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Carotid Intraplaque-Hemorrhage Volume and Its Association
with Cerebrovascular Events

L. Saba, G. Micheletti, W. Brinjikji, P. Garofalo, R. Montisci, A. Balestrieri, J.S. Suri, J.K. DeMarco, G. Lanzino,
and R. Sanfilippo

ABSTRACT

BACKGROUND AND PURPOSE: Our aim was to assess the relationship between volume and percentage of intraplaque hemorrhage
measured using CT and the occurrence of cerebrovascular events at the time of CT.

MATERIALS AND METHODS: One-hundred-twenty-three consecutive subjects (246 carotid arteries) with a mean age of 69 years
who underwent CTA were included in this retrospective study. Plaque volume of components and subcomponents (including intra-
plaque hemorrhage volume) was quantified with dedicated software.

RESULTS: Forty-six arteries were excluded because no plaque was identified. In the remaining 200 carotid arteries, a statistically sig-
nificant difference was found between presentation with cerebrovascular events and lipid volume (P = .002), intraplaque hemorrhage
volume (P = .002), percentage of lipid (P = .002), percentage of calcium (P = .001), percentage of intraplaque hemorrhage (P = .001),
percentage of lipid-intraplaque hemorrhage (P = .001), and intraplaque hemorrhage/lipid ratio (P = .001). The highest receiver operat-
ing characteristic area under the curve was obtained with the intraplaque hemorrhage volume with a value of 0.793 (P = .001), per-
centage of intraplaque hemorrhage with an area under the curve of 0.812 (P = .001), and the intraplaque hemorrhage/lipid ratio
with an area under the curve value of 0.811 (P = .001).

CONCLUSIONS: Results of our study suggest that Hounsfield unit values <25 have a statistically significant association with the
presence of cerebrovascular events and that the ratio intraplaque hemorrhage/lipid volume represents a strong parameter for the
association of cerebrovascular events.

ABBREVIATIONS: AUC ¼ area under the curve; IPH ¼ intraplaque hemorrhage; ROC ¼ receiver operating characteristic

Several studies have demonstrated, in recent years, that the
degree of stenosis should not be considered the only parame-

ter to identify carotid plaque at risk of distal embolization and
that additional plaque features can increase or reduce risk of pla-
que rupture and embolic events.1-4 In particular, intraplaque

hemorrhage (IPH) has been convincingly associated with a
higher risk of ipsilateral cerebrovascular events.5,6

Although MR imaging has been widely used to identify
IPH,7-9 recent evidence suggests that CT,10 using a threshold of
attenuation values of <25 HU in the carotid artery, can consis-
tently identify the presence of IPH. Moreover, with improved
algorithmic and hardware evolution, there has been an increasing
role of volumetric quantification of tissue components for plaque
characterization.11-14

In the present study, we assessed the relationship between vol-
ume and the percentage of IPH measured using software analysis
in volumetric CT and the occurrence of cerebrovascular events
(stroke and TIA).

MATERIALS AND METHODS
Study Design and Patient Population
Institutional review board approval for this study was obtained,
and patient consent was waived because of the retrospective na-
ture. On the basis of a power calculation (type I error, a = .05;
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type II error, b = 0.1; area under the curve [AUC] null hypothe-
sis value = 0.5; AUC significant value = 0.7, pooled group), we
estimated that a sample size of at least 130 (with a 30% IPH prev-
alence) carotid arteries would be sufficient to investigate the
potential effect of CT-detected IPH versus the occurrence of cere-
brovascular events. We decided to also include a correction factor
of 10%, yielding a necessary sample size of 143 carotid arteries.
Moreover, because in each subject, there are 2 carotid arteries
and this determined a bias in the model, we decided to study 200
carotid arteries to avoid the inference determined by the 2 carotid
arteries in each patient.

