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ORIGINAL RESEARCH
HEAD & NECK

Quantitative T1qMRI of the Head and Neck Discriminates
Carcinoma and Benign Hyperplasia in the Nasopharynx

Q.Y.H. Ai, W. Chen, T.Y. So, W.K.J. Lam, B. Jiang, D.M.C. Poon, S. Qamar, F.K.F. Mo, T. Blu, Q. Chan,
B.B.Y. Ma, E.P. Hui, K.C.A. Chan, and A.D. King

ABSTRACT

BACKGROUND AND PURPOSE: T1r imaging is a new quantitative MR imaging pulse sequence with the potential to discriminate
between malignant and benign tissue. In this study, we evaluated the capability of T1r imaging to characterize tissue by applying
T1r imaging to malignant and benign tissue in the nasopharynx and to normal tissue in the head and neck.

MATERIALS AND METHODS: Participants with undifferentiated nasopharyngeal carcinoma and benign hyperplasia of the nasopharynx
prospectively underwent T1r imaging. T1r measurements obtained from the histogram analysis for nasopharyngeal carcinoma in 43 par-
ticipants were compared with those for benign hyperplasia and for normal tissue (brain, muscle, and parotid glands) in 41 participants
using the Mann-Whitney U test. The area under the curve of significant T1r measurements was calculated and compared using receiver
operating characteristic analysis and the Delong test, respectively. A P, . 05 indicated statistical significance.

RESULTS: There were significant differences in T1r measurements between nasopharyngeal carcinoma and benign hyperplasia and
between nasopharyngeal carcinoma and normal tissue (all, P, . 05). Compared with benign hyperplasia, nasopharyngeal carcinoma
showed a lower T1r mean (62.14 versus 65.45 � ms), SD (12.60 versus 17.73 � ms), and skewness (0.61 versus 0.76) (all P, .05), but
no difference in kurtosis (P¼ . 18). The T1r SD showed the highest area under the curve of 0.95 compared with the T1r mean (area
under the curve ¼ 0.72) and T1r skewness (area under the curve ¼ 0.72) for discriminating nasopharyngeal carcinoma and benign
hyperplasia (all, P, .05).

CONCLUSIONS: Quantitative T1r imaging has the potential to discriminate malignant from benign and normal tissue in the head
and neck.

ABBREVIATIONS: AHP ¼ adiabatic half passage; AUC ¼ area under the curve; NPC ¼ nasopharyngeal carcinoma; rAHP ¼ reverse adiabatic half passage;
TSL ¼ time of spin-lock; PSNR ¼ peak signal-to-noise ratio

The spin-lattice relaxation time in the rotating frame known as
T1r is sensitive to biologic processes associated with alterations

in the macromolecular content of tissue. Quantitative T1r imaging
has been used to study normal tissue and nonmalignant diseases in
cartilage, discs, and ligaments,1-3 brain,4-7 liver,8,9 heart,10 muscles,11

and parotid glands.11-13 However, T1r imaging also has the poten-
tial to characterize benign and malignant processes, but only a few
studies have preliminarily evaluated T1r for human cancer

imaging. These studies showed differences of T1r values between
high- and low-grade gliomas14 and between benign and malignant
tissue in the brain,15,16 breast,17 and prostate.18

We are interested in quantitative MR imaging sequences that
can be used to discriminate nasopharyngeal carcinoma (NPC)
from benign hyperplasia in the nasopharynx because these enti-
ties may overlap on anatomic MR imaging sequences.19,20 Our
hypothesis is that the T1r value of malignancy is different from
that of benign tissue and can be used to discriminate these 2 enti-
ties. In this preliminary study, we also applied T1r imaging to aReceived January 16, 2020; accepted after revision August 7.
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range of normal tissue in the head and neck (brain, pterygoid
muscle, and parotid gland) to compare the T1r values of normal
tissue with those of NPC.

MATERIALS AND METHODS
Participants
This prospective study was performed with local institutional
board approval. Written informed consent was obtained from
ethnically Chinese participants who underwent MR imaging
between September 2018 and August 2019 in the Prince of Wales
Hospital, Hong Kong, SAR.

