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REVIEW ARTICLE

Artificial Intelligence and Acute Stroke Imaging
J.E. Soun, D.S. Chow, M. Nagamine, R.S. Takhtawala, C.G. Filippi, W. Yu, and P.D. Chang

ABSTRACT

SUMMARY: Artificial intelligence technology is a rapidly expanding field with many applications in acute stroke imaging, including
ischemic and hemorrhage subtypes. Early identification of acute stroke is critical for initiating prompt intervention to reduce mor-
bidity and mortality. Artificial intelligence can help with various aspects of the stroke treatment paradigm, including infarct or hem-
orrhage detection, segmentation, classification, large vessel occlusion detection, Alberta Stroke Program Early CT Score grading,
and prognostication. In particular, emerging artificial intelligence techniques such as convolutional neural networks show promise in
performing these imaging-based tasks efficiently and accurately. The purpose of this review is twofold: first, to describe AI meth-
ods and available public and commercial platforms in stroke imaging, and second, to summarize the literature of current artificial
intelligence–driven applications for acute stroke triage, surveillance, and prediction.

ABBREVIATIONS: AI ¼ artificial intelligence; ANN ¼ artificial neural network; AUC ¼ area under the curve; CNN ¼ convolutional neural network; DL ¼
deep learning; ICC ¼ intraclass correlation coefficient; ICH ¼ intracranial hemorrhage; LVO ¼ large vessel occlusion; ML ¼ machine learning; MRP ¼ MR perfu-
sion; RF ¼ random forest; SVM ¼ support vector machine

Stroke is the second leading cause of death worldwide with
an annual mortality of about 5.5 million.1,2 In the United

States, nearly 800,000 people have a stroke annually, and the
economic burden of stroke is estimated at $34 billion per
year.3 Morbidity is high, with more than half of patients with
stroke left chronically disabled.2 Neuroimaging is an impor-
tant tool for the detection, characterization, and prognostica-
tion of acute strokes, including ischemic and hemorrhagic
subtypes. Artificial intelligence (AI) technology is a rapidly
burgeoning field, providing a promising avenue for fast and ef-
ficient imaging analysis.4 AI applications for imaging of acute
cerebrovascular disease have been implemented, including
tools for triage, quantification, surveillance, and prediction.
This review aims to summarize the current landscape of AI-
driven applications for acute cerebrovascular disease assess-
ment focusing primarily on deep learning (DL) methods.

OVERVIEW OF AI
Although AI, machine learning (ML), and DL are used inter-
changeably, these in fact represent subdisciplines. Specifically, DL
is a subset of ML, and ML is a subset of AI (Fig 1). Broadly, AI
uses computers to perform tasks that typically require human
knowledge. ML, a subset of AI, uses statistical approaches to ena-
ble machines to optimize outcome prediction as they are exposed
to data and train computers for pattern recognition, a task gener-
ally requiring human intelligence.5 ML offers several potential
advantages over visual inspection by human experts, including
objective and quantitative evaluation, the ability to detect subtle
voxel-level patterns, speed, and large-scale implementation.
Feature selection, classifier type, and DL are key considerations
for the application of ML techniques to imaging.

Feature Selection
Just as a radiologist summarizes an image with a few key descrip-
tors (eg, hemorrhage volume), ML algorithms attempt to do the
same with a matrix of voxels. Different feature selection methods
can identify a subset of variables to develop a predictive model.
Selecting relevant features is important for the explainability,
speed, and cost efficiency of a model and to avoid overfitting.6

Classifier Type
After each image is converted into numeric descriptors, a method
is chosen to leverage this information to predict 1 of multiple
potential classes. For certain cases, even very simple models such
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as basic logistic or linear regression could be effective.7 However,
if nonindependent, nonlinear relationships are expected between
the various chosen features, a more complex model is required.
Many such ML classifiers exist, and the most popular include
random forest (RF), support vector machine (SVM), k-nearest
neighbor clustering, and neural networks.8 In general, these tech-
niques are modeled by an underlying finite number of adjustable
parameters. As a given set of features is passed through the
model, these adjustable parameters act to convert the input
descriptors into a predicted output class. Starting with randomly
initialized parameters, a series of iterative updates is performed
until an accurate mapping between numeric features and correct
class is achieved, thus “training” the MLmodel.9