Consecutive subjects who underwent CT of the carotid
arteries in our hospital from March 2013 were included until the
threshold of 200 carotid arteries was reached (January 2014) for a
total of 246 carotid arteries in 123 subjects (94 men, 29 women;
mean age, 69 years; age range, 45–86 years). For each subject,
when both carotid arteries showed atherosclerotic plaque, the left
and right sides were included. Plaque was defined according to
the Mannheim consensus15 as a carotid wall thickness of
>1500mm.

In cases in which only 1 carotid artery was pathologic, the
normal side (46 carotid arteries) was excluded from analysis,
leaving 200 arteries with an atherosclerotic plaque for
analysis.

Quantification of the degree of stenosis and plaque analysis
was performed using CTA according to previously published cri-
teria.16,17 Carotid sonography is used as a screening tool to iden-
tify carotid stenosis, and CTA was performed under the
following circumstances: 1) Carotid sonography showed a patho-
logic stenosis (>50% measured with the NASCET criteria18) or
features related to plaque vulnerability (ulcerations, irregular sur-
face); 2) sonography could not adequately assess the degree of ste-
nosis and plaque characteristics because of anatomic conditions;
3) diabetes screening; and 4) presurgery analysis. Moreover, all
subjects with cerebrovascular events underwent CTA of the
carotid arteries. The neurologic status at the time of CT was clas-
sified as symptomatic or asymptomatic according to the neuro-
logic assessment documented in the clinical chart review using
the Trial of Org 10172 in Acute Stroke Treatment (TOAST) crite-
ria.19,20 The maximum timing between events and imaging to
consider a subject as symptomatic was 1 week. In the case of >1
week between ischemic symptoms and CTA of carotid arteries,
the patient was excluded. We defined as symptomatic those
patients with TIA or stroke, considering TIA as a brief (<24-
hour) episode of neurologic dysfunction such as dysarthria, dys-
phasia, hemiparesis, or hemiparesthesia and monocular blind-
ness. If the episodes of neurologic dysfunction lasted >24 hours,
the patient was considered to have a stroke. In case of doubt with
other pathologies (eg, hypoglycemia, migraine, postparoxysmal
neurologic dysfunction), we excluded patients from the analysis.
Asymptomatic patients had no history of either remote or recent
symptoms at the time of the examination. Clinical classification
into symptomatic and asymptomatic was based on the assess-
ment of the clinician evaluating the patient and ordering the diag-
nostic study and was extracted from the chart. We considered
symptomatic patients those who had plaque in the carotid artery
ipsilateral to the cerebrovascular event.

Moreover, we excluded patients with the following conditions:
1) concomitant intracranial pathology such as brain tumor, ab-
scess, and encephalitis; and 2) the presence of a cardioembolic
source documented by a cardiologist.

CTA Technique
Patients were studied using a 16–detector row CT system
(Brilliance; Philips Healthcare, Best, the Netherlands). CT images
were obtained with coverage from the aortic arch to the carotid
siphon in a caudocranial direction, and examinations were per-
formed before and after the administration of contrast material.
An angiographic phase was obtained with the administration of
80mL of prewarmed contrast medium, Ultravist 370 (iopromide;
Bayer HealthCare, Berlin, Germany) into a cubital vein using a
power injector at a flow rate of 4–5mL/s and a 16-ga intravenous
catheter followed by 30mL of saline flush. CT technical parame-
ters included the following: section thickness = 0.6mm, section
interval = 0.3mm, matrix size = 512 � 512 pixels, FOV = 14–
19 cm. A C-filter algorithm of reconstruction was applied.

