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Ultra-High-Resolution Photon-Counting-Detector CT with a
Dedicated Denoising Convolutional Neural Network for

Enhanced Temporal Bone Imaging
Shaojie Chang, John C. Benson, John I. Lane, Michael R. Bruesewitz, Joseph R. Swicklik, Jamison E. Thorne,

Emily K. Koons, Matthew L. Carlson, Cynthia H. McCollough, and Shuai Leng

ABSTRACT

BACKGROUND AND PURPOSE: Ultra-high-resolution (UHR) photon-counting-detector (PCD) CT improves image resolution but
increases noise, necessitating the use of smoother reconstruction kernels that reduce resolution below the 0.125-mm maximum
spatial resolution. A denoising convolutional neural network (CNN) was developed to reduce noise in images reconstructed with
the available sharpest reconstruction kernel while preserving resolution for enhanced temporal bone visualization to address this
issue.

MATERIALS AND METHODS:With institutional review board approval, the CNN was trained on 6 patient cases of clinical temporal
bone imaging (1885 images) and tested on 20 independent cases using a dual-source PCD-CT (NAEOTOM Alpha). Images were
reconstructed using quantum iterative reconstruction at strength 3 (QIR3) with both a clinical routine kernel (Hr84) and the sharp-
est available head kernel (Hr96). The CNN was applied to images reconstructed with Hr96 and QIR1 kernel. For each case, three se-
ries of images (Hr84-QIR3, Hr96-QIR3, and Hr96-CNN) were randomized for review by 2 neuroradiologists assessing the overall
quality and delineating the modiolus, stapes footplate, and incudomallear joint.

RESULTS: The CNN reduced noise by 80% compared with Hr96-QIR3 and by 50% relative to Hr84-QIR3, while maintaining high
resolution. Compared with the conventional method at the same kernel (Hr96-QIR3), Hr96-CNN significantly decreased image noise
(from 204.63 to 47.35 HU) and improved its structural similarity index (from 0.72 to 0.99). Hr96-CNN images ranked higher than
Hr84-QIR3 and Hr96-QIR3 in overall quality (P , .001). Readers preferred Hr96-CNN for all 3 structures.

CONCLUSIONS: The proposed CNN significantly reduced image noise in UHR PCD-CT, enabling the use of the sharpest kernel. This
combination greatly enhanced diagnostic image quality and anatomic visualization.

ABBREVIATIONS: ACR ¼ American College of Radiology; CNN ¼ convolutional neural network; IR ¼ iterative reconstruction; MTFc ¼ contrast-dependent
modulation transfer function; NPS ¼ noise power spectrum; PCD ¼ photon-counting-detector; QIR ¼ quantum iterative reconstruction; RED-CNN ¼ residual
encoder-decoder convolutional neural network; SSIM ¼ structural similarity index; UHR ¼ ultra-high-resolution

Temporal bone structures, including the facial nerve and laby-
rinth, are submillimeter in scale and require high-spatial-

resolution imaging.1-4 Recently, photon-counting-detector (PCD)
CT systems have demonstrated the ability to provide ultra-high-
resolution (UHR) images, with in-plane resolutions reaching
0.125 mm.5-9 However, using this level of spatial resolution is

challenging clinically because images at the highest resolution
exhibit excessive noise as demonstrated in Fig 1. Therefore, it is
crucial to maintain acceptable noise levels while preserving
detailed structures, particularly in high-resolution imaging at
clinical dose levels.

In practice, PCD-CT temporal bone examinations typically
use smoother kernels (eg, Hr84) instead of the sharpest available
kernel (eg, Hr96) to keep the noise at acceptable levels. The
choice of the kernel determines the final image resolution,
with higher numbers indicating greater spatial resolution.10,11

For instance, the Hr84 kernel results in an in-plane resolution
of 0.154 mm, which is inferior to the maximum resolution
(0.110 mm) of the system.12 Noise reduction is an important
topic in CT imaging, and various methods have been investi-
gated such as traditional iterative reconstruction (IR)13 and
deep learning–based methods.14,15 As highlighted by Niu et al,16

deep learning approaches, which train a neural network to
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remove noise from a noisy image, demonstrate superior denoising
performance compared with IRmethods. However, these approaches
often require extensive collections of spatially aligned low- and
routine-dose patient images, which are challenging to obtain.