Deep Learning
DL through neural networks is distinguished by the ability to in-
dependently learn abstract, high-order features from data without
requiring feature selection. Artificial neural networks (ANNs) are
a subtype of DL that mimic biologic neurons and are composed of
an input, 1 or more hidden layers, and an output. Generally, in
computer vision, convolutional neural networks (CNNs) are most
successful and popular for image classification in medical imaging.
CNNs represent all recent winning entries within the annual
ImageNet Classification challenge, consisting of more than 1 mil-
lion photographs in 1000 object categories, with a 3.6% classifica-
tion error rate.10,11 CNNs are distinguished from traditional ML
approaches by automatically identifying patterns in complex

imaging datasets, thus combining both feature selection and clas-
sification into 1 algorithm and removing the need for direct
human interaction during the training process. Recent advances
in CNNs have achieved human accuracy in identification of every-
day objects such as cats and dogs, which had previously been
impossible to model using rigid mathematical formulas.12 CNNs
have already shown promise in the detection of pulmonary nod-
ules,13 colon cancer,14 and cerebral microbleeds.15

EVALUATION OF AI PERFORMANCE
Table 1 details performance metrics and limitations of AI methods.

Accuracy
It is imperative that evaluation of ML models assess the accuracy of
algorithms. Often, when testing large numbers of potential features,
a few numeric descriptors meet the threshold for statistical signifi-
cance between 2 target classes. However, P values are more often a
reflection of the underlying power (sample size) of an experiment
and may or may not relate to the clinical significance of the identi-
fied difference in features. As a result, it is critical not only to prove
that a difference in features exists but also to assess the sensitivity,
specificity, and accuracy of the feature(s) to predict a given end
point. For classification, receiver operating characteristic curves can
evaluate a model’s performance, with the area under the curve
(AUC) representing an aggregate measure for performance across
all possible classification thresholds of a receiver operating charac-

teristic curve. For segmentation analy-
sis, Dice similarity coefficients and
Pearson correlation coefficients are typ-
ically used. The Dice score measures
the spatial overlap between the man-
ually segmented and neural network-
derived segmentations. Dice scores
range from 0 (no overlap) to 1 (perfect
overlap) and are commonly used to
evaluate segmentation performance.16

Limitations
ML and DL approaches have limitations
that should be considered. First, the de-
velopment of algorithms requires data
sets that are large, organized, well-classi-
fied, and accurate. Interpretability is
challenging, especially for DL algo-
rithms. To mitigate this “black box”

Table 1: Machine learning performance metrics and limitations
Performance metrics Classification Sensitivity (recall): TP/(TP 1 FN)

Specificity (true-negative rate): TN/(TN 1 FP)
Accuracy: number of correct predictions/total predictions
AUC: plot of true positive rate (sensitivity) against false positive rate (1 – specificity)

Segmentation Dice similarity coefficient: overlap of 2 samples
Pearson correlation coefficient: strength of linear relationship between 2 variables

Limitations and ways to
address them

Requires large datasets: multisite collaboration, open-source datasets
Interpretability: saliency maps
Overfitting: more training data, regularization, and batch normalization

Note:—FP indicates false positive; FN, false-negative; ROC, receiver operating characteristic; TN, true-negative; TP, true positive.

