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ORIGINAL RESEARCH
ADULT BRAIN

Imaging-Based Algorithm for the Local Grading of Glioma
E.D.H. Gates, J.S. Lin, J.S. Weinberg, S.S. Prabhu, J. Hamilton, J.D. Hazle, G.N. Fuller, V. Baladandayuthapani,

D.T. Fuentes, and D. Schellingerhout

ABSTRACT

BACKGROUND AND PURPOSE: Gliomas are highly heterogeneous tumors, and optimal treatment depends on identifying and locat-
ing the highest grade disease present. Imaging techniques for doing so are generally not validated against the histopathologic crite-
rion standard. The purpose of this work was to estimate the local glioma grade using a machine learning model trained on
preoperative image data and spatially specific tumor samples. The value of imaging in patients with brain tumor can be enhanced
if pathologic data can be estimated from imaging input using predictive models.

MATERIALS AND METHODS: Patients with gliomas were enrolled in a prospective clinical imaging trial between 2013 and 2016. MR
imaging was performed with anatomic, diffusion, permeability, and perfusion sequences, followed by image-guided stereotactic bi-
opsy before resection. An imaging description was developed for each biopsy, and multiclass machine learning models were built
to predict the World Health Organization grade. Models were assessed on classification accuracy, Cohen k , precision, and recall.

RESULTS: Twenty-three patients (with 7/9/7 grade II/III/IV gliomas) had analyzable imaging-pathologic pairs, yielding 52 biopsy sites.
The random forest method was the best algorithm tested. Tumor grade was predicted at 96% accuracy (k 4 0.93) using 4 inputs
(T2, ADC, CBV, and transfer constant from dynamic contrast-enhanced imaging). By means of the conventional imaging only, the
overall accuracy decreased (89% overall, k 4 0.79) and 43% of high-grade samples were misclassified as lower-grade disease.

CONCLUSIONS:We found that local pathologic grade can be predicted with a high accuracy using clinical imaging data. Advanced
imaging data improved this accuracy, adding value to conventional imaging. Confirmatory imaging trials are justified.

ABBREVIATIONS: DCE 4 dynamic contrast-enhanced; Ktrans 4 transfer constant from dynamic contrast-enhanced imaging; NAWM 4 normal-appearing
white matter; ROC 4 receiver operating characteristic; TIC 4 T1 post-gadolinium; WHO 4 World Health Organization; IDH 4 Isocitrate dehydrogenase

G liomas are the most common central nervous system malig-
nancy. They are graded according to the World Health

Organization (WHO) grading scale, which represents the overall
malignant potential of the tumor.1 The difference in prognosis
for gliomas varies with grade, from 5–12 years (WHO II) to

,14months (WHO IV),2-4 and nearly all treatment decisions
rest critically on the grade of the disease.

In routine clinical care, the overall grade of a tumor is
assigned as the highest grade found in $1 small biopsy sam-
ple. Thus, it is crucial that these samples represent the highest
grade present within the tumor so that patients with high-
grade disease are not “undergraded.” Several studies have
highlighted the intratumoral heterogeneity of gliomas,5,6

which makes sampling the highest grade areas of the tumor a
challenging task. The problem of undergrading can occur in
as high as 30% of cases.7
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There is a gap in our knowledge regarding the use of imaging
to identify the highest grade portions of gliomas on the local scale.
In this study, we sought to measure the strength of imaging corre-
lations with WHO grade on a per-biopsy level. Our goal was to
estimate the WHO pathologic grade based on imaging data input.

Our study is characterized by the use of the latest imaging
technologies, state-of-the-art surgical and neuropathologic tech-
niques, and very close spatial imaging-pathologic correlations.
We found that imaging data can predict tumor grade to clinically
useful accuracies and that advanced imaging (perfusion, perme-
ability, and diffusion) adds value to conventional imaging and
improves the accuracy of grade estimates.

