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ADULT BRAIN

Improved Glioma Grading Using Deep Convolutional
Neural Networks

S. Gutta, J. Acharya, M.S. Shiroishi, D. Hwang, and K.S. Nayak

ABSTRACT

BACKGROUND AND PURPOSE: Accurate determination of glioma grade leads to improved treatment planning. The criterion stand-
ard for glioma grading is invasive tissue sampling. Recently, radiomic features have shown excellent potential in glioma-grade pre-
diction. These features may not fully exploit the underlying information in MR images. The objective of this study was to
investigate the performance of features learned by a convolutional neural network compared with standard radiomic features for
grade prediction.

MATERIALS AND METHODS: A total of 237 patients with gliomas were included in this study. All images were resampled, registered,
skull-stripped, and segmented to extract the tumors. The learned features from the trained convolutional neural network were used for
grade prediction. The performance of the proposed method was compared with standard machine learning approaches, support vector
machine, random forests, and gradient boosting trained with radiomic features.

RESULTS: The experimental results demonstrate that using learned features extracted from the convolutional neural network achieves an
average accuracy of 87%, outperforming the methods considering radiomic features alone. The top-performing machine learning model is
gradient boosting with an average accuracy of 64%. Thus, there is a 23% improvement in accuracy, and it is an efficient technique for
grade prediction.

CONCLUSIONS: Convolutional neural networks are able to learn discriminating features automatically, and these features provide added
value for grading gliomas. The proposed framework may provide substantial improvement in glioma-grade prediction; however, further
validation is needed.

ABBREVIATIONS: CNN ¼ convolutional neural network; GB ¼ gradient boosting; ML ¼ machine learning; SVM ¼ support vector machine; RF ¼ random
forest; T1CE ¼ T1 contrast-enhanced

Primary CNS tumors originate from cells within the CNS and
can be benign or malignant.1 Malignant brain tumors require

aggressive therapies and are the most challenging to treat.
Gliomas are the most frequent malignant primary brain tumors
in adults, with an incidence of approximately 5–10 per 100,000 in

the population every year.2 Gliomas are divided into low-grade
and high-grade gliomas. The prognosis for high-grade glioma is
poor, despite treatment options including chemotherapy, radiation
therapy, and surgery.3 The 5-year relative survival rate after diag-
nosis of a brain tumor is 35.8%, with the most aggressive grade IV
glioblastoma multiforme having the lowest survival rate of 6.8%.4

In addition, treatment strategy depends on the glioma grade.5,6

While clinical glioma grading is still based on histopathologic
methods from tissue sampling, an accurate and reliable noninva-
sive imaging-based determination of glioma grade is desirable.

Gliomas are classified as grades I–IV, according to the World
Health Organization Classification of CNS tumors.7 Glioma
grades were restructured in the 2016 version of the World Health
Organization Classification, considering molecular information
along with the histology.8

Recently, there have been several studies showing the potential
for a noninvasive method of glioma grading using radiomic fea-
tures extracted from MR images. A histogram-based texture
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analysis was performed by Skögen et al9 on 95 patients to differen-
tiate low-grade from high-grade gliomas. This study reported a re-
ceiver operating characteristic area under the curve of 0.910. In
another study to classify grades II–IV, Tian et al10 performed tex-
ture analysis in 153 patients using a support vector machine
(SVM) model reporting an accuracy of 98%. This study also
showed that the contrast-enhanced T1-weighted (TICE) method
yields the best sequence for grade prediction. Xie et al11 were able
to differentiate grade III and IV and grade II and III gliomas using
entropy and inverse difference moment of model-free and
dynamic contrast-enhanced MR imaging.

These prior MR imaging–based glioma grading studies used
hard-coded features that are straightforward to extract. We
hypothesized that such an approach limits the use of rich informa-
tion embedded in the multicontrast MR images. The premise of this
work is that rich imaging information beyond simple changes in
image contrast/intensity is the following; 1) deeply embedded in
pre- and postcontrast enhanced MR imaging, 2) potentially valuable
in glioma grading, and 3) learned from labeled training data using
deep learning techniques.

In recent years, convolutional neural networks (CNNs) have
shown superior performance in numerous visual object-recogni-
tion and image-classification studies.12 They also accelerated the
development of medical image analysis,13 including applications
for tumor diagnosis.14 With a CNN, a hierarchy of features can be
learned from a low to high level in a layer-by-layer manner.15

Recently, CNNs15 have also been used for glioma classification.
Ertosun and Rubin16 proposed a CNN to classify glioma grades
(II, III, and IV) and low-grade-versus-high-grade gliomas,

obtaining accuracies of 71% and 96%,
respectively. Anaraki et al17 proposed a
CNN and genetic algorithm to classify
glioma grades (II, III, and IV), obtain-
ing an accuracy of 90.9%. Yang et al18

explored a transfer-learning approach
for glioma grading, obtaining 90% test
accuracy. However, all of these studies
lacked a sufficiently large dataset from
which features could be learned.