FIG 1. AI uses computers to mimic human intelligence. ML is a subset of AI, and DL is a subset
of ML.
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effect, explainable AI models incorporate tools such as saliency
maps. Overfitting is a limitation for ML, when a model mistakenly
learns the “noise” instead of the “signal” in a training dataset and
thus does poorly with unseen data and is limited in generalizabil-
ity.17 More training data, regularization, and batch normalization
are ways to mitigate overfitting. Differences in image acquisition
and data storage among institutions and difficulties in sharing data
are obstacles to collecting enough data to obtain useful models.
Standardization of imaging methods and open-source data collec-
tion can address this issue. Additionally, several proprietary ML
software platforms have recently been introduced in the market that
incorporate various aspects of the stroke pathway into their algo-
rithms; however, comparison and validation of their performance
are still necessary to ensure their robustness in routine use.18

Despite limitations, ML remains a powerful tool for detection and
management of stroke and hemorrhage.

AI PLATFORMS IN STROKE AND HEMORRHAGE
Open-Source Datasets
Large datasets are required for ML algorithms to perform opti-
mally. However, the availability of high-quality large-scale data
remains a challenge given barriers in data sharing across institu-
tions, the complexity of building imaging processing pipelines, and
the time and cost of data annotation. To address these challenges,
many publicly available imaging datasets are now available for ML
in stroke (Table 2).19-24 These datasets are valuable because they
are already anonymized, postprocessed, and annotated, and they
can be used for testing and comparing algorithms in diagnosing is-
chemic stroke and hemorrhage. Many of these datasets are initi-
ated as AI challenges such as the RSNA (Radiology Society of
North America) Head CT Challenge for Hemorrhage, ASFNR
(American Society of Functional Neuroradiology) Head CT
Challenge for Ischemic and Hemorrhagic Stroke, and ISLES

Table 2: Open-source datasets for stroke and hemorrhage

Dataset
Cerebrovascular

Disease Annotated Data Number of Scans
Imaging

Technique
Anatomical Tracings of
Lesions After Stroke
(ATLAS)19

Subacute or chronic
ischemic strokes

Manually segmented stroke lesions 304 T1-weighted MR
imaging

CQ50020 Hemorrhage Hemorrhage, subtype, location, and
associated hemorrhage findings

491 CT

RSNA Brain Hemorrhage
CT Dataset21

Hemorrhage Hemorrhage, subtypes 874,035 CT

Ischemic Stroke Lesion
Segmentation (ISLES)
2016–201722

Ischemic stroke Perfusion and diffusion MR imaging
of patients with stroke and clinical
outcomes

35 training and 19 testing
(2016); 43 training and 32
testing (2017)

MR imaging,
MRP

ISLES 201823 Ischemic stroke CT and perfusion of patients with
stroke

94 labeled training images
and 62 unlabeled testing
images

CT, CTP

Note:—MRP indicates MR perfusion.

Table 3: Commercially available software platforms and their applicationsa

Software Applications Machine Learning Algorithm Imaging Technique
Aidoc ICH: identifies ICH, triage, and notification DL CT

LVO: identifies LVO, triage, and notification DL CTA
CTP: orchestration of third-party perfusion results Other CTP

Avicenna.AI CINA ICH: identifies ICH, triage, and notification DL CT
CINA LVO: identifies LVO, triage, and notification DL CTA
CINA ASPECTS: ASPECTS scoring; provides heat map DL CT

Brainomix e-Blood: identifies and quantifies ICH volume with mask overlay DL CT
e-ASPECTS: identifies ASPECTS, voxelwise map of early ischemic
change, and core infarct volume

Predominantly ML CT

e-CTA: identifies and notifies LVO, collateral score, and collateral
vessel attenuation; voxelwise map of collateral deficit

Combination of DL and
traditional ML

CTA

e-ASPECTS HDVS: identifies and measures hyperattenuated vessel DL CT
e-Mismatch: identifies mismatch on CTP and MR imaging Deconvolution CTP, MR imaging, MRP

RapidAI Rapid ICH: identifies and classifies ICH DL CT
Rapid ASPECTS: identifies ASPECTS, measurement, and scoring RF CT
Rapid CTA: identifies and notifies LVO and collateral vessel
attenuation