MATERIALS AND METHODS
Patients
Data were acquired in a prospective clinical imaging trial (clini-
caltrials.gov, NCT03458676), for which this article serves as an
interim report. The study was approved by the University of
Texas MD Anderson Cancer Center institutional review board,
complied with all Health Insurance Portability and Account-
ability Act regulations, and required informed consent of each
participant. We recruited from the pool of previously untreated
adult patients with gliomas scheduled for surgical resection in the
neurosurgical service at our institution. Patients for whom MR
imaging or intravenous contrast was contraindicated were
excluded from the study. We previously reported a study estimat-
ing the cellular proliferation marker Ki-67 in this same patient
population.8 The current study is based on a separate analysis
using a different histologic outcome measure, tumor grade.

Biopsy Sites: Selection and Pathology Analysis
Biopsy target locations were planned before the operation and
used either conventional (areas of contrast enhancement) or
advanced imaging features (high CBV and/or the transfer constant
from dynamic contrast enhanced imaging [Ktrans] and/or low
ADC) to locate sites of suspected high-grade disease. At least 2 bi-
opsy sites were prospectively located before an operation. Biopsy
sites were subject to surgeon approval and could be modified as
surgically dictated, provided that the altered coordinates were
documented. During craniotomy, a neurosurgeon collected$1 bi-
opsy using a stereotactic technique before starting resection. As
the samples were collected, coordinates of the sampling location
were recorded using neuronavigation software (“iPlan”, Brainlab,
Munich, Germany). This allowed precise, unambiguous identifica-
tion of the sampling location on the preoperative imaging.9 Tissue
specimens were sectioned and stained using H&E. A board-certi-
fied neuropathologist graded each sample independently accord-
ing to theWHO criteria while blinded to the imaging data.

Although our patients were evenly distributed among final
WHO grades II–IV and biopsies were targeted toward areas of
increased malignancy, we ultimately collected relatively few
high-grade samples. For statistical reasons, we further grouped
our samples into 3 categories: normal tissue; lower grade, com-
posed of grade II samples; and higher grade, consisting of
grouped grades III and IV samples. Isocitrate dehydrogenase
(IDH) mutation status was not considered when grouping sam-
ples into lower- and higher-grade groups.

Imaging
All patients were scanned on a Signa HDxt or Discovery MR750
3T (GE Healthcare, Milwaukee, Wisconsin) clinical scanner
using an 8-channel head coil. We collected conventional ana-
tomic MR imaging sequences such as T1-weighted, T1-postgado-
linium (T1C), T2-weighted, susceptibility-weighted angiography
(SWAN) and T2 FLAIR, as well as advanced diffusion-weighted
(DWI/DTI), DSC, and dynamic contrast-enhanced (DCE)
sequences. The advanced imaging series were processed into
parametric or pharmacokinetic maps using the Advantage
Workstation (Version 4.5; GE Healthcare) and NordicICE
(NordicNeuroLab, Bergen, Norway). Specific acquisition param-
eters are given in On-line Tables 1 and 2.

Diffusion-weighted images (4 b-values from 0 to 2000) were
processed to maps of ADCs and exponential ADC and diffusion
tensor imaging (27 encoding directions) provided maps of frac-
tional anisotropy. DSC and DCE imaging used separate boluses
of 0.1mmol/kg of gadolinium contrast at 5mL per second. The
DCE bolus served as a preload for DSC imaging and was used for
T1 postcontrast imaging. DCE time-series were processed into
transfer constants and voxel fractions (Ktrans, kep, vp, ve). We also
computed slopes (wash-in, wash-out), TTP, peak enhancement,
and curve area voxelwise from the time-series. DSC data were
similarly processed into maps of relative CBF and CBV, delay
time and MTT, and leakage parameter with a cutoff of 0.01. We
did not apply motion correction and spatial or temporal smooth-
ing to DSC or DCE time-series before processing.

Brain-extracted images were coregistered using rigid (6 df),
followed by affine (12 df) mutual information–based registra-
tion.10 The T2-weighted image was used as the reference for
each patient. Anatomic images were normalized using ROIs
manually placed in CSF, deep GM, or normal-appearing white
matter (NAWM). Each image was linearly scaled so that the
darkest and brightest ROIs had mean intensities of 0 and 1,
respectively. For example, each patient’s T2-weighted image
was independently scaled to have a mean WM intensity of 0
and CSF intensity of 1. We found that this scaling greatly
reduced interpatient variability.11 DWI, DTI, DSC, and DCE
quantitative parameters were used without normalization.