In this study, we propose a CNN to
predict glioma grade from pre- and
post-contrast-enhanced MR images.
We automatically learn features by
training a supervised deep network.
The learned features are used for clas-
sification and are compared using
machine learning (ML) approaches
that are trained using radiomic fea-
tures alone.

MATERIALS AND METHODS
Imaging Dataset
Clinical data were obtained from
patients with a diagnosis of glioma who
received standard of care brain MR
imaging with and without a gadolin-
ium-based contrast agent at the Keck

Medical Center of the University of the Southern California from
May 2007 to January 2019. Retrospective data were obtained under
a protocol approved by the University of Southern California insti-
tutional review board (protocol HS-19–00019). The patients were
imaged by using a 3T MR imaging scanner (GE Healthcare). The
imaging acquisition protocol was the same for all patients and
included the following sequences: T1-weighted (TR ¼ 700ms;
TE ¼ 10ms; flip angle ¼ 90°; section thickness ¼ 5mm; spacing
between slices ¼ 7mm), T1CE (TR ¼ 500ms; TE ¼ 19ms; flip
angle ¼ 90; section thickness ¼ 5mm; spacing between slices ¼
7mm), T2-weighted (TR¼ 5000ms; TE¼ 100ms; flip angle¼ 90°;
section thickness¼ 5mm; spacing between slices¼ 7mm), and T2-
weighted/FLAIR (TR ¼ 8802ms; TE ¼ 158ms; flip angle ¼ 90°;
section thickness¼ 5mm; spacing between slices¼ 7mm).

Preprocessing
The dataset contained 366 adult patients with a total of 1154
scans. Because of poor image quality or unknown pathology, 65
patients were excluded from the study. The remaining 301
patients with 887 scans qualified for the study. First, all images
were resampled to 1-mm3 isotropic resolution using BrainSuite
software (http://brainsuite.org/).19 Second, the 4 volumes were cor-
egistered using the FSL (http://www.fmrib.ox.ac.uk/fsl) toolbox.20

Third, images were skull-stripped using BrainSuite software.19

Forty-two patients were excluded due to skull-stripping failure,
leaving 259 patients’ scans to undergo further segmentation.

A fully-automated brain tumor segmentation tool was used to
identify lesion regions (enhancing tissue, nonenhancing tissue,
and edema) from the skull-stripped multimodal images. This

FIG 1. Representative segmentation result from one glioblastoma patient. Top row: Coronal;
Middle row: Sagittal; Bottom row: Axial. T1, T1c, T2, and FLAIR are shown in the first 4 column, af-
ter being resampled to 1mm, registered, and skull-stripped. The rightmost column corresponds to
the segmentation result overlapped on the FLAIR image. Segmentation was performed using cas-
caded convolutional networks by Wang et al. [21]. In the segmentation image, green corresponds
to edema, yellow corresponds to enhancing, and red corresponds to non-enhancing regions.
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algorithm was one of the top-performing tools as evaluated in the
international 2017 Multimodal Brain Tumor Segmentation chal-
lenge.21 It uses a cascade of CNNs and decomposes the multiclass
segmentation task into 3 sequential binary segmentation tasks.

Complete details of the network architecture and the training can
be found in Wang et al.21 More details on how each dataset was
preprocessed can be found in Online Fig 2.

One representative segmentation result for a grade IV tumor.
All segmentations were visually checked by a board-certified neu-
roradiologist with 9 years of experience. The radiologist was not
given the opportunity to alter the segmentations because this
would have been extremely time-consuming. The radiologist was
simply asked to approve or reject the automatic segmentation
result. Segmentation was deemed satisfactory if the regions quali-
tatively correlated to the respective areas: enhancing tissue, non-
enhancing tissue, and edema. The areas of tissue enhancement
and nonenhancement were assessed by reviewing the T1 postcon-
trast sequence and comparing it with the segmented dataset. The
edema assessment was performed by comparing the T2 and
FLAIR sequences with the segmentation data. If the segmentation
corresponded to the specified source data sequence, it was deter-
mined to be appropriately segmented. Due to segmentation fail-
ure, data from 22 patients were excluded. The other 237 cases
with 660 scans approved by the radiologist were included for the
remainder of this work. Of the 237 patients, 17 patients had a
grade I tumor, 59 had a grade II tumor, 46 had a grade III tumor,
and 115 had a grade IV tumor. The total data were randomly di-
vided into training, validation, and testing with the ratios being
70%, 15%, and 15%, respectively. The test data were set aside to
evaluate the performance of the model. The splitting of data is
performed on the number of patients, and the detailed split is
given in the Online Appendix. Tumors were graded by a fellow-
ship-trained neuropathologist. Grade I tumors primarily include
pilocytic astrocytoma; grade II includes diffuse astrocytoma, oli-
godendroglioma, and oligoastrocytoma; grade III includes ana-
plastic astrocytoma, anaplasticoligodendroglioma, and anaplastic
oligoastrocytoma; and grade IV includes glioblastoma.

