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ORIGINAL RESEARCH
ADULT BRAIN

Brain �-Amyloid and Atrophy in Individuals at Increased Risk
of Cognitive Decline

X I.K. Martikainen, X N. Kemppainen, X J. Johansson, X J. Teuho, X S. Helin, X Y. Liu, X S. Helisalmi, X H. Soininen, X R. Parkkola,
X T. Ngandu, X M. Kivipelto, and X J.O. Rinne

ABSTRACT

BACKGROUND AND PURPOSE: The relationship between brain �-amyloid and regional atrophy is still incompletely understood in
elderly individuals at risk of dementia. Here, we studied the associations between brain �-amyloid load and regional GM and WM volumes
in older adults who were clinically evaluated as being at increased risk of cognitive decline based on cardiovascular risk factors.

MATERIALS AND METHODS: Forty subjects (63– 81 years of age) were recruited as part of a larger study, the Finnish Geriatric Intervention
Study to Prevent Cognitive Impairment and Disability. Neuroimaging consisted of PET using 11C Pittsburgh compound-B and T1-weighted
3D MR imaging for the measurement of brain �-amyloid and GM and WM volumes, respectively. All subjects underwent clinical, genetic,
and neuropsychological evaluations for the assessment of cognitive function and the identification of cardiovascular risk factors.

RESULTS: Sixteen subjects were visually evaluated as showing cortical �-amyloid (positive for �-amyloid). In the voxel-by-voxel analyses,
no significant differences were found in GM and WM volumes between the samples positive and negative for �-amyloid. However, in the
sample positive for �-amyloid, increases in 11C Pittsburgh compound-B uptake were associated with reductions in GM volume in the left
prefrontal (P � .02) and right temporal lobes (P � .04).

CONCLUSIONS: Our results show a significant association between increases in brain �-amyloid and reductions in regional GM volume
in individuals at increased risk of cognitive decline. This evidence is consistent with a model in which increases in �-amyloid incite
neurodegeneration in memory systems before cognitive impairment manifests.

ABBREVIATIONS: AD � Alzheimer disease; APOE � Apolipoprotein E; A� � �-amyloid; PIB � Pittsburgh compound-B; PIB� � PIB negative; PIB� � PIB positive

Alzheimer disease (AD), the most common form of late-life

dementia, is characterized by abnormal deposits of neurofi-

brillary tangles of � protein and plaques of �-amyloid (A�) pro-

tein in the brain, eventually leading to neurodegeneration and

cognitive decline. The accumulation of A� in the brain is believed

to be a key factor in the development of AD, and recent evidence

suggests that reduction of brain A� in the early stages of AD may

slow down cognitive and functional decline.1 Therefore, there is a

need to find biomarkers that identify individuals at risk of developing

AD pathology who might benefit from therapeutic interventions be-

fore substantial irreversible neurodegeneration occurs.

Neuroimaging using PET and ligands specific for A� such as
11C-labeled-Pittsburgh compound-B (11C PIB) allows the mea-

surement of brain fibrillary A� load in vivo. Previous studies have

found increases in brain 11C PIB uptake not only in patients with

AD but also in patients at risk of AD.2 The increases in 11C PIB
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uptake in these patient samples are significantly associated with

brain atrophy.3,4 However, the evidence is mixed on the relation-

ship of brain volumes and A� load in elderly subjects without

clear cognitive impairment: Earlier studies have found both pos-

itive5,6 and negative associations7 or no associations.8 This incon-

sistency may be related to differences in methodology and the

stage of AD pathology of the samples.

Here, we studied the relationships between brain A� and apo-

lipoprotein E (APOE) �4 carrier status with regional GM and WM

volumes in a population-based sample of elderly individuals

without manifest cognitive impairment but at high risk of devel-

oping dementia based on a cardiovascular risk factor profile. Ear-

lier research suggests substantial regional variation in the acceler-

ated brain atrophy related to early A� accumulation.9 Therefore,

we hypothesized that increases in 11C PIB uptake are associated

with specific patterns of brain volume loss. A better understand-

ing of the relationship between A� and brain atrophy would not

only elucidate AD mechanisms in at-risk subjects but also poten-

tially help develop imaging-based identification of individuals

who might benefit from early intervention.