Other CTA

Rapid CTP: identifies mismatch on CTP, collateral maps, and
scoring

Other CTP

Rapid MR: identifies mismatch on MR, collateral maps, and scoring Other MR imaging, MRP
Viz.ai Viz ICH: identifies and triages ICH DL CT

Viz LVO: identifies and triages LVO DL CTA
Viz CTP: automated perfusion color maps and calculations DL CTP

Note:—HDVS indicates hyperattenuated vessel sign.
a Some, but not all, of these products have FDA, European, and/or worldwide regulatory clearance at the time of publication.
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(Ischemic Stroke Lesion Segmentation) Challenge for Ischemic
Stroke, supporting worldwide collaboration and new algorithm
development.

Commercially Available Software Platforms
Increasingly, commercially available platforms providing auto-
mated information about various components of the acute stroke
triage pathway are being integrated into routine clinical practice
and clinical trials.25-28 These tools offer fast and efficient analyses
that seek to optimize the delivery of stroke care at spoke and hub
hospitals and reduce turnaround times in the clinical workflow.29

Table 3 lists some of the most popular commercially available
stroke platforms and highlights their capabilities and AI-based
algorithms. Figs 2–6 show the various web and mobile interfaces
of these software platforms.

AI EVALUATION OF ISCHEMIC STROKE
Online Tables 1–4 provide an overview of the AI-based models of
evaluating ischemic stroke discussed in this section, including
detection and core infarct segmentation, identification of large-

vessel occlusion (LVO), Alberta Stroke Program Early CT Score
(ASPECTS) grading and additional factors in treatment selection,
and prognostication.

Detection Methods
Rapid detection of ischemic infarction is important for triaging
patients as potential candidates for thrombolysis because of the
narrow window of therapeutic efficacy. Several studies have used
ML algorithms for identification of ischemic infarction on CT or
MR imaging.

Tang et al30 developed a computer-automated detection
(CAD) scheme using a circular adaptive region of interest
(CAROI) method on noncontrast head CT to detect subtle
changes in attenuation in patients with ischemic stroke. They
found that CAD improved detection of stroke for emergency
physicians and radiology residents (AUC of 0.879 improved to
0.942 for emergency physicians and AUC of 0.965 improved to
0.990 for radiology residents) but did not improve significantly
detection for experienced radiologists who already had high stroke
detection rates.30 Another study showed that an ANN was able to
distinguish acute stroke from stroke mimics within 4.5 hours of
onset (which was verified by clinical and CT and MR imaging
data), with a mean sensitivity of 80.0% and specificity of 86.2%.31

Core Infarct Volume Segmentation
Establishing infarct volumes is important to triage patients for
appropriate therapy. AI has been able to establish core infarct vol-
umes on DWI through automatic lesion segmentation. For exam-
ple, 1 study used an ensemble of 2 CNNs to segment DWI lesions
of any size and remove false positives.32 This combined CNN
approach had a Dice score of 0.61 for small lesions (,37 pixel
size) and 0.83 for large lesions and outperformed other CNNs.32

Guerrero et al33 developed a CNN (uResNet) that segmented and
differentiated white matter hyperintensities (WMHs) caused by
chronic small-vessel disease from cortically or subcortically based
strokes. The uResNet CNN mean Dice scores were 0.7 for white
matter hyperintensities and 0.4 for strokes.33 The uResNet
slightly outperformed the DeepMedic CNN in distinguishing
white matter hyperintensities and strokes compared with expert
analysis (R2 values 0.951 and 0.791 for white matter hyperinten-
sities and strokes, respectively, using uResNet and 0.942 and
0.688 using DeepMedic).33 One limitation of the study was the
reliance on FLAIR and T1 images that do not fully account for

FIG 2. Aidoc stroke triage mobile interface. From left to right, a notification alert, a study list of cases, NCCT of an acute stroke, CTA of an LVO
of the right MCA, CTP mean transit time in the right MCA territory, and a text messaging system. Images courtesy of Aidoc.