FIG 3. Comparison of the candidate methods (SVM, RF, GB, and CNN) using three performance metrics. Left: Precision; Middle: Recall; Right: F1-
score. The top row corresponds to macro-averaged metrics and the bottom row corresponds to weighted average metrics. Macro-averaging
computes the score for each grade and then averages without accounting for class imbalance. On the other hand, weighted average accounts
for class imbalance by weighting the metric of each class with the number of samples in that specific class. CNN performs superior to the other
models in all of the metrics examined.

FIG 2. Confusion matrices of the candidate methods (SVM, RF, GB,
and CNN). Top left: SVM; Top right: RF; Bottom left: GB; Bottom right:
CNN. Each row corresponds to the true grade and column corre-
sponds to the predicted grade. The main diagonal shown in light grey
represents the number of data points that were classified correctly.
The off-diagonal numbers are the number of data points that were
mis-classified. CNN outperforms the machine learning models by a
23% improvement in accuracy.
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Standard Feature Extraction
PyRadiomics (https://pypi.org/project/pyradiomics/),22 an open-
source platform, was used for the extraction of radiomic features
from the tumors. A total of 107 features were extracted for each
sequence. These included first-order statistics, shape-based features,
and other commonly used texture features: specifically, first-order
(16 features), shape-based (16 features), gray-level co-occurrence
matrix (24 features), gray-level run length matrix (16 features), gray-
level size zone matrix (16 features), neighboring gray tone difference
matrix (5 features), and gray-level dependence matrix (14 features).
Complete details about the extracted features can be found in the
image biomarker Standardisation Initiative reference manual.23

Each dataset, therefore, had 1284 (107 � 4 � 3) features extracted:
4 corresponded to the total number of sequences, and 3 corre-
sponded to the enhancing component, nonenhancing component,

and edema associated with the tumor. To handle the large number
of features, we performed a feature-selection step on the training
data alone on the basis of the importance score obtained from the
gradient boosting algorithm. A total of 45 features were selected by
evaluating performance on the validation dataset. These features
extracted from 3D tumors were given to the ML models: SVM,
random forest (RF), and gradient boosting (GB) to predict the
grade of the tumor.

Proposed Convolutional Network
CNNs are an extension of the traditional artificial neural network
architecture, in which banks of convolutional filter parameters and
nonlinear activation functions act as a mapping function to trans-
form a multidimensional input image into a desired output.24

Network overview and details are provided in the Online Appendix.
The input to the proposed network is a 150� 150 region (cor-

responding to 15 cm2) that is centered on the centroid of the
entire segmented tumor (edema, enhancing, and nonenhancing).
We considered slices that contain at least 100 pixels of tumor
(which corresponds to 1 cm2). The proposed framework was
compared with the ML approaches trained with only radiomic
features. To determine the final grade of the tumor, we applied
the proposed network to all of the slices and chose most common
grade among all predictions.

The performance was measured using the confusion matrix
and accuracy. Precision, recall, and the F1 score were also used
for evaluating the models. Macro averaging calculates metrics for
each grade and finds their unweighted mean. Thus, it does not
take class imbalance into account. Weighted averaging computes
the metrics for each class and finds their average, weighted by the
number of scans in each class. This alters the macro score and
accounts for class imbalance.

Gradient-Weighted Class Activation Mapping (Grad-CAM)25

was used for visualizing the features learned by the CNN to under-
stand which parts of an input image were important for a classifica-
tion decision. Complete details of the method to generate these
maps can be found in Selvaraju et al.25

RESULTS
The hyperparameters of ML methods and CNN were selected on
the basis of performance on the validation dataset: SVM ¼ radial
basis function kernel; degree ¼ 3; C¼ 1; RF ¼ 10,000 trees; Gini

index to determine the quality of split;
GB ¼ maximum depth 4; 100 sequen-
tial trees; CNN ¼ learning rate 1e–3;
batch size ¼ 64; epochs ¼ 30; Adam
optimizer; cross-entropy loss function.