Participants with NPC had newly diagnosed biopsy-proved
undifferentiated carcinoma and a primary tumor of.5mm. The
primary tumor was staged according to the 8th edition of the
AJCC Cancer Staging Manual.21 Participants with benign hyper-
plasia had been referred for MR imaging for suspected NPC
because of persistently raised plasma Epstein-Barr virus DNA
and benign hyperplasia of .5mm on MR imaging without evi-
dence of NPC on MR imaging, endoscopic examination, and
clinical follow-up at a minimum of 6months.

MR Imaging Acquisition
MR imaging was performed with an Achieva TX 3T scanner
(Philips Healthcare). T1r imaging was performed using an adia-
batic continuous wave constant amplitude spin-lock approach,22 fol-
lowed by a single-shot turbo spin-echo acquisition. Fat signal was
suppressed using spectral attenuated inversion recovery. The spin-
lock radiofrequency pulse cluster consisted of a constant amplitude
spin-lock radiofrequency pulse sandwiched by an adiabatic half pas-
sage (AHP) and a reverse adiabatic half passage (rAHP). Hyperbolic
secant pulses were used as the AHP and rAHP with the B1 ampli-
tude of the AHP and rAHP set equal to that of the spin-lock radio-
frequency pulse.22,23 Details of the pulse sequence are reported
previously,24 but in summary, the imaging parameters were the fol-
lowing: TR/TE, 2500/15 ms; FOV, 230� 216mm; resolution, 1.2�
1.2mm; section thickness, 4mm; number of slices, 9; sensitivity
encoding factor, 2; AHP and rAHP duration, 25 ms; maximum am-
plitude of frequency waveform modulation of the AHP and rAHP,
400Hz; coefficient factor b for AHP and rAHP, 4; frequency of
spin-lock, 400Hz; and time of spin-lock (TSL), 0, 10, 30, 55, and 90
ms. The total T1r imaging scan time was 1minute 50 seconds.

Anatomic MR imaging consisted of a minimum of the follow-
ing: 1) an axial fat-suppressed T2-weigthed turbo spin-echo
sequence (TR/TE, 4000/80 ms; FOV, 230� 230mm; section
thickness, 4mm; echo-train length, 15–17; sensitivity encoding
factor, 1; number of signals acquired, 2); and 2) an axial T1-
weighted turbo spin-echo sequence (TR/TE, 500/10 ms; FOV,
230� 230mm; section thickness, 4mm; echo-train length, 4; sen-
sitivity encoding factor, 1; number of signals acquired, 2). The
patients with NPC were also scanned using a T1-weighted turbo
spin-echo sequence following a bolus injection of 0.1mmol of
gadoteric acid (Dotarem; Guerbet) per kilogram of body weight.

Imaging Analysis
T1r images were reconstructed at a matrix size of 288� 288.
These images were used for T1r quantification using an in-house
Matlab (MathWorks) program. The images were smoothed by a

sliding 2� 2 window throughout the image before quantification.
At each pixel, the image intensity was fitted to the relaxation model
y ¼ A�exp � TSL

T1rho

� �
þ B to calculate the T1r value, where A and

B are 2 unknown constants. We used a variant of the dichotomy
method25 to fit the data to this relaxation model to quantify T1r
values. For on-resonance spin-lock, the B term is positive. This
condition was incorporated into the fitting algorithm to improve
fitting accuracy. The peak signal-to-noise ratio (PSNR) was calcu-
lated to evaluate the goodness of fit. The definition of PSNR is

PSNR ¼ 10� log 10

N � maxiðyi � yÞ2PN
i¼1 ðyi � ŷiÞ2

 !
;

where yi, y, N, and ŷi are the raw data, their mean, their number,
and their fitted values, respectively. Criteria were set to exclude
pixels with obvious errors or possible unreliable fitting results. A
pixel was excluded from final analysis if it had a PSNRof, 30 or
an extreme T1r value (,15 ms or.200 ms).

The walls and/or adenoid of benign hyperplasia (Fig 1A) and
the primary NPC (Fig 1B) were contoured manually, excluding
obvious necrotic, cystic, or hemorrhagic areas, with reference to
the corresponding anatomic images (Fig 1C, -D). The normal
brain (cerebellum), muscle (lateral pterygoid muscle), and pa-
rotid gland were also manually contoured in 41 participants with
benign hyperplasia. Contouring was performed by a researcher
with 5 years’ experience in MR imaging of NPC and repeated af-
ter an interval of 2 weeks (observer 1) and by a diagnostic radiol-
ogist with 1-year postfellowship experience in head and neck
imaging (observer 2). The mean, SD, skewness, and kurtosis were
calculated from the histogram of the T1r map (Fig 1E, -F).