MATERIALS AND METHODS
Subjects
The subjects were recruited as part of the Finnish Geriatric Inter-

vention Study to Prevent Cognitive Impairment and Disability

(clinicaltrials.gov identifier NCT01041989). The study enrolled

subjects 60 –77 years of age with Cardiovascular Risk Factors, Ag-

ing and Dementia scores of at least 6 points10 and cognition at a

mean level or slightly lower than that expected for age. At least 1 of

the following criteria was required for inclusion: 1) Word List

Memory Task of �19 words, 2) Word List Recall of �75%, or 3)

Mini-Mental State Examination score of �26/30 points. In gen-

eral, the subjects are representative of the Finnish elderly popula-

tion with several risk factors for dementia.11,12 The exclusion cri-

teria included major depression, dementia, or marked cognitive

decline, Mini-Mental State Examination scores of �20, and

symptomatic cardiovascular disease.

Here, we studied a subgroup of the above-mentioned sam-

ple (Turku University Hospital cohort), consisting of 40 sub-

jects (21 men, 19 women; mean age, 71 � 5.2 years). Before

analyses, all neuroimaging data were evaluated for image qual-

ity. Written informed consent was obtained from all subjects

who participated in the study. The study was approved by the

Coordinating Ethics Committee of the Helsinki and Uusimaa

Hospital District.

Clinical Measurements
The clinical measurements have been previously described in de-

tail.13 The cognitive performance was evaluated using the modi-

fied Neuropsychological Test Battery,14 yielding a total composite

z score and domain z score measures of memory, executive func-

tion, and processing speed. Total serum cholesterol and plasma

glucose concentrations were determined enzymatically using

commercial reagents and a clinical chemistry analyzer, Architect

c8000 (Abbott Laboratories, Abbott Park, Illinois).

APOE Genotyping
Genomic DNA was extracted from venous blood samples with a

chemagic Magnetic Separation Module I (Perkin Elmer, Waltham,

Massachusetts) using magnetic beads. The APOE genotype was

determined by polymerase chain reaction using TaqMan geno-

typing assays (Applied Biosystems, Foster City, California) for

2 single-nucleotide polymorphisms (rs429358 and rs7412) and

an allelic discrimination method on the ABI 7500 platform

(Applied Biosystems).15

Neuroimaging
11C PIB [N-methyl-11C-2-(4-methylaminophenyl)-6-hydroxy-

benzothiazole] was produced as described earlier.16 On average,

406 � 110 MBq of 11C PIB was injected intravenously, and a scan

from 60 to 90 minutes (3 � 10-minute frames) after injection was

performed with an Ingenuity TF PET/MR scanner (Philips

Healthcare, Best, the Netherlands). All images were reconstructed

using a line-of-response row-action maximum likelihood algo-

rithm with MR imaging– based attenuation correction using a

segmentation-based algorithm with 3 tissue classes, including the

head coil template used in the MR imaging protocol.17 The data

were reconstructed using 2 iterations and 33 subsets. The image

matrix size was 128 � 128 � 90, with an axial FOV of 256 � 256

mm and an isotropic voxel dimension of 2 mm. All quantitative

corrections for PET data were applied, including scatter, ran-

doms, attenuation, detector deadtime, and normalization. Nei-

ther time-of-flight information nor resolution modeling was ap-

plied in this study. Sagittal T1-weighted 3D MR imaging data were

acquired for the measurement of brain GM and WM volumes,

with TR � 25 ms, TE � 5.5 ms, and a reconstructed isotropic

voxel dimension of 1 mm.

PET and MR Imaging Data Processing
The neuroimaging data were processed using SPM8 (http://www.

fil.ion.ucl.ac.uk/spm/software/spm12). The 11C PIB images were

realigned and coregistered to the individual MR image and nor-

malized to Montreal Neurological Institute space. 11C PIB uptake

data were extracted using the standard automated segmentations

by FreeSurfer 5.0 (http://surfer.nmr.mgh.harvard.edu).18 Re-

gional 11C PIB uptake was quantified as a region-to-cerebellar

cortex ratio during the 60- to 90-minute scan duration. The 11C

PIB uptake values in the right and left hemispheres were averaged

for data analysis.