We recorded the average intensity in a 5-mm diameter
spheric VOI centered on the biopsy coordinates for each sam-
ple. Ultimately, each sample had 23 imaging values associated
with it (On-line Table 3), one for each imaging parameter. We
also selected coordinates mirrored across the midline contralat-
eral to each biopsy in NAWM to represent normal tissue. An
oncologic neuroradiologist reviewed these placements to
ensure that they were completely in NAWM. Corresponding
imaging values were extracted for these “virtual biopsy” sites to
serve as controls for tumor biopsies.

These contralateral virtual biopsies are intended to help the
model discern the imaging features of normal brain versus tu-
mor, and omitting these might yield a model good only for dis-
tinguishing grades from one another, but failing to distinguish
normal brain from tumor (On-line Table 4). The ability to dis-
tinguish normal brain from tumor and various local grades
from one another stands as equally desirable for clinical appli-
cations. Clearly, the best solution would be to acquire real,
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histologically normal samples from peritumoral and normal
brain regions, but ethical constraints prohibited us.

Modeling of Image Features to Predict Tumor Grade
Modeling and analysis were implemented using R, Version
3.4.2.12 We used random forest,13 support vector machine, and
neural network classifiers for prediction of multiclass output of
tumor grade (normal, lower-grade, higher-grade). The results
of all models are given in On-line Table 5, and descriptions of
model parameters are given in On-line Table 6. Although deep
convolutional networks are powerful models for image-based
prediction tasks, we elected not to use one in this case. The
strength of this dataset is in the spatial specificity of the tissue
samples, which means our training data are only the very small
region around each sampling location. This is generally incom-
patible with convolutional networks, which require either large
segmented regions or whole-image classifications for training.
Our models were assessed using five-fold cross-validation, with
the proportion of samples of each grade maintained between
each fold. The classifier performance was measured using the
average classification accuracy of the model over the testing set
(20% of biopsy data not used for model training) and the
Cohen k .14 The k metric measures the accuracy relative to the
expected agreement based on random guessing. Similarly to

overall accuracy, k ¼ 1 for perfect classification. However,
unlike accuracy, k ¼ 0 means that the classifier is no better
than chance, even though some samples may be correctly clas-
sified (for an observed proportion of agreement pobs and
expected agreement pexp: k ¼ pobs � pexp

1� pexp
).

We focused our presentation on the results of our best-per-
forming approach, the random forest. Performance of other mod-
els tested is listed in On-line Table 5. We found that an accurate
model could be made using only 1 imaging parameter from each
family of sequences. In each fold of cross-validation, we selected
the best predictor from each family and used that reduced 4-vari-
able set to make predictions on the testing set. We also aggregated
the dominant imaging predictors into a single fixed variable set
and repeated the cross-validation to estimate the performance of
this final fixed model. Finally, we repeated the variable selection
and cross-validation using conventional imaging only to investi-
gate the benefit of diffusion, perfusion, and permeability imaging.

The primary benefit in predicting sample grades is localizing
areas of high-grade disease. We further analyzed the ability of
the classifier to separate the higher-grade samples from the
pooled normal and lower-grade samples using receiver operat-
ing characteristic (ROC) and precision recall curves.

RESULTS
Patients
Thirty-one patients were initially recruited; surgical complexity
prohibited tissue harvest in 5 cases. Among the 26 patients with
successful tissue harvest, a total of 64 biopsies were collected.
Additional patient exclusion occurred due to missing DCE
imaging (1 patient, 3 biopsies) and missing histologic values
due to lack of analyzable tissue (2 patients, 4 total biopsies).
Further exclusion of biopsies occurred due to poor VOI place-
ment (n 4 3 biopsies), insufficient quality of tissue for patho-

logic analysis (n 4 1), and missing
grades (n 4 1). This left 23 patients,
including 7 patients with grade II, 9
with grade III, and 7 with grade IV
gliomas (final clinical grade) for use
in the final analysis, with 52 real
biopsies and 52 paired virtual biop-
sies. When a biopsy site was ex-
cluded, its corresponding imputed
virtual biopsy site was also excluded.
Full details of sample exclusions are
given in the On-line Figure.