Statistical Analysis
T1r measurements of NPC were compared with those of benign
hyperplasia in the nasopharynx and with those of normal tissue
using the Mann-Whitney U test. Subgroup analysis was performed
to assess the differences in T1r measurements between stage T1
NPC and stage T2–4 NPC using the Mann-Whitney U test.
Receiver operating characteristic curve analysis and area under the
curve (AUC) calculations of statistically significant T1r measure-
ments were used to identify the optimal thresholds for discriminat-
ing NPC and benign hyperplasia by maximizing the sensitivity plus
specificity; the statistically significant of these optimal thresholds
was re-evaluated with the x 2 test. The sensitivity, specificity, posi-
tive predictive value, negative predictive value, and accuracy of the
optimal thresholds were calculated, and the AUCs were compared
using the Delong test.26 Differences in the T1r measurements of
normal brain and muscle and the parotid gland were compared
using the analysis of variance test, and for statistically significant dif-
ferences, the Fisher least significant difference test was then used for
post hoc multiple comparisons. These analyses used the average val-
ues of the measurements obtained from the 2 observers.

Intraclass correlation coefficients with 95% confidence intervals
were calculated to assess the intra- and interobserver agreement
for T1r measurements. Intraclass correlation coefficients of
#0.20, 0.21–0.40, 0.41–0.60, 0.61–0.80, and 0.81–1.00 indicated
slight, fair, moderate, substantial, and almost perfect agreement,
respectively.27 All of the statistical tests were 2-sided, and a P value

2340 Ai Dec 2020 www.ajnr.org



, .05 was considered a statistically significant difference. Analyses
were performed using MedCalc statistical software (Version 14.8.1;
MedCalc Software) and SPSS (Version 25.0; IBM).

RESULTS
Participants
Forty-three participants with NPC and 41 participants with benign
hyperplasia were recruited for analysis. The characteristics of each
group are shown in Table 1. NPCs were staged to T1, T2, T3, and
T4 in 14, 12, 12, and 5 participants, respectively. Participants with
benign hyperplasia showed no evidence of NPC at follow-up (me-
dian, 15.0months; range, 7.5–19.4months).

T1q Imaging in Normal Tissue,
NPC, and Benign Hyperplasia in
the Head and Neck
T1r measurements of NPC, benign
hyperplasia, and normal tissue (brain,
muscle, and parotid gland) are shown
in On-line Table 1. Compared with
benign hyperplasia, the T1r mean,
SD, and skewness of NPC were lower
(all, P, . 01) (On-line Table 1 and
Fig 2A–C), but there was no differ-
ence in kurtosis (P= . 18) (On-line
Table 1 and Fig 2D). T1r maps with
the contours and histograms of a par-
ticipant with benign hyperplasia and

NPC are shown in Fig 1. There were no differences in T1r
mean, SD, skewness, and kurtosis between stage T1 and T2–T4
NPCs (all, P. . 05) (Table 2). Compared with normal tissue, the
T1r means of NPC were lower than those of brain and higher
than those of muscle and the parotid gland (all, P, . 001), and
the T1r SD of NPC was higher than all 3 normal tissues (all
P, . 001) (On-line Table 1). For the normal tissues, differences
in T1r measurements between any of the 2 normal tissues were
statistically significant (all, P, . 05).

The intra- and interobserver agreement for T1r measure-
ments is shown in On-line Table 2. The highest intra- and inter-
observer agreement was found for the T1r mean (intraclass
correlation coefficients = 0.99 and 0.99, respectively) and for the

FIG 1. The T1rho maps (A and B) and histograms (C and D) of a participant with benign hyperplasia (A and C) and a participant with NPC (B and
D), respectively. Compared with participant with benign hyperplasia, the participant with NPC had a lower T1rho mean (70.92 versus 61.96 ms),
T1rho SD (16.75 versus 13.30 ms), and T1rho skewness (0.62 versus 0.47).