IPH and Plaque Volume Component Analysis
Quantification
Two radiologists (L.S. and A.B. with 11 and 8 years of experience
in CTA, respectively) blinded to clinical information regarding
symptomatic status performed all measurements of Hounsfield
units using as window/level settings, W = 850:L = 300.21 Volume
analysis was performed with dedicated software (Elucid
Bioimaging, Wenham, Massachusetts) to semi-automatically
quantify the subcomponent volume.22,23 With this software,
it is possible to identify attenuation values of all the voxels
within a volume, and by means of applying some thresholds,
it is possible to classify the tissues according to the attenua-
tion values (Fig 1). For this analysis, we considered 5 classes:
3, as suggested by de Weert et al24 in which voxels identifying
lipid tissues were <60 HU, fibrous tissue between 60 and 130
HU, and calcium tissue >130 HU.10,24 Two additional classes
(4 and 5) were added by splitting the lipid: the fourth class
was the IPH for values <25 HU according to the findings by
Saba et al,10 whereas the fifth class was the lipid-IPH, which
included all the voxels with Hounsfield unit values between
26 and 59 HU.

We also calculated the percentages of these components, and
finally, a ratio was introduced as the ratio of IPH/lipid volume
(with values between 0, if no IPH was present, and 1, if all the
lipid plaque component was due to IPH).

IPH Volume Dichotomization
After the volume calculation of the IPH, 5 thresholds were
selected to obtain a dichotomization and subsequently test the
effect of the presence/absence of IPH versus symptoms using a 6-
hypothesis scenario. We considered the following 6 thresholds of
IPH volume: 10, 50, 100, 150, 200, and 250 mm3.

Statistical Analysis
In this study, continuous data were described as the mean 6 SD.
Receiver operating characteristic (ROC) curve analysis was per-
formed between volume and volume subcomponents (lipid,
mixed, calcified, IPH, lipid-IPH tissue), percentage of variable of
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the subcomponents, ratio of IPH/lipid, and the presence of cere-
brovascular events. The normality of each continuous group was
tested using the Kolmogorov-Smirnov Z-test, and different values
in groups with and without cerebrovascular symptoms were com-
pared using the Mann-Whitney test. The dichotomized IPH val-
ues according to the thresholds were tested versus the presence/
absence of cerebrovascular events using a x 2 test. A P value< .05
indicated a statistically significance association, and all values
were calculated using a 2-tailed significance level. Statistical anal-
ysis was performed with the SPSS 13.0 Statistical Package (IBM,
Armonk, New York). Graphics were plotted with MedCalc 15.0
software (MedCalc Software, Mariakerke, Belgium).

RESULTS
General Results
No patients were excluded due to suboptimal image quality. Of
the 123 patients, 46 were symptomatic (15 strokes, 31 transient is-
chemic attacks) and 77 were asymptomatic. General plaque char-
acteristics and their subcomponent volume and percentages are
summarized in Table 1. No statistically significant difference was
found for the common cerebrovascular risk factors between
symptomatic and asymptomatic patients. However, there were
statistically significant differences in the lipid volume (P = .002),

IPH volume (P = .001), percentage of lipid (P = .002), percentage
calcium (P = .001), percentage of IPH (P = .0001), percentage of
lipid-IPH (P = .0001), and the IPH/lipid ratio (P = .001).
Boxplots are given in Fig 2.

ROC Curve Analysis
The ROC curve analysis for the total plaque component and sub-
component volume versus the presence of cerebrovascular symp-
toms is given in Fig 3A. Table 2 summarizes general ROC results
from the volume analysis. The best ROC AUC was obtained with
the IPH volume, with a value of 0.793 (P = .001).

The ROC curve analysis was also performed for the percent-
age of plaque components versus the presence of cerebrovascular
symptoms, and the ROC plot is shown in Fig 3B. Table 2 also
summarizes the general ROC results from volume analysis. The
best performance was obtained by the percentage of IPH with an
AUC of 0.812; P = .001). Also, the IPH/lipid ratio showed a very
good AUC, with a value of 0.811 (P = .001).