Among the 23 patients used in
the final analysis, 11 (25 samples)
had IDH wild-type tumors and the
remainder (12 patients, 27 samples)
had IDH-mutant tumors. MGMT pro-
moter methylation was present in 21/
23, and 1p/19q codeletion, in 9/23.

Pathology and Imaging Analysis
Samples were graded II–IV using the
WHO criteria on a per-biopsy basis
(ie, only features of that particular

Table 1: Enhancement status—the overall enhancement charac-
teristics of each tumor separated by clinical WHO grade on a
patient-by-patient basisa

Tumor Type
Patient Clinical Grade

II III IV
Enhancing 0 1 6
Nonenhancing 7 8 1

a As expected, grade II gliomas are nonenhancing and grade IV gliomas are almost
all enhancing.

Table 2: Enhancement status—tabulates which samples were collected from enhancing-
versus-nonenhancing regionsa

Tumor Type Sampling Region
Sample Grade (52 Total)

Normal II II/III III IV
Enhancing tumor Enhancing volume 0 4 0 2 3

Nonenhancing volume 1 4 1 0 2
Nonenhancing tumor Nonenhancing volume 2 31 2 0 0

a In this table, the grade represents the individual grade of the sample, on a sample-by-sample basis, which is not
necessarily equal to the patient’s clinical grade. For enhancing tumors, about half the samples were collected from
the enhancing portion of the tumor.

Table 3: Model accuracy—accuracy for random forest models trained on conventional
(anatomic imaging) and conventional-plus-advanced (diffusion, perfusion, permeability)
imaginga

Metric Variables Conventional Conventional-Plus-Advanced
Accuracy All Variables 0.904 0.952

RF Rank 0.875 0.933
RF (fixed variables) 0.885 (T2, T1C, FLAIR, T1) 0.962 (T2, ADC, CBV, Ktrans)

k All Variables 0.822 0.912
RF Rank 0.768 0.877
RF (fixed variables) 0.788 0.930

Note:—RF indicates random forest.
a Performance using all 23 variables is compared with the performance averaged over 5 folds of cross-validation as
well as the results using a fixed-variable subset. The Cohen k is larger for more accurate models but is scaled so
that a no-information classifier would have k equal to zero.
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biopsy as judged on H&E staining were used to assign a grade to
that biopsy). Note that this research methodology is at variance
with the clinical practice of assigning a clinical grade correspond-
ing to the maximum local grade found to a patient. The per-

biopsy local grading used in this arti-
cle is different from the conventional
per-patient clinical grading. Some
biopsy samples were graded II/III as
an intermediate between grades II
and III, due to our pathologist’s clin-
ical assessment that their malignant
potential exceeded that of regular
grade II samples.15 Of the 52 real
biopsies, 3 were normal brain, 39
grade II, 3 grade II/III, 2 grade III,
and 5 grade IV. The lack of grade I
disease is expected in a nonpediatric
population. For the final analysis,
we had 55 biopsies with normal
results (3 real and 52 virtual), 42
lower-grade samples, and 7 higher-
grade samples.

Among the 23 patients, nearly all
the grade IV tumors were contrast-
enhancing and nearly all of the grade
II and III tumors were nonenhanc-
ing (see Table 1 for specifics). We
collected both lower- and higher-
grade samples in regions of contrast
enhancement. Five of 7 higher-grade
samples and 4 of 42 lower-grade sam-
ples were collected from the enhanc-
ing volume of an enhancing tumor.
Table 2 lists the number of samples of
each grade taken from regions of
enhancement. This table shows that
while enhancement is a good surro-
gate for local grade, it does not per-
fectly discriminate.