Figure 2 contains the confusion
matrices for all of the discussed meth-
ods: SVM, RF, GB, and CNN. It can
be seen that the CNN is superior to
the machine learning methods that are
trained with radiomic features alone.
The accuracy of SVM, RF, GB, and
CNN are 56%, 58%, 64%, and 87%
respectively. Among the machine
learning models, GB performs better

FIG 5. Sequence and tumor component significance was determined using a gradient boosting
algorithm. The results obtained here comply with the findings of CNN. T1CE and FLAIR were
most significant, followed by T2. Edema that is seen in FLAIR plays an important role for classifica-
tion of different grades.

FIG 4. Representative activation maps generated by the proposed
CNN (one example per grade). Each row corresponds to a particular
grade (I to IV) and each column corresponds to a sequence (T1, T1CE,
T2, and FLAIR). Activation by T1CE images was significant for grades III
and IV. Activation by FLAIR was most significant for grade II. There was
a gradual increase in activation based on T2 images from grades I to IV.
T1CE and FLAIR were the most significant sequences for differentiation
of low grade (I and II) and high grade (III and IV) gliomas. FLAIR, T1CE,
and T2 images produced the strongest activation for grades II, III, and
IV respectively.
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than SVM and RF. CNN outperforms the best performing model
with an improvement in accuracy by 23%.

Figure 3 contains a comparison of the discussed methods
using performance metrics: precision, recall, and F1-score. There
is a significant improvement in performance by the proposed
CNN method, suggesting that the learned features are valuable in
predicting tumor grade.

Figure 4 contains the activation maps from one representative
case for each tumor grade. T1CE images are more strongly acti-
vated for high grade (III and IV) compared to low grade (I and II)
gliomas. There is a gradual increase in activation of T2 images
from grades I to IV. FLAIR images are most strongly activated for
grade II. Based on activation maps for the proposed CNN, we infer
that T1CE, T2, and FLAIR are the most valuable for identification
of grades II to IV respectively. There was no significant activation
observed in any of the grade I images. These interpretations were
made based on visual inspection of all scans of each grade.

Figure 5 contains the sequence significance and tumor com-
ponent significance determined by using the GB algorithm.
Among the sequences considered for grading, T1CE and FLAIR
were most important, followed by T2. Edema was the most signif-
icant tumor component for classification, followed by the
enhancing and non-enhancing regions.

Figure 6 contains the comparison between validation and test
data using weighted average precision, recall, and F1-score to test
robustness of the proposed CNN. The error bar corresponds to
the 95% confidence interval. Validation data was used to deter-
mine the hyperparameters of the network and test data was used
to evaluate the performance of the proposed CNN with these
hyperparameters. We observed that the performances of the pro-
posed method between validation and test data are consistent,
indicating robustness of the proposed method.

DISCUSSION
In this study, we used a convolutional
network to classify glioma grades, based
on pre- and post-contrast-enhanced
MR images, and compared perform-
ance against 3 established ML methods.
We were able to implement the entire
preprocessing pipeline from resampling
to tumor segmentation automatically. A
neuroradiologist was required only to
validate the segmentations. We have
leveraged convolutional networks to
extract learned spatial features and have
used these features to improve predic-
tion of glioma grade from multicontrast
MR imaging. This is in contrast to most
of the previous studies that rely on
radiomic features alone.

The ML methods have poor pre-
diction of grade I compared with the
proposed CNN. All of the misclassi-
fied grade II tumors were predicted as
a higher grade by ML methods.
Moreover, at least 70% of the misclas-
sified grade II tumors were predicted

as grade IV: SVM = 7/10, RF = 9/11, GB = 12/13. The proposed
CNN incorrectly classified grade II as grades I and III. A large
proportion of misclassified grade III tumors were predicted as
grade II: SVM = 7/17, RF = 13/24, GB = 10/15, CNN = 6/6. All of
the methods, except SVM, which had a misclassification rate of
28%, performed well in predicting grade IV tumors with a mis-
classification rate below 10%. Overall, the methods except GB
tended to bias predictions toward a lower grade. SVM overclassi-
fied 17 and underclassified 27, RF overclassified 18 and under-
classified 24, GB overclassified 21 and underclassified 15, and
CNN overclassified 1 and underclassified 12. Distinguishing
grades II and III is clinically important for treatment planning.
For all the methods, a higher percentage of grade III tumors was
predicted as grade II than grade II predicted as grade III.
Moreover, most of the errors in ML techniques were due to mis-
classification of lower grade tumors (Fig 2). This may, in part, be
due to the inherent class imbalance of the training set.