IPH Volume Dichotomization
In Table 3, the x 2 results for the different threshold volumes of
IPH and cerebrovascular symptoms are summarized. The best

FIG 1. The first case is a 69-year-old male patient with right stroke who underwent CTA that showed a large IPH component of 107 mm3 (A–C).
A, The coronal view of the carotid CTA is given with the segmentation of the software (white open arrow). B, A coronal cut of the postpro-
cessed carotid arteries is shown (white arrowhead). C, The white arrow indicates the internal carotid artery in the axial selected section. The
legend of the chromatic scale is the following: red = IPH; yellow = lipid-IPH component; blue = mixed component; green = calcified component.
The second case is a 73-year-old male patient with left MCA stroke with an IPH/lipid ratio of 0.93 (D–F). D–F, Three axial slices from the bifurca-
tion upward were selected showing the presence of a large IPH and the small amount of lipid-IPH (white arrowheads).
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association was found by considering a threshold of 50 mm3 (P =
.001, x 2 = 43.913, contingency coefficient = 0.424).

DISCUSSION
Several studies have recently shown that carotid artery plaque
characteristics are associated with a risk of rupture and subse-
quent distal embolization.2,3,5,24 In this study, we assessed the
relationship between volume and percentage of IPH and other
plaque components in the carotid artery detected with CT and
their association with symptomatic status. We observed a signifi-
cant association between the presence of ipsilateral cerebrovascu-
lar events and the absolute volume of IPH as well as plaque lipid
content. Moreover, the ratio of IPH/lipid volume was strongly
associated with cerebrovascular events.

Among factors involved with plaque rupture, IPH is one of
the most dangerous, and its noninvasive identification is an im-
portant step for correct risk stratification.5-8 MR imaging is con-
sidered the best technique for the detection of IPH, while the
value of CT is debated. However, a recent study10 suggests that a
threshold of �25 HU is strongly associated with the presence of
IPH on CT.

One of the main limitations of carotid plaque analysis was the
fact that various imaging techniques do not account for the heter-
ogeneous composition of the atherosclerotic tissue where several
components can coexist in the same plaque.25,26 In the carotid ar-
tery plaque, coexistence of several components is frequent with
changes across time. Volumetric analysis of the plaque could
offer important insights because it allows us to quantify different
plaque components and provides a more complete analy-
sis.13,14,27,28 The introduction of a new CT criterion (�25 HU of
attenuation) for the detection of IPH applied to the use of volu-
metric quantification analysis systems could allow one to extrap-
olate the real impact of the IPH component. Recently published

articles in 201929,30 have demonstrated that the volumetric analy-
sis of the carotid artery plaques obtained by CT data is a reliable
technique and that small changes in plaque composition can also
be detected.30

In past years, the classic division of the carotid artery plaque
type according to the attenuation values was based on the seminal
study by de Weert et al,24 in which 3 classes were identified: lipid
(<60 HU), mixed (between 60 and 130 HU), and calcified (>130
HU). With the demonstration that attenuation values of<25 HU
are due to IPH,10 we tried to test the effect of the volumes for this
component; therefore, the lipid class was divided into IPH (<25
HU) and lipid-IPH (from 26 to 59 HU). By comparing sympto-
matic with asymptomatic subjects, we found a statistically signifi-
cant difference in volume for the lipid (P = .002), and in
particular for the IPH volume (P = .001). These findings confirm
that IPH volume is higher in plaques causing cerebrovascular
events.2,3,5,6,31,32 Of interest, there was no difference in lipid-IPH
volume tissue, whereas the total lipid volume showed a
statistically significant difference. This finding can be explained
because in the old classification the lipid volume class included
all the voxels <60 HU (and therefore also the IPH component);
these results suggest that tissues with an attenuation between 26
to 59 HU, namely fatty components, are not associated with the
presence of cerebrovascular events.