FIG 3. Avicenna.AI DL-based ASPECTS tool demonstrating identifica-
tion of ASPECTS and a heat map overlay (white). Image courtesy of
Avicenna.AI.
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timing of stroke occurrence, and the value of uResNet in detec-
tion of acute strokes needs evaluation. The first study to use a DL
approach on CTA source images to detect acute middle cerebral
artery ischemic stroke, a 3D CNN (DeepMedic), performed with
a sensitivity of 0.93, specificity of 0.82, AUC of 0.93, and Dice
score of 0.61.34 Specificity was maximized when the contralateral

cerebral hemisphere on CTA was included, and a marginal
reduction in false positives was seen when NCCT was included in
the algorithm.34 Limitations of this CNN were its tendency to
overestimate the volume of small infarcts and underestimate large
infarcts compared with manual segmentation by expert radiolog-
ists and difficulty in distinguishing old versus new strokes.34

FIG 4. Brainomix e-CTA tool demonstrating identification and localization of an LVO of the right MCA, collateral score and collateral vessel
attenuation, and a heat map of the collateral deficit (orange). Images courtesy of Brainomix.

FIG 5. The RapidAI stroke triage or transfer mobile interface, which integrates the hub and spoke model. From left to right, ICH and ASPECTS
scoring and alerts on NCCT, LVO detection on CTA, perfusion mismatch on MR imaging or CTP with FDA mechanical thrombectomy indication,
and a mobile communication platform with “GO” notification system for rapid treatment decision making. Images courtesy of RapidAI.
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The largest cohort using CTP for core infarct determination
based on an ANN was able to accurately identify core infarct vol-
ume (AUC ¼ 0.85; sensitivity ¼ 0.9; specificity ¼ 0.62) and was
not significantly different from a model incorporating clinical
data (AUC ¼ 0.87; sensitivity ¼ 0.91; specificity ¼ 0.65).35

Although the study minimized the time between CTP and MR
imaging DWI reference standard acquisition, any time delay
between the CTP and MR imaging may have limited accurate
core infarct determination because of core expansion or reversal.
A model incorporating a U-net architecture CNN and RF classi-
fier segmented acute ischemic stroke on NCCT with high con-
cordance with manually segmented DWI core volumes (r ¼ 0.76,
P , .001) and manually segmented DWI ASPECTS scores (r ¼
�0.65, P, .001). Furthermore, the agreement approached signif-
icance when dichotomizing infarcts using a volume threshold of

70mL (McNemar test, P ¼ .11). Discrepancies in volumes were
attributed to nondetectable early ischemic findings, partial vol-
ume averaging, and stroke mimics on CT.36

Large Vessel Occlusion
Diagnosing LVO is essential for identifying candidates who could
potentially benefit from mechanical thrombectomy. On NCCT,
an SVM algorithm detected the MCA dot sign in patients with
acute stroke with high sensitivity (97.5%).37 A neural network
that incorporated various demographic, imaging, and clinical var-
iables in predicting LVO outperformed or equaled most other
prehospital prediction scales with an accuracy of 0.820.38 A
CNN-based commercial software, Viz-AI-Algorithm v3.04,
detected proximal LVO with an accuracy of 86%, sensitivity of
90.1%, specificity of 82.5, AUC of 86.3% (95% CI, 0.83–0.90; P #

.001), and intraclass correlation coefficient (ICC) of 84.1% (95%
CI, 0.81–0.86; P# .001), and Viz-AI-Algorithm v4.1.2 was able to
detect LVO with high sensitivity and specificity (82% and 94%,
respectively).39,40 No study has yet shown whether AI methods
can accurately identify other potentially treatable lesions such as
M2, intracranial ICA, and posterior circulation occlusions.