MR imaging data processing for voxel-based morphometry

analysis was performed using the VBM8 toolbox (http://dbm.

neuro.uni-jena.de/vbm.html), with default parameters for image

processing. This included bias regularization and tissue classifica-

tion and registration using linear (affine) and nonlinear transfor-

mations within a unified model.19 High-dimensional spatial

normalization was accomplished using Diffeomorphic Anatomi-

cal Registration Through Exponentiated Lie Algebra. The analysis

was performed on the volumes of GM and WM, multiplied by the

nonlinear, but not linear, components derived from the normal-

ization matrix. This procedure preserves actual local GM and

WM volumes, accounting for individual brain size (modulated

volume). The realigned and normalized GM and WM segments
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were smoothed with a Gaussian kernel with a full width at half

maximum size of 8 mm.

Data Analysis
The PET images were visually interpreted by 2 experienced read-

ers, and subjects were classified as either PIB positive (PIB�) or

PIB negative (PIB�) on the basis of consensus agreement. The

subjects with PIB� findings had cortical 11C PIB retention in at

least 1 region typically affected by �-amyloid deposition in AD,

while the subjects with PIB� findings had only nonspecific 11C

PIB retention in the WM. Brain GM and WM volumes were com-

pared between the PIB� and PIB� samples and APOE �4 carriers

and noncarriers voxel-by-voxel using an unpaired t test. The as-

sociations between 11C PIB uptake and brain GM and WM vol-

umes, and interactions between 11C PIB uptake and APOE �4

carrier status with regional GM and WM volumes were analyzed

using whole-brain voxel-by-voxel multiple linear regression anal-

ysis. Age and sex were covaried in all analyses. Primary analyses

were conducted using a composite 11C PIB uptake value, calcu-

lated as the average uptake in the following regions: anterior cin-

gulate cortex, lateral temporal cortex, parietal cortex, posterior

cingulate cortex, precuneus, and prefrontal cortex. Additionally,

the 11C PIB uptake values for the precuneus, prefrontal cortex,

and posterior cingulate cortex were used for regression analysis

because they are among the first regions to show increases in 11C

PIB uptake in mild cognitive impairment.2 The associations were

determined separately in the PIB� and PIB� samples.

Voxels with GM or WM values of � 0.1 were excluded from

the analysis. A height threshold of P � .001 (uncorrected) was

used across the whole brain for searching significant differences in

brain GM and WM volumes (P � .05, family-wise error rate–

corrected for multiple comparisons at the cluster level). Extent

threshold was defined by the expected number of voxels per clus-

ter based on random field theory. Cluster sizes were adjusted for

nonstationary smoothness.20 In addition to the measures of GM

and WM volume, microangiopathy-related hyperintensities in

deep WM were evaluated on axial FLAIR images using a semi-

quantitative scale (0 � absence, 1 � punctate foci, 2 � beginning

confluence of foci, 3 � large confluent areas).21

Statistical analyses were performed using SPSS, Version 23.0

(SPSS Statistics for Windows; IBM, Armonk, New York). Planned

correlations were determined between clinical measures and GM

and WM volumes in the PIB� and PIB� samples. In these anal-

yses, statistical significance was set at P � .05, and no correction

for multiple tests was applied to these correlations.

RESULTS
General Characteristics and APOE Genotype of the
Subjects
The general characteristics of the subjects are shown in Table 1.

APOE genotype was determined in 39 subjects. This sample con-

sisted of 12 APOE �4 carriers (�2/�4, n � 1; �3/�4, n � 10; �4/�4,

n � 1) and 27 APOE �4 noncarriers (�2/�3, n � 2; �3/�3, n � 25).