For 5 biopsies among 2 patients,
missing susceptibility-weighted angi-
ography imaging values were imputed
as the median values among the corre-
sponding real (n4 46) or virtual biop-
sies (n 4 47). All imaging sequences
were available for the remaining
patients.

Modeling Results
We trained a random forest model to
predict the grade of individual samples
using imaging values. We chose to use
the random forest because it had the
best average performance and pro-
vides some resistance to overfitting.13

Because many of the 23 parameters,
especially those from the same family of imaging sequences, con-
tain mostly redundant information, we used only the top predic-
tor from each family for predictive modeling. We repeated this
procedure for each fold of cross-validation (On-line Table 7) and

Table 4: Model predictions by sample grade—confusion matrix for the random forest
model trained on 4 fixed variablesa

Predicted
Reference

Normal Lower Higher Total
Conventional plus advanced

Normal 53 1 0 54
Lower 2 41 1 43
Higher 0 0 6 7
Total n 4 55 n 4 42 n 4 7 104

Conventional only
Normal 52 5 0 57
Lower 3 36 3 42
Higher 0 1 4 5
Total n 4 55 n 4 42 n 4 7 104

a A perfect classifier would have all entries along the main diagonal. The random forest using conventional-plus-
advanced imaging had 96.2% (100/104) overall accuracy with k = 0.930, whereas the random forest using only con-
ventional imaging had 88.5% (92/104) accuracy with k 4 0.788. The conventional-only classifier also misclassified
43% (3/7) of high-grade samples.

FIG 1. Synergistic properties of imaging sequences with “orthogonal” information. Two represen-
tatives of the variable inputs used to generate the grade map seen in Fig 3 are shown. The scatter-
plot shows the ADC (square millimeters/second) from DWI and Ktrans (minute�1) from DCE for
normal, lower-grade, and higher-grade samples. The normal samples are further identified as
being either virtual biopsies in NAWM or nontumor real tissue samples as designated by a pathol-
ogist. Each imaging parameter roughly separates 2 of the classes as seen by histograms.
Combined, they form 3 distinct clusters that are identified by the random forest. Ktrans alone dis-
tinguishes lower- and higher-grade samples but does not differentiate lower-grade tumor sam-
ples from those of healthy controls, as shown by the degree of overlap in the left density plot.
However, the ADC from diffusion-weighted imaging separates these healthy controls from tumor
samples but differs little among different grades (lower density plot). Combining these success-
fully identifies all 3 sample grades (normal, lower-grade, and higher-grade) simultaneously. This
separation is further increased by adding CBV and T2-weighted signal intensity.
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selected the final 4-variable predictor set on the basis of consen-
sus. This 4-variable set was T2, ADC, CBV, and Ktrans.

With these 4 inputs, the random forest correctly classified the
grade of individual samples with 96% accuracy (Cohen k 4

0.930) as shown in Table 3. Furthermore, none of the high-grade
biopsies were classified as normal brain or vice versa (Table 4).
The positive predictive value for high-grade disease is 1.0 (all pre-
dictions of high-grade are correct), and the negative predictive
value is 0.990. Fig 1 intuitively shows how the combination of
imaging from different families like diffusion and DCE are able to
separate samples of different grades. The random forest leverages
this type of separation to classify unknown samples. The normal,
lower-, and higher-grade samples separate even more with the
addition of conventional (T2) and perfusion (CBV) imaging.

By means of conventional imaging only (T2, T1C, FLAIR,
T1), the model still managed to achieve 88.5% accuracy (k 4

0.788), but the error rate for high-grade samples was .40%
(Table 4). In other words, the conventional imaging was generally
unable to differentiate high-grade disease from low-grade disease
using only anatomic MR imaging sequences. This issue highlights

the importance of advanced and functional imaging in determin-
ing the grade of individual samples. For reference, a classifier
with no information would achieve 53% accuracy by classifying
every sample as normal, the most frequent class.