In this study, we developed a dedicated denoising convolu-
tional neural network (CNN) to significantly reduce image noise
in UHR PCD-CT, enabling the use of the sharpest kernel with ac-
ceptable noise levels for enhanced temporal bone visualization.
Our approach uses a training data set from the scanner, compris-
ing both thin-slice and thick-slice IR images. All images were
obtained from the routine clinical scan, without the need for
images at different dose levels. This strategy not only ensures
high-quality training data but also simplifies the replication of
our methods by other researchers and facilitates adaptation to
various clinical applications.

MATERIALS AND METHODS
Data Collection
This retrospective study was approved by our institutional review
board and was Health Insurance Portability and Accountability
Act–compliant, with informed consent waived. The methodology

proposed in the Checklist for Artificial Intelligence in Medical
Imaging (CLAIM; https://pubs.rsna.org/page/ai/claim) (Supple-
mental Data) was followed. Data from 6 adult clinical tempo-
ral bone PCD-CT scans were used for CNN training and
validation, while 20 independent patient cases were used for
testing. All examinations were conducted in UHR mode
(120� 0.2 mm collimation, 120 kV) on a dual-source PCD-CT
(NAEOTOM Alpha; Siemens), with 1-second rotation time, 0.5
helical pitch, and automatic exposure control with 220 CARE
(Siemens) kiloelectron volt Image Quality (IQ) level, resulting
in a volume CT dose index of 34 mGy for standard size
patients. The training and validation data set included 1885
CT images, reconstructed using both thin-slice (0.2-mm slice
thickness with an 0.1-mm increment) and thick-slice (0.4-mm
slice thickness with an 0.2-mm increment) settings. Quantum
iterative reconstruction was applied at strength 1 (QIR1) for
thin slices and strength 3 (QIR3) for both thin and thick slices.
All images used the sharpest available head-regular recon-
struction kernel (Hr96) and were processed with a 1024� 1024
matrix size within an 80-mm clinical standard field of view.
The trained CNN was then applied to test cases, using images

reconstructed at 0.2-mm thickness
with the Hr96 kernel and QIR1. For
reference, images reconstructed with
the clinical routine kernel (Hr84) at a
0.2-mm slice thickness and QIR3
were also collected.

Dedicated Denoising CNN Training
Workflow
Figure 2 outlines our denoising CNN
training workflow that begins by creat-
ing “Noise thin” images. These are
generated by subtracting thin-slice iter-
ative reconstructions with strengths 1_
(QIR1_thin) and 3 (QIR3_thin), both
set at a 0.2-mm slice thickness and in-
crement, at the same anatomic location
(higher strength settings perform more
aggressive denoising). To prevent over-
fitting and introduce variability, we
applied spatial decoupling techniques to

FIG 1. Image resolution versus noise in PCD-CT. As image resolution increases, image noise also
increases, which can limit the utility of high-resolution settings in PCD-CT.

SUMMARY

PREVIOUS LITERATURE: UHR PCD-CT can enhance image resolution and improve visualization of temporal bone structures.
However, the maximum spatial resolution of the system has not been fully explored in previous studies due to the associated
increase in noise.

KEY FINDINGS: A dedicated CNN enhanced high-resolution temporal bone imaging using the sharpest available kernel in PCD-
CT, outperforms conventional methods, and significantly improves diagnostic quality and visualization of critical anatomic
structures.

KNOWLEDGE ADVANCEMENT: The resulting high-resolution images feature acceptable noise levels that not only improve anatomic
delineation but also more precisely define the interfaces between metal prostheses and surrounding structures, enhancing temporal
bone visualization.
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Noise thin images through random translations (ranging from 1 to
16 pixels) and inversions (using multipliers of 11 or �1) to create
a set of randomized noise images.