Brain 11C PIB Uptake and GM and WM Volumes
The average global brain GM volume was 618 � 73 mL in the

PIB� sample and 624 � 52 mL in the PIB� sample, and the

average brain WM volume was 502 � 76 mL in the PIB� sample

and 520 � 61 mL in the PIB� sample. There were no differences

in the global GM and WM volumes between the samples (GM:

F1,37 � 0.17, P � .68; WM: F1,37 � 1.21, P � .28). In the whole-

brain voxel-by-voxel analyses, no significant differences were

found in the GM and WM volumes between the PIB� and PIB�

samples, even when using a very lenient search threshold (P � .05,

uncorrected).

In line with our earlier work, significant correlations were

found between the regional 11C PIB uptake values and the com-

posite 11C PIB uptake value in the PIB� sample (all bivariate ROI

correlations, P � .001; Pearson r � 0.70 – 0.98). Therefore, the

composite 11C PIB uptake value can be used as a proxy for overall

brain A� load in this study.

In the PIB� sample, increases in composite 11C PIB uptake

were associated with smaller GM volumes in the right temporal

lobe (temporal pole, parahippocampal gyrus; peak Montreal

Neurological Institute coordinates at [29, 14, �30], cluster size �

1170 mm3, z � 4.0, P � .04). At a lower search threshold (P �

.01), this region also encompassed the right hippocampus and

areas of the medial occipitotemporal gyrus (Fig A, -B). The in-

creases in 11C PIB uptake in the precuneus were associated with

smaller GM volumes in the left prefrontal lobe (inferior frontal

Table 1: Sample demographics and clinical characteristicsa

Characteristics All PIB− PIB+ PIB− vs PIB+
No. (% women) 40 (48%) 24 (50%) 16 (44%) �2

1 � 0.15, P � .70
Age (yr) 71 � 5 70 � 6 72 � 4 t38 � �1.19, P � .24
APOE �4 carriers (%) 12 (31) 4 (17) 8 (53) �2

1 � 5.83, P � .02
Body mass index (kg/m2) 27 � 3 28 � 3 26 � 2 t38 � 2.14, P � .04
Systolic blood pressure (mm Hg) 137 � 15 138 � 15 136 � 15 t38 � 0.31, P � .76
Diastolic blood pressure (mm Hg) 81 � 8 80 � 8 82 � 9 t38 � �0.65, P � .52
Total serum cholesterol level (mmol/L) 5.2 � 1 4.9 � 1 5.5 � 1 t38 � 1.69, P � .10
Education (yr) 9 (2) 9 (2.75) 8 (2) U � 158, P� .36
Physical activity � twice per week (%) 63 52 80 �2

1 � 3.02, P � .08
Mini-Mental State Examination 27 (2) 27 (2) 27 (3) U � 158, P � .35
Total composite z score 0.03 � 0.5 0.06 � 0.6 �0.01 � 0.5 F1,37 � 0.018, P � .90
Memory z score �0.05 � 0.6 �0.10 � 0.5 0.06 � 0.7 F1,37 � 2.42, P � .13
Executive function z score 0.04 � 0.6 0.20 � 0.6 �0.10 � 0.4 F1,37 � 1.94, P � .17
Processing speed z score 0.2 (0.9) 0.4 (1) 0.2 (1) F1,37 � 0.03, P � .86
Dementia risk score 7.5 (3.75) 8 (3.75) 7 (2) U � 161, P � .39
Fazekas score 1 (2) 1 (2) 2 (1.75) U � 144, P � .18

a Data are given as mean � SD or median (interquartile range).
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gyrus; [�38, 32, 4], 262 mm3, z � 3.8, P � .02; Fig C). At trend

level (P � .06), an association was found between increases in
11C PIB uptake in the prefrontal cortex and smaller GM vol-

umes in the right temporal lobe (temporal pole, parahip-

pocampal gyrus, amygdala; [29, 12, �30], 1390 mm3, z � 3.7).

There were no regions with a significant positive correlation

between 11C PIB uptake and GM volume. In the PIB� sample,

no significant associations were found between brain 11C PIB

uptake and GM volume (all regions, P � .05). No significant

associations were found between 11C PIB uptake and regional

WM volume in the PIB� or PIB� samples. The main results

are summarized in Table 2.