ASPECTS Grading
ASPECTS is a widely used clinical grading system for assessing
extent of early ischemic stroke on NCCT and has been used in
randomized clinical trials to select thrombectomy candi-
dates.26,41,42 However, grading can be challenging, and interob-
server agreement is variable. One commercial software platform
with automated ASPECTS scoring (e-ASPECTS, Brainomix) per-
formed as well as neuroradiologists when scoring ASPECTS on
NCCT in patients with acute stroke (P , .003).43 However, e-
ASPECTS did not perform as well as neuroradiologists when
scoring ASPECTS in patients with acute stroke with baseline
non–normal-appearing CT (eg, leukoencephalopathy, old
infarcts, or other parenchymal defects), demonstrating a correla-
tion coefficient of 0.59 versus 0.71–0.80 for experts.44 One study
found that an automated ASPECTS detection algorithm on
NCCT using texture feature extraction to train a RF classifier
generated ASPECTS values that had high agreement with expert-
generated DWI ASPECTS scores (ICC ¼ 0.76 and k ¼ 0.6 when
used for all 10 ASPECTS regions).45

Another commercial software platform with automated
ASPECTS scoring (Rapid ASPECTS, version 4.9; iSchemaView)
showed higher agreement with a consensus ASPECTS grade that
takes into account follow-up DWI (k ¼ 0.9) compared with neu-
roradiologists’ moderate agreement (k ¼ 0.56–0.57), and the soft-
ware performed well in the immediate time interval 1 hour after
stroke onset (k ¼ 0.78) and even better 4hours after stroke onset
(k ¼ 0.92).46 This platform had better agreement of ASPECTS
grading with DWI infarct volume in patients with large hemi-
spheric infarct compared with experienced readers (median DWI
ASPECTS, 3 [IQR, 2–4]; Rapid ASPECTS, 3 [1–6]; and CT
ASPECTS for the clinicians, 5 [4–7].47

Additional Factors in Treatment Selection
Various factors, including collaterals, penumbra, and stroke onset
time, are important for evaluating potentially salvageable tissue

FIG 6. Viz.ai mobile interface showing a left MCA territory infarction
with mismatch on CTP. Image courtesy of Viz.ai.
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and determining treatment eligibility. An automated commercial
software program (e-CTA; Brainomix) combining deep and tra-
ditional ML techniques for CTA collateral status determination
improved consensus scoring among expert neuroradiologists
compared with visual inspection alone, with an ICC of 0.58
(0.46–0.67) improving to 0.77 (0.66–0.85; P ¼ .003).48 Penumbra
prediction on a noncontrast MR imaging pseudocontinuous
arterial spin labeling technique using a DL model performed well
(AUC ¼ 0.958).49 This algorithm outperformed traditional ML
algorithms and was able to predict endovascular treatment eligi-
bility based on DEFUSE 3 (Endovascular Therapy Following
Imaging Evaluation for Ischemic Stroke) trial criteria. Another
study evaluating various traditional ML models in predicting
stroke onset time demonstrated that incorporation of DL features
to the models improved AUC compared with the ground truth
(ie, a DWI–FLAIR mismatch), with the optimal AUC of 0.765
incorporating logistic regression and DL features of MR imaging
and MR perfusion (MRP) images.50 Lee et al51 used DWI–FLAIR
mismatch to predict stroke onset time,4.5 hours and found that
traditional ML models were more sensitive than stroke neurolo-
gists (sensitivity ¼ 48.5% for stroke neurologists vs 75.8% for
logistic regression; P ¼ .020; 72.7% for SVM, P ¼ .033; 75.8% for
RF, P¼ .013).

Prognostication
Various ML algorithms have been used to predict imaging and
clinical outcomes after ischemic stroke. An early classical ML
study found that a generalized linear model combining DWI and
perfusion-weighted imaging MR images was better than DWI
(P ¼ .02) or PWI (P ¼ .04) alone at predicting voxelwise tissue
outcomes.52 A CNN-based patch sampling of the Tmax feature
on MRP outperformed a single voxel-based regression model in
predicting final infarct volume, with a mean accuracy of 85.3 6

