population) or contrast agents,

and is a more available method for mapping whole-brain CVR. In

addition, a recent study in patients with advanced steno-occlusive

disease showed that BOLD MR imaging CVR performed very well

against PET CVR using identical CO2 stimuli.41 BOLD CVR MR

imaging is therefore an accessible and readily applied method for

routine clinical use.

CVR can be measured using BOLD MR imaging as a surrogate

for cerebral blood flow and hypercapnic changes in the PETCO2 as

the vasoactive stimulus.42 In healthy individuals, there is a strong

positive relationship between PETCO2 and CBF over a large range

of PETCO2. In steno-occlusive disease, patients may exhibit
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downstream regional decreases in CBF in response to hypercap-

nia. With mild hemodynamic impairment, reductions in CVR

result from a diminished increase in blood flow, whereas in more

severe cases, steal physiology occurs. Vascular steal arises from the

redistribution of blood flow away from any region that has re-

duced vascular reserve to vascular beds with intact reserve, which

results in a greater reduction in flow resistance.15 In addition to

vascular steal, other mechanisms including cerebrovascular auto-

regulation and/or the cerebral metabolic rate of O2 up-regulation

may contribute to negative BOLD CVR.43 Here, an alternative

explanation for a negative BOLD signal could be due to an in-

crease in blood volume, particularly if the CBV changes happen in

arteries or veins that have low oxygen saturation fractions as

found in patients with hypoxia with no change in deoxyhemoglo-

bin concentration in the blood. Additionally, Arteaga et al43 re-

ported negative BOLD in WM with low CBV (0.01– 0.02 mL

blood/mL parenchyma), which would need very sizeable changes

in CBV to explain the magnitude of the CVR BOLD signal de-

crease. Although their stimulus included hyperoxia (and ours did

not), it was proposed that the cerebral metabolic rate of O2 may

increase during the hypercapnic and hyperoxia stimulus because

hypoxic tissue at baseline may metabolize the additional oxygen

provided.43 Partial voluming with CSF (because CSF has no CBF)

in periventricular tissue may have contributed to paradoxic re-

duced flow; however, because the patients have larger regions of

steal, we can rule this out.

There are a number of approaches used to implement a vaso-

active stimulus (eg, breath-holding, administering a constant

level of CO2, injecting acetazolamide) that can result in large vari-

ations in the stimuli and thereby large variations in measured

CVR.44 Our study used BOLD MR imaging with precisely repeat-

able CO2, which minimizes sources of variability and allows de-

tailed mapping of the evolution of CVR changes in patients across

time, accounting for voxelwise test-retest variability compared

against a control CVR atlas.9 This key feature is unique to this

study because accurate assessments in CVR changes are challeng-

ing to separate from test-retest variability with nonrepeatable and

unknown stimuli.

The present study did have limitations. The patient popula-

tion under study included heterogeneous vascular pathology;

nevertheless, each patient underwent standardized unilateral di-

rect STA-MCA bypass surgery. We allowed liberal inclusion cri-

teria with respect to age, medication, and disease process to main-

tain the generality of the results.

CONCLUSIONS
Unilateral extracranial-intracranial bypass improves WM CVR in

the ipsilateral MCA and ACA territories, indicating improvement

in underlying hemodynamic reserve. Prospective studies using

quantitative, reproducible vasodilatory stimuli examining post-

revascularization cognitive performance and other clinical pa-

rameters, including patients who have undergone common med-

ical therapy, are warranted and strongly recommended to shed

further light on the efficacy of bypass revascularization.
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