APOE �4 Carrier Status and GM and WM Volumes
No significant differences were found in global brain GM volumes

between APOE �4 carriers and noncarriers (F1,36 � 1.44, P � .24).

The global WM volumes were significantly smaller in APOE �4

carriers compared with noncarriers (F1,36 � 4.62, P � .04). In the

whole-brain voxel-by-voxel analysis, no significant differences

were found in regional GM volumes when comparing APOE �4

carriers and noncarriers. Furthermore, no significant interactions

were found between APOE �4 carrier status and composite 11C

PIB uptake with regional GM volume. Regarding regional WM,

APOE �4 carriers had significant reductions in WM volumes in

the right parieto-occipital region compared with APOE �4 non-

carriers ([18, �87, 32], 4810 mm3, z � 4.7, P � .001). No signif-

icant regions were found in the opposite contrast (APOE �4 car-

riers � APOE �4 noncarriers). No interactions were found

between APOE �4 carrier status and composite 11C PIB uptake

with regional WM volume.

Clinical Correlations
In the overall sample, larger global GM and WM volumes were

associated with younger age (GM: r � �0.35, P � .01; WM: r �

�0.37, P � .009). Larger global WM volumes were also associated

with higher Mini-Mental State Examination scores at trend level

(r � 0.28, P � .08). Correlations between regional GM or WM

volumes and clinical measures, including WM hyperintensities,

were short of significance (all P values � .05).

DISCUSSION
PET imaging using ligands specific for A�, such as 11C PIB, allows

the evaluation of AD pathology even before clinical symptoms

emerge. However, a number of patients with PET scans positive

for 11C PIB do not develop AD, indicating that other biomarkers

are needed to accurately identify individuals who might benefit

from pharmaceutical or life-style interventions.1,12 Earlier studies

in patients with AD and its prodromal states have found signifi-

cant correlations between 11C PIB uptake and brain volume

loss,3,4,22,23 which is more closely related to the cognitive symp-

toms than A� load.6,8 Significant correlations have been de-

scribed between brain A� accumulation and atrophy even in el-

derly subjects with no cognitive symptoms5,6; in fact, it has been

suggested that this correlation is particularly strong at early stages

of AD pathology.24,25 Our present data extend the previous ob-

servations by showing significant associations between increases

in brain A� and GM loss in elderly subjects at high risk of cogni-

tive impairment. However, some studies in cognitively healthy

subjects have failed to find associations between 11C PIB uptake

and atrophy8 or have even suggested a positive correlation be-

tween 11C PIB uptake and GM volume.7 Considering the distinct

time scales of brain A� accumulation and GM loss, these discrep-

ancies may relate to differences in the stage of AD pathology

among the samples.

In the PIB� sample, a significant association was found be-

tween increases in the composite measure of brain 11C PIB uptake

and smaller GM volumes in the right temporal lobe, encompass-

ing structures of the medial temporal lobe memory system. This

finding is in line with previous work in cognitively healthy elderly

subjects5,6,24,25 and suggests that asymptomatic elderly individ-

uals who are at risk of cognitive decline and have a substantial

brain A� load show signs of impending neurodegeneration in

FIGURE. Associations between increases in 11C PIB uptake and reduc-
tions in GM volume in subjects with PIB� findings at increased risk of
cognitive decline. In subjects classified as positive for 11C PIB uptake,
significant associations are found between increases in composite 11C
PIB uptake and reductions in GM volume in the right temporal lobe (A
and B) and increases in 11C PIB uptake in the precuneus and reductions
in GM volume in the left prefrontal lobe (C). D, The significant nega-
tive correlation between composite 11C PIB uptake and GM volume in
the right temporal lobe in the PIB� sample (closed circles). No cor-
relation is found in the PIB� sample (open circles). The R and P values
were calculated using the average GM volumes extracted at P � .001.