While our patient population is fairly well-distributed among
clinical WHO grades II, III, and IV, the higher-grade samples
represent a minority in the sample population. To analyze the
ability of the model to specifically identify higher-grade disease in
light of this class imbalance, we analyzed the ROC and precision-
recall curves for the final models. Specifically, we used the esti-
mated probability of each model that a given sample was higher-
grade (WHO grade III or IV) disease to create a binary output.
The areas under the ROC curves were very high for both conven-
tional and conventional-plus-advanced models at 0.94 and 0.99,
respectively (Fig 2). However, the area under the precision-recall
curve was considerably lower for the conventional-only model at
0.75 versus 0.91 for the conventional-plus-advanced model. The
decreased precision or positive predictive value reiterates the dif-
ficulty for the conventional-only model in identifying higher-
grade disease.

FIG 2. ROC and precision-recall (PR) curves for distinguishing high-grade samples versus normal tissue and low-grade disease samples. Plots in
the left columns are based on the predictions from the random forest model using conventional and advanced imaging, whereas plots on the
right are based on models using conventional imaging only. Although the area under the ROC curves is similar, the area under the PR curve is
much smaller for conventional imaging only. The diagonal lines on the ROC curves and horizontal dashed lines on PR curves show the perform-
ance of a no-information or random classifier. Conv indicates conventional; adv, advanced; AUC, area under the curve.
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Virtual biopsy regions in contralateral normal-appearing
white matter constituted a majority of the normal tissue class and
half of the overall training data. To ensure that this did not
unnecessarily bias the model against normal samples in the peri-
tumoral region, we re-trained the model using only the real bi-
opsy samples and found that the model retained a high overall
accuracy (.90%) and 86% sensitivity to high-grade disease.
More details are provided in On-line Table 4.

DISCUSSION
We found the following: 1) imaging could be used to predict the
WHO grade in glioma to clinically useful accuracies using a
random forest model, 2) advanced imaging (diffusion, perfu-
sion, and permeability) outperformed conventional anatomic
imaging alone, 3) the best anatomic imaging sequences for esti-
mating grade were T2-weighted, FLAIR, and T1-weighted both
pre- and postcontrast, 4) the best overall imaging sequences for
estimating grade were T2-weighted, ADC, CBV from DSC, and
Ktrans, and 5) the algorithm developed could be used to derive
graphic grade maps to visually present the information for
imaging guidance.

Image-guided brain tissue sampling is costly and technically
demanding. Furthermore, imaging technology development is
rapid, meaning the literature on tissue correlations between mod-
ern imaging sequences and neuropathologic techniques is contin-
ually evolving.16-19 Previous studies include predicting likely
areas of infiltrative tumor and recurrence in glioblastoma using
support vector machines and MR imaging.20 However, the
authors acknowledged that a limitation of their work was the lack
of histopathologic validation. Indeed, many studies correlating
image-based metrics with glioma grades are limited by this heter-
ogeneity and lack of local histologic validation.19,21,22 In other
work, Barajas et al23 demonstrated that pathologic features of
aggressiveness correlated with increased relative CBV and
decreased relative ADC. Other recent work using hand-crafted

image features or neural networks to
predict IDH-mutation status or gli-
oma grade shows good overall accu-
racy but only evaluates the tumor as
a whole and provides no regional
information.24,25

We constructed a random forest
model using imaging inputs to pre-
dict the individual WHO grade of
brain biopsies with reasonable suc-
cess. The ranking of imaging input
also demonstrates which imaging
sequences were most valuable in
predicting clinical information. Our
work agrees with the literature show-
ing that perfusion, Ktrans,26 and ADC
can all distinguish low- and high-
grade tumors.27,28 CBV has also been
shown to better differentiate tumor
grades compared with conventional
MR imaging.19,29,30

Our best cross-validated model
for predicting tumor grade was extrapolated voxelwise across
the whole-brain volume. This extrapolation provided a map of
normal, lower-grade, and higher-grade disease for each patient
using only a small number of imaging inputs (Fig 3). For the
high-grade glioblastoma case shown, we can see a central
region of high-grade disease surrounded primarily by low-
grade disease. Indeed, one of the biopsies from this patient near
the tumor periphery was graded as WHO grade II, while
another sample near the center of the tumor was graded as
WHO grade IV.