Essential to the proposed network was the use of drop-out to
prevent overfitting and batch normalization, improving the per-
formance of the network through adjusting and scaling the activa-
tions. The results presented in Figs 2 and 3 correspond to test data,
which were unseen by the model during training and were used to
evaluate the final performance of the network. We observed no dif-
ference in performance between the validation and test data (Fig
6), suggesting the robustness of the proposed method.

There are several limitations to this study. First, we did not con-
sider molecular information of the tumors. This was a practical limi-
tation because only a small subset of the cases had molecular
information on file. This would be a worthwhile extension if this
work were to be replicated with a larger dataset. Second, we consid-
ered only structural MR imaging data for this work. In the future,
we plan to include additional sequences such as diffusion, perfusion,

FIG 6. Weighted average precision, recall, and F1-score for the validation (red) and test (gray)
dataset for proposed CNN method. The performances of CNN are consistent in both datasets,
indicating robustness of the proposed method.
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and susceptibility-weighted images, which may improve the model
performance. Third, the experiments in this study were performed
on 237 patients with 660 scans, all from a single center. This number
is large compared with previous glioma-grading studies10 but is
small compared with nonmedical domains.12 Substantially larger
datasets will enable one to fully harness the potential of deep learn-
ing for prediction of glioma grade. Further testing is also required to
evaluate the potential of the proposed algorithm in a multicenter
setting, to analyze the effect of scanner systems and acquisition set-
tings on the learned features. Fourth, this study did not consider de-
mographic information of the included population (eg, patient age),
which may provide additional discriminatory value. Fifth, a unique
biopsy was not performed for every MR image. We assumed that
the grade from the biopsy applied to all the scans of that particular
patient. Sixth, there could be bias in the patient selection due to
rejection of data on the basis of automatic skull-stripping and seg-
mentation failures. This warrants further investigation to determine
any specific structural characteristics unique to these tumors. It is
worth noting that the state-of-the-art skull-stripping and segmenta-
tion are improving at a rapid pace, and we expect a failure rate of
these preprocessing modules to diminish with time. Seventh, the
number of patients with grade I was very small, creating a data
imbalance. This is because patients with grade I tumor are less likely
to be referred for surgical biopsy for confirmation. This feature

makes it difficult to evaluate the performance of grade I detection;

however, in clinical practice, grade I neoplasms tend to be moni-

tored with imaging across time to assess change without necessarily

requiring surgical resection. Eighth, about 50% of the scans were

excluded either due to poor image quality or failures in skull-strip-

ping and segmentation. These problems must be overcome for

broad clinical applicability of automated glioma grading.
This study was performed entirely using 2D slices. A natural

extension would be to adapt the proposed network architecture to

process the entire 3D tumor volume. This change would substan-

tially increase the number of parameters and reduce the dataset

size. Overfitting would become a major concern, even with regula-

rization. We believe a 3D solution would require a dramatic

increase in the sample size through $1 of the following: 1) access

to a larger reference dataset, 2) data augmentation, 3) use of com-

bination approaches that feature-extract using a trained network

and classify using ML that are robust to small data sizes,26 and 4)

adapting a transfer learning approach.18

There is substantial clinical value in accurate prediction of gli-
oma grade. Direct tissue biopsy is inherently associated with a risk
to the patient, has the potential for sampling error, and has a sub-
stantial cost in resources. Accurate differentiation between low-
grade gliomas (grades I and II) and high-grade gliomas (grades III
and IV) has important treatment ramifications and is particularly
valuable if this can be done noninvasively and accurately. Because
these training data are applied to larger datasets, further ability to
differentiate the tumor grade may be more apparent. Ultimately,
earlier detection of disease grade using this noninvasive method
may be safer and more cost efficient and permit a more timely
treatment implementation.

With the availability of appropriate training data, the same or a
similar technique can be adapted to other classification tasks, such

as prediction of genetic mutations in gliomas27 and classifying a
glioblastoma as recurrent disease versus pseudoprogression.28

CONCLUSIONS
We have demonstrated the feasibility of deep learning, specifically
deep convolutional networks, to learn relevant spatial features
frommultimodal MR images. The proposed network that incorpo-
rated the learned features was compared against traditional ML
approaches (SVM, RF, and GB) and was found to be superior on
the basis of precision, recall, and the F1 score. Thus, CNN-based
approaches are an effective alternative for accurate prediction of
glioma grade and may ultimately optimize efficient diagnosis and
treatment planning with the goal of improved health care manage-
ment in patients with gliomas.
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