9.1% compared with 78.3 6 5.5%, respectively.53 Another CNN
performed better than other ML methods in predicting final
infarct volume by incorporating MR imaging DWI, MRP, and
FLAIR data, with an AUC of 0.886 0.12.54 This CNN could pre-
dict tissue fate based on whether intravenous tissue plasminogen
activator was administered, showing significantly different final
infarct volumes (P ¼ .048).54 A CNN based on MRP source
images was able to predict final infarct volume with an AUC of
0.871 6 0.024.55 A multicenter study showed that an attention-
gated U-Net DL algorithm with DWI and MRP as inputs could
predict final infarct volume regardless of reperfusion status, with
a median AUC of 0.92 (IQR, 0.87–0.96) and significant overlap
with the ground truth of a FLAIR sequence obtained 3–7 days af-
ter baseline presentation (Dice score, 0.53; IQR, 0.31–0.68).56

The e-ASPECTS software was able to predict poor clinical
outcomes after thrombectomy (Spearman correlation ¼ �0.15;
P ¼ .027) and was an independent predictor of poor outcome in
a multivariate analysis (OR, 0.79; 95% CI, 0.63–0.99) while also
demonstrating high consensus with 3 expert ASPECTS readers
(ICC ¼ 0.72, 0.74, and 0.76).57 Traditional ML techniques com-
bining clinical data and core-penumbra mismatch ratio derived
fromMR imaging and MRP to determine postthrombolysis clini-
cal outcomes performed with an AUC of 0.863 (95% CI, 0.774–
0.951) for short-term (day 7) outcomes and 0.778 (95% CI,

0.668–0.888) for long-term (day 90) outcomes.58 Decision tree–
based algorithms including extreme gradient boosting and gradi-
ent boosting machine were able to predict 90-day modified
Rankin scale (mRS) . 2 using imaging and clinical data with
AUC of 0.746 (extreme gradient boosting) and 0.748 (gradient
boosting machine), and performance improved when incorporat-
ing NIHSS at 24 hours and recanalization outcomes.59 ML tech-
niques, including regularized logistic regression, linear SVM, and
RF, outperformed existing pretreatment scoring methods in
predicting good clinical outcomes (mRS #2 at 90 days) of
patients with LVO who will undergo thrombectomy, with AUC
0.85–0.86 for ML models compared with 0.71–0.77 for pretreat-
ment scores.60 A combination CNN and ANN approach incor-
porating clinical and NCCT data predicted functional
thrombolysis outcomes with accuracy 0.71 for 24-hour NIHSS
improvement of$4 and accuracy 0.74 for 90-day mRS of 0–1.61

Finally, traditional ML techniques and neural networks were
used to predict hemorrhagic transformation of acute ischemic
stroke before treatment from MRP source images and DWI,
with the highest AUC of 0.837 6 2.6% using a kernel spectral
regression ML technique.62 One limitation of this study was the
variable recanalization of the participants, which may have con-
founded results.

AI EVALUATION OF HEMORRHAGE
This section focuses primarily on DL methods that have
been used for intracranial hemorrhage (ICH) detection and
classification, quantification, and prognostication (Online
Table 5).

Detection and Classification
A study using two 2D convolutional neural networks,
GoogLeNet and AlexNet, to detect basal ganglia hemorrhages
on NCCT found that GoogLeNet with augmented data in a
pretrained network was the most accurate (AUC ¼ 1.0; sensi-
tivity and specificity ¼ 100%) compared with the highest per-
forming augmented, untrained AlexNet (AUC ¼ 0.95;
sensitivity ¼ 100%; and specificity ¼ 80%).63 False positive
results from basal ganglia calcification were seen in some of
the methods, and sensitivity of detection of small basal ganglia
hemorrhages remains to be investigated.