Maps generated with these models contain some obvious
errors (higher-grade assignment in the sulci and sinuses). A
skilled clinician using such maps should not find such errors
confusing and would be able to recognize these as artifacts of
processing. Our future work will remove these spurious signals.
While voxelwise validation of maps is impractical, the predictive
accuracy at known biopsy sites is sufficient justification for
use as a clinical tool to guide procedures like biopsies. While we
see qualitative agreement between predicted regions of high-
grade disease and contrast enhancement, which is the clinical
standard for targeting biopsies, in our data, the contrast-
enhanced T1 was not sufficient to discriminate between all
high- and low-grade samples. This result suggests that the pre-
dictive models may be able to identify high-grade disease out-
side the enhancing volume.

As of 2016, the WHO classification of gliomas heavily incor-
porates genetic and molecular factors.1 Factors like IDH1 muta-
tion and MGMT promoter methylation are known to be highly
prognostic.31 However, many of these prognostic factors, particu-
larly IDH1 mutation, are homogeneously expressed throughout
the tumor. Thus, there is no risk of undersampling IDH1 muta-
tion status with clinical biopsy. Our work focuses on the hetero-
geneous tissue characteristics that are at risk for undersampling,
hence, our categorization of lower- and higher-grade samples
based on histologic grading.

FIG 3. A clinically relevant map of the predicted tumor grade using the highest probability grade and
smoothed by a median filter (2-voxel radius) superimposed on a T2-weighted image. Green, blue, and
red correspond to predicted normal tissue and lower-grade and higher-grade disease, respectively.
Shown on the left is a WHO grade II oligodendroglioma with a T2-weighted image for reference, and
on the right is a WHO grade IV glioblastoma with a T1 postcontrast image for reference (upper part).
The classifier identifies the oligodendroglioma as containing only lower-grade disease, while the glioblas-
toma has a central region of higher grade near the enhancing-focus disease surrounded by lower-grade
disease. Areas of normal brain falsely identified as tumor (ie, sulcus) are unlikely to confuse a clinician.
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Limitations
Although our patients were evenly distributed among final WHO
grades II–IV and biopsies were targeted toward areas of increased
malignancy, we collected relatively few high-grade samples. In
our final analysis, we combined WHO grade III and IV samples
into a higher-grade category as an attempt to balance our dataset.
This feature removes the ability to predict grade III versus IV but
still allows us to separate high-grade from low-grade disease. The
lack of high-grade samples also highlights the potential for under-
grading high-grade tumors using a single biopsy sample. Future
trials and larger datasets would allow finer distinctions like these.

The use of virtual biopsies in contralateral NAWM is a limita-
tion, and while we would clearly prefer to have normal histologic
samples and imaging parameters sufficient to balance out our tu-
mor histology data, we faced ethical constraints. We chose con-
tralateral regions because in the absence of true histologic
validation, they had the highest likelihood of truly being normal.
There very likely is tumor-infiltrated brain that appears normal
on imaging and the opposite case of imaging of abnormal brain
that actually is nontumoral; but reliably characterizing these cases
will require a much greater number of well-chosen biopsies,
something we would like to address in future work, using our
current data as a springboard.

Future Work
In addition to improved discriminatory ability among sample
grades, we believe that “grade maps” like Fig 3 could provide a
useful tool for surgical guidance. Such maps could help surgeons
identify areas of highest grade20 or identify as eloquent that only
containing low-grade disease and could be less aggressively
treated to avoid neurologic deficits. These models could also be
used to help plan biopsies7 or radiation therapy, specifically by
developing probability maps for tumor presence or severity,32,33

especially in the peritumoral brain zone.34 Prospective evaluation
of the derived models in further imaging and surgical trials is jus-
tified, along with further imaging-directed biopsy trials to refine
our results even more in the peritumoral area.

CONCLUSIONS
Individual biopsy grades can be predicted to useful accuracies
using noninvasive MR imaging. Advanced imaging (diffusion,
perfusion, and permeability) improves predictive results over
conventional imaging alone.
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