Table 1: Characteristics of 43 participants with NPC and 41 participants with benign
hyperplasia in the nasopharynx

Clinical Characteristics
Patients with NPC

(n= 43)
Patients with Benign
Hyperplasia (n= 41)

Age (yr)
Median 53 (33–83)a 54 (41–66)a

Mean 6 SD 54.5 6 10.5 53.6 6 6.9
Sex
Men 31 41
Women 12 0

Primary tumor invasion
Deep invasion absent (stage T1) 14 NA
Deep invasion present (stages T2–4) 29 NA

Note:—NA indicates not applicable.
a Data in parentheses indicate the range.
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T1r SD (intraclass correlation coeffi-
cients = 0.98 and 0.96, respectively).

Diagnostic Performance of T1q
Measurements for Discriminating
NPC and Benign Hyperplasia
The AUC, optimal threshold, and
diagnostic performance of statistically
significant T1r measurements for dis-
criminating between NPC and benign
hyperplasia are shown in Table 3. The
T1r SD showed the highest AUC of
0.95 compared with the T1r mean
(AUC = 0.72) and T1r skewness
(AUC= 0.72) (all, P, . 001, Table 3
and Fig 3). The T1r SD of#14.50 ms
achieves a sensitivity of 88.4%, speci-
ficity of 95.1%, positive predictive
value of 95.0%, negative predictive
value of 88.6%, and accuracy of 91.7%
for discriminating NPC from benign
hyperplasia.

DISCUSSION
In this preliminary study, we evaluated
the capability of this new quantitative
T1r MR imaging sequence for head
and neck cancer imaging to discrimi-
nate malignant tissue, specifically NPC
from benign tissue in the nasopharynx
and from surrounding normal tissue. In
keeping with a previous study published
in 1998,11 the T1r mean varied between
different normal tissues, being higher in
brain, followed by in the parotid gland
and muscle. Compared with these nor-
mal tissues, the T1r mean of NPC was
lower than that of the brain but higher
than that of the parotid gland and mus-
cle. Moreover, the T1r mean of NPC
was statistically significantly lower than
that of the benign hyperplasia. Factors
in the head and neck that influence T1r
values are unclear, but previous phan-
tom and in vivo musculoskeletal studies
have reported that the T1r value is neg-
atively associated with the macromole-
cule content and positively associated
with water content.28-30 Therefore, the
overexpression of macromolecular pro-
teins could be contributing to the low
T1r mean values in NPC, while higher
water content in the inflammation
could be contributing to the high mean
T1r values in benign hyperplasia.

We further analyzed measurements
other than the T1r mean from the

FIG 2. Boxplots of the T1rho mean (A), T1rho SD (B), T1rho skewness (C), and T1rho kurtosis (D)
in participants with benign hyperplasia and NPC. Boundaries of boxes closest to and furthest
from 0 ms indicate the 25th and 75th percentiles, respectively. The line within each box indi-
cates median values. Error bars indicate the smallest and largest values within 1.5 box lengths
of the 25th and 75th percentiles. Individual points indicate outliers. Compared with participants
with benign hyperplasia, participants with NPC had a lower T1rho mean (A), T1rho SD (B), and
T1rho skewness (C) (all, P, . 01). There were no differences between the 2 groups for T1rho kur-
tosis (D) (P¼ . 18).

Table 2: T1q measurements in stage T1 and T2–4 NPCa

T1rho Measurements Stage T1 NPCs (n= 14) Stage T2–4 NPCs (n= 29) P Value
Mean (ms) 61.94 (59.18–64.51) 62.14 (60.23–66.56) .31
SD (ms) 12.48 (11.75–14.21) 12.62 (11.91–13.88) .92
Skewness 0.59 (0.39–0.78) 0.61 (0.48–0.77) .57
Kurtosis 3.10 (2.89–3.92) 3.38 (3.02–4.16) .08

a Data are median values; data in parentheses are interquartile range. P values , .05 indicate statistical significance.

Table 3: Diagnostic performance of T1q imaging for detecting malignancy of NPC from
nasopharyngeal benign hyperplasiaa

T1rho Mean T1rho SD T1rho Skewness
AUC 0.72 (0.60–0.81) 0.95 (0.88–0.99) 0.72 (0.61–0.81)
P value .001 .001 .001
Threshold #62.70 � ms #14.50 � ms #0.57
Sensitivity (%) 58.1 88.4 48.8
Specificity (%) 90.2 95.1 90.2
PPV (%) 86.2 95.0 84.0
NPV (%) 67.3 88.6 62.7
Accuracy (%) 73.8 91.7 69.0