Further information can be gathered from the difference in
the relative percentages of various tissue components. It is not
only the volume threshold that can trigger plaque rupture but
also the relative percentage, suggesting that the biomechanical
structure of plaque is fundamental. In particular, in subjects with
cerebrovascular symptoms, there is an increased percentage of
IPH components and lipid (also including the IPH class).
Conversely, in subjects without cerebrovascular symptoms, an
increased percentage of calcium and lipid-IPH was found. The
protective effect of the calcium was already demonstrated by

Table 1: Demographic and plaque characteristic summary table
Cerebrovascular Symptoms Yes No P Value Test
Demographics

Age (mean) (95% CI) (yr) 70 (66–74) 68 (65–71) .37 Paired Student t
Sex (male = 93) 80% (37/46) 74% (57/77) .55 x 2

Hypertension 26% (12/46) 27% (42/154) .98 x 2

CAD 50% (23/46) 45% (70/154) .71 x 2

Smoking status 43% (20/46) 30% (46/154) .12 x 2

Diabetes 7% (3/43) 7% (11/154) .85 x 2

Dyslipidemia 28% (13/46) 32% (49/154) .79 x 2

Plaque composition
Total plaque volume (mm3) 793 (565–984) 560 (503–669) .105 Mann-Whitney
Lipid volume (mm3) 187 (132–240) 79 (63–101) .002a Mann-Whitney
Mixed volume (mm3) 471 (400–544) 318 (290–367) .062 Mann-Whitney
Calcified volume (mm3) 103 (70–150) 128 (109–156) .16 Mann-Whitney
IPH volume (mm3) 115 (74–160) 2 (0–9) .001a Mann-Whitney
Lipid-IPH volume (mm3) 61 (37–110) 67 (60–87) .14 Mann-Whitney
% of lipid 23 (21–30) 17 (14–18) .002a Mann-Whitney
% of mixed 58 (56–63) 59 (56–61) .51 Mann-Whitney
% of calcium 13 (12–17) 21 (18–22) .001a Mann-Whitney
% of IPH 15 (12–18) 1 (0–3) .001a Mann-Whitney
% of lipid-IPH 8 (6–11) 13 (12–14) .001a Mann-Whitney
IPH/lipid ratio 0.69 (0.59–0.73) 0.019 (0–0.064) .001a Mann-Whitney

Note:—CAD indicates coronary artery disease.
a Significant.
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Nandalur et al,33 whereas the finding
that the lipid-IPH percentage is lower
in symptomatic subjects could support
the histopathologic observation that
lipid tissue within plaques is not active
and not related to the risk of rupture.34

The ROC curve analysis confirms these
results by showing the highest area
under the curve with the IPH volume
(AUC of 0.793, P = .001) and percent-
age of IPH (AUC of 0.812, P = .001). To
assess the effect of some volumetric
thresholds, we created 6 different mod-
els by considering the following thresh-
olds: 10, 50, 100, 150, 200, and 250
mm3, and the best association was
found by considering a threshold of 50
mm3 (P = .001, x 2 = 43.913, contin-
gency coefficient = 0.424).

Our study has some limitations. It is
a retrospective analysis, and we did not
explore the association between the
presence of IPH (and its volume or per-
centage) and the risk of new/recurrent
cerebrovascular events. Instead, IPH
was assessed in patients who already
had cerebrovascular events, and this
may have introduced a bias because
some plaques may have theoretically
changed in structure and composition
in the interval between symptom onset
and the time of CTA detection. How-
ever, we think that the limited time
between the symptomatic event and the
CTA reduces this potential effect. Our

FIG 2. Boxplot of the volume components of the carotid artery plaque according to the pres-
ence or absence of cerebral symptoms (A) and boxplot of the percentages of the components
according to the presence or absence of cerebrovascular symptoms (B).

FIG 3. ROC curve analysis of the volume components of the carotid artery plaque according to the presence or absence of cerebral symptoms
(A) and ROC curve analysis of the percentages of the components according to the presence or absence of cerebral symptoms (B).
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findings are based on a relatively small cohort, and these data will
need to be validated in a larger and preferentially prospective
cohort. Nevertheless, these data provide a valuable framework on
which further confirmatory cohorts can be based.

CONCLUSIONS
The results of this study confirm that the value of <25 HU has a
statistically significant association with the presence of cerebro-
vascular events and that the ratio between IPH and lipid volume
represents a strong parameter for the association of cerebrovascu-
lar events.
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