One of the largest cohorts for detection and classification of
ICH examined more than 30,0000 NCCTs from different hospi-
tals in India using DL algorithms.64 The algorithm performed
well on 2 different validation datasets, Qure25k and CQ500,
achieving AUCs of 0.92 (95% CI, 0.91–0.93) and 0.94 (CI, 0.92–
0.97), respectively, for detecting ICH. The algorithm was also
able to classify subtypes of hemorrhage (parenchymal, intraven-
tricular, subdural, extradural/epidural, and subarachnoid) with
AUCs ranging from 0.90 to 0.96 for the Qure25K dataset and
0.93 to 0.97 for the CQ500 dataset. An additional feature of the
algorithm was its ability to recognize associated pertinent CT
findings, such as calvarial fracture, midline shift, and mass
effect.

Another study using a fully 3D CNN with a large patient
cohort was able to detect ICH and reprioritize studies as “stat”
(defined as a positive ICH study) versus “routine.”65 The AUC
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was 0.846 (95% CI, 0.837–0.856), specificity was 0.80 (0.790–
0.809), and sensitivity was 0.73 (0.713–0.748). The algorithm was
integrated into the radiologist’s workflow, and time to detection
was reduced from 512 to 19minutes.

An explainable pretrained 2D convolutional neural networks
system performed at a similar level to expert neuroradiologists on
a relatively small cohort of cases when detecting acute ICH and
classifying the 5 ICH subtypes on NCCT.66 The algorithm incor-
porated techniques such as attention maps and prediction based
modules to help mitigate the “black box” of the DL system. The
system displayed a robust performance when detecting ICH on a
retrospective dataset of 200 cases (AUC ¼ 0.99; sensitivity ¼
98%; and specificity ¼ 95%) and prospective dataset of 196 cases
(AUC ¼ 0.96; sensitivity ¼ 92%; and specificity ¼ 95%).
Furthermore, the overall localization accuracy of the attention
maps was 78.1% compared with bleeding points annotated by
expert neuroradiologists.

Quantification
A custom DL-trained hybrid 3D–2D CNN was able to detect and
quantify ICHs on NCCT in a retrospective training cohort and a
prospective testing cohort from the emergency department.67

Accuracy, AUC, sensitivity, specificity, positive predictive value,
and negative predictive value for ICH detection for the training
cohort were 0.975, 0.983, 0.971, 0.975, 0.793, and 0.997, respec-
tively, and for the prospective cohort were 0.970, 0.981, 0.951,
0.973, 0.829, and 0.993. For ICH quantification, Dice scores were
0.931, 0.863, and 0.772, and Pearson correlation coefficients were
0.999, 0.987, and 0.953 for intraparenchymal hemorrhage, epidu-
ral or subdural hemorrhage, and SAH, respectively, compared
with semiautomated segmentation by a radiologist. This study
used real-life prospective testing of the algorithm and quant-
ified hemorrhage volume during segmentation. The study also
addresses the black box critique with the use of a custom mask
ROI-based CNN architecture.

A patch-based fully DL CNN simultaneously classified and
quantified hemorrhages at a level equal to or above that of expert
radiologists (AUC¼ 0.9916 0.006).68 The algorithm was able to
identify some small hemorrhages that were missed by radiologists
and performed well on a relatively small dataset. The strongly
supervised approach took into account the heterogeneous mor-
phology of hemorrhages and showed perfect sensitivity (1.00)
while maintaining high specificity (0.87).

Prognostication
Identifying patients at risk for ICH expansion is important for
prognostication. One study showed good performance when
applying a SVM that incorporated various clinical and imaging
variables to predict hematoma expansion on NCCT (AUC ¼
0.89; mean sensitivity ¼ 81.3%; and mean specificity ¼ 84.8%).69

Rapid and accurate identification of ICH by AI methods could
aid with triaging of positive studies.

CONCLUSIONS
Prompt detection and treatment of acute cerebrovascular disease
is critical to reduce morbidity and mortality. The current applica-
tion of AI in this field has allowed for vast opportunities to

improve treatment selection and clinical outcomes by aiding in
all parts of the diagnostic and treatment pathway, including
detection, triage, and outcome prediction. Future studies validat-
ing AI techniques are needed to allow for more widespread use in
various practice environments.
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