Table 2: Summary of associations between 11C PIB uptake and brain regional GM volume

11C PIB Uptake Measure
Correlation with GM Volume; Region; Peak X, Y, Z

Coordinates; Cluster Size; z Score; P Value
Composite Negative correlation, right temporal lobe (29, 14, �30), 1170 mm3, z � 4.0, P � .04
Precuneus Negative correlation, left prefrontal lobe (�38, 32, 4), 262 mm3, z � 3.8, P � .02
Prefrontal cortex Negative correlation, right temporal lobe (29, 12, �30), 1390 mm3, z � 3.7, P � .06
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the temporal lobe. Although no significant associations were

found between temporal lobe volume and cognition (Mini-

Mental State Examination, total z score, and subscores of the

modified Neuropsychological Test Battery), the significance of

coexisting brain A� load and temporal lobe atrophy in clini-

cally healthy elderly is highlighted by data suggesting that the

adverse effect of these variables on cognition is synergistic.26

Therefore, it is likely that the subjects with PIB� findings with

temporal lobe atrophy in this study are at high risk of future

cognitive decline.

In addition, increases in 11C PIB uptake in the precuneus in

the PIB� sample were significantly associated with GM volume

reductions in the left prefrontal lobe. While studies on brain at-

rophy in the context of AD pathology have generally focused on

medial temporal lobe structures, AD has also been shown to be

associated with atrophy in a number of other brain regions, in-

cluding the frontal lobes, precuneus, and posterior cingulate cor-

tex.27,28 Furthermore, brain A� load in cognitively healthy elderly

has been shown to be associated with GM volume loss in the

frontal, parietal, and temporal lobes.5,27 There is even evidence

suggesting that emerging A� pathology in cognitively healthy

elderly is particularly associated with frontoparietal atrophy,

while atrophy in the temporal lobe structures accelerates later

as clinical symptoms begin to manifest.29 The mechanisms be-

hind the regional differences in A�-associated atrophy are not

well-understood: Potential mechanisms include differences in

the afferent and efferent connections and vulnerability to A�-

related toxicity.

Earlier studies have shown that the APOE �4 allele is associated

with CSF A� levels and changes in brain GM and WM in mild

cognitive impairment and AD.30-32 Although regional reductions

in WM volumes were found in APOE �4 carriers compared with

noncarriers, the APOE �4 carrier status had no effect on the rela-

tionship between 11C PIB uptake and GM volume, corroborating

the results from previous studies conducted in clinically healthy

elderly and subjects with mild cognitive impairment.33,34 These

findings are in line with evidence showing that while APOE �4

carrier status has a major effect on A� deposition, the effects on

atrophy are subtle and are mediated by both A�-dependent and

A�-independent mechanisms.35

Finally, this study has a few limitations. First, because the

subjects were clinically selected to represent an elderly popu-

lation with several risk factors for dementia, it is likely that they

have mixed pathologies; conversely, some of the pathologies

related to cognitive impairment may not have been considered

in the current study. Second, the sample size was relatively

small for the evaluation of associations between GM and WM

volumes and clinical variables and the effects of APOE �4 on

the relationship between 11C PIB uptake and GM and WM

volumes. Third, the cross-sectional data do not allow deter-

mining whether the subjects with PIB� findings with impend-

ing temporal lobe atrophy develop cognitive impairment later

on. Therefore, replication of these findings in larger samples as

well as longitudinal studies are needed to determine the pre-

dictive power of 11C PIB PET and GM volume in cognitive

impairment in at-risk elderly individuals.

CONCLUSIONS
Our results show that elderly individuals who are at increased risk

of cognitive decline based on cardiovascular risk factors and have

PET scans positive for 11C PIB exhibit reductions in regional GM

volume in proportion to increases in brain A� load. Our findings

are consistent with the model in which brain A� accumulation

incites neurodegeneration before cognitive decline manifests.

Furthermore, the results suggest that the brain A�-associated

GM loss affects both the medial temporal lobe memory system

and the neocortex. Together this evidence emphasizes the im-

portance of finding biomarkers that identify individuals at risk

of developing AD pathology who might still benefit from ther-

apeutic interventions.
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