Additionally, a set of thicker-slice images (0.4-mm thick-
ness, 0.2-mm increment), referred to as “QIR3_thick,” was recon-
structed as a low-noise reference. CNN inputs were formed by
combining noise-only and reference patches (QIR3_thick 1 a �
Noise_thin) from 7 adjacent slices, with a empirically set at 2.0 to
balance noise reduction and detail preservation.15 The central slice
patch of QIR3_thick was the training target. As demonstrated in a
previous study,14 training the CNN with thick reference images
results in significantly improved noise reduction compared with
using single-slice reference images. Moreover, the performance
of the CNN remains consistent when applied to single-slice
images, even though it was trained on thick images. This outcome
is because the network focuses on learning noise patterns rather
than the underlying tissue structures. Finally, the trained denois-
ing efficacy of the CNN was then tested on thin QIR1 images.

Network Architecture and Training Details
We used a simplified U-Net architecture17 with 9 modules for
our study. Each module sequentially performs convolution, batch
normalization, and exponential linear unit activation operations.
The architecture includes max pooling layers, convolution trans-
pose operators, and concatenation to maintain input-output
similarity. The mean-squared-error loss function was optimized
during training. Our final training set comprised 18,864 patches
of 128� 128 pixels from the training data and 2096 from valida-
tion data, at a 9:1 ratio. Training began with an initial learning

rate of 0.001, progressively reduced to 0.00001, using the Adam
optimizer (https://www.geeksforgeeks.org/adam-optimizer/)18 to
minimize the mean-squared-error loss function. We set the train-
ing for 100 epochs to ensure model convergence.

Phantom Experiments to Evaluate Noise and Spatial
Resolution
A 20-cm-diameter American College of Radiology (ACR) CT
accreditation phantom (Gammex; Sun Nuclear) was scanned to
evaluate the noise power spectrum (NPS) and the contrast-
dependent modulation transfer function (MTFc). All acquisitions
and reconstructions were performed according to the clinical
protocol settings used in this study. MTFc and NPS were calcu-
lated with data from Hr84-QIR3, Hr96-QIR3, and Hr96-CNN,
using the online platform (https://www.ctpro.net) to illustrate the
noise and resolution changes across different methods. In this
study, NPS was computed by placing 10 square ROIs in the uni-
form section (module 3) of the ACR phantom. MTFc was calcu-
lated using bone cylindrical inserts (25-mm diameter, 4-cm
depth) in module 1 of the phantom, on the basis of 40 consecu-
tive axial slices, to assess in-plane spatial resolution under high-
contrast conditions. A circular ROI was placed around the insert,
and a circular-edge technique was used to measure the edge
spread function by plotting the Hounsfield unit value of each
pixel as a function of the distance from the center of the insert.
The line spread function was then derived from the edge spread
function. After zero padding, a fast Fourier transform was applied
to the line spread function to compute the in-plane MTFc.

FIG 2. The overall workflow of the proposed deep CNN denoising method. All training data originated from patient image series reconstructed
using 2 iterative reconstruction strengths, QIR1 and QIR3, with thin-slice (0.2-mm) and thick-slice (0.4-mm) thicknesses, respectively. A multiple-
slice input strategy was implemented to enhance the performance of the CNN.
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Objective Image-Quality Assessment
For image-quality evaluation, noise was measured in the axial
images as the SD of CT numbers in a circular ROI drawn in a
uniform soft-tissue area for each data set. The size and location of
ROIs were matched among 3 image sets (Hr84-QIR3, Hr96-
QIR3, and Hr96-CNN).

Reader Evaluation
Two fellowship-trained neuroradiologists (with .10 years’ experi-
ence each) assessed the overall image quality and delineation of 3
key anatomic structures—modiolus, stapes footplate, and incudo-
mallear joint—for each of the 20 test cases. They assessed 3 image
series per case (Hr84-QIR3, Hr96-QIR3, and Hr96-CNN), which
were displayed side-by-side in a randomized and blinded manner.
Images were ranked on a scale from 1 to 3, with 1 as the most
preferred and 3 as the least preferred. Equal ranking was
permitted.

Statistical Analyses
Statistical analyses were conducted using the statistical package
scikit-posthocs in Python (https://scikit-posthocs.readthedocs.
io/en/latest/). Pair-wise comparisons were performed with the
Conover post hoc test, applying a Bonferroni correction, to
evaluate differences between the 2 variables: the average rank-
ings from 2 readers on overall image quality and diagnostic

confidence for discerning 3 anatomic
structures across