Note:—PPV indicates positive predictive value; NPV, negative predictive value
a Unless otherwise indicated, data in parentheses are 95% confidence intervals. P values , .05 indicate statistical
significance.
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T1r histogram and found that T1r SD and skewness were lower
in NPC than in benign hyperplasia, with low values indicating
NPC but higher values being unable to discriminate these 2 enti-
ties. Of all these measurements, the SD achieved the highest AUC.
The lower T1r SD in NPC compared with benign hyperplasia sug-
gests that this cancer is less heterogeneous than inflammation. The
use of the optimal T1r SD showed a high positive predictive value,
suggesting that the potential role of T1r imaging could be to mini-
mize false-positive findings and hence reduce the number of
patients referred unnecessarily for further examinations. The intra-
class correlation coefficients were high for all T1r measurements
with the exception of kurtosis, which had a low intraclass correla-
tion coefficient and was the only T1r measurement that did not
show a difference between the 2 groups.

A potential future role for T1r imaging in the nasopharynx is
for MR imaging screening of NPC. MR imaging detects 10%–
17% more NPCs than an endoscopic examination,31-33 but dis-
crimination of early-stage NPCs is confined to the nasopharynx
(stage T1), and benign hyperplasia can be problematic on ana-
tomic-based MR imaging sequences when the cancer involves
both sides of the nasopharynx symmetrically.19,20,34 The results of
the current study are encouraging because we found differences
in T1r measurements between NPC and benign hyperplasia.
Furthermore, there were no differences in the T1r values of stage
T1 and T2–4 NPCs, so it is probable that these results could be
applied to a screening population with early-stage disease.
However, future studies are needed to validate the findings, eval-
uate optimal thresholds, and determine whether T1r imaging
can improve on the diagnostic performance of anatomic MR
imaging sequences in NPC detection.

One advantage of using T1r imaging in MR imaging screening
is that it does not require extra hardware or an intravenous injection
of contrast. These advantages also apply to diffusion-weighted imag-
ing, which is another functional MR imaging sequence that has
shown promise in the discrimination of malignant and benign tissue

in the head and neck.35-37 However, susceptibility artifacts can limit
the application of diffusion-weighted imaging.35 This image distor-
tion can be mitigated by a fast spin-echo acquisition, but this
results in significant loss of signal-to-noise-ratio efficiency com-
pared with an echo-planar imaging acquisition, often leading to a
longer scan time. On the other hand, there is less image distortion
from B0 field inhomogeneities in T1r imaging. This is achieved
using an adiabatic continuous wave constant amplitude spin-lock
to ensure that all spins are well-locked along the effective spin-lock
field, even in the presence of B1 radiofrequency and B0 field
inhomogeneities.22,23

This study had several limitations. First, it did not correlate T1r
imaging with biologic characteristics, so the underlying biologic fac-
tors contributing to the T1r values in the head and neck remain
unclear. Second, most participants with NPC referred to MR imag-
ing for staging had already undergone a nasopharyngeal biopsy.
This scenario is unavoidable, but to minimize the potential influ-
ence of a biopsy on the T1r measurement, any foci of hemorrhage
were excluded when contouring the primary tumor. Third, while
obvious cysts can be excluded from the contoured region, very
small cysts of 1–2mm, which are more commonly seen in benign
hyperplasia, cannot be excluded from the analysis. Fourth, this
study did not analyze the reproducibility of T1r imaging in the
head and neck, but previous studies have reported high reproduci-
bility of T1r imaging in other tissue.38,39 Furthermore, with an adi-
abatic continuous wave constant amplitude spin-lock, the spins are
locked at a tilted angle from the transverse plane during the spin-
lock, which results in T1 contamination of the T1r measure-
ments.23 The level of T1 contamination depends on the B0 field
inhomogeneities and the B1 amplitude of the spin-lock radiofre-
quency pulse or the frequency of the spin-lock. In our previous
study,23 we reported that the maximum error of T1r quantification
due to this effect is within 4% at a frequency of spin-lock of 500Hz
and a maximum B0 field inhomogeneity of 100Hz, but the maxi-
mum error at this site is unknown.

CONCLUSIONS
There are quantitative differences in the T1r measurements of
normal, malignant, and benign tissue in the head and neck. T1r
imaging, therefore, has the potential to be used to identify malig-
nant tumors. This is a new area for cancer research, and further
studies are needed to validate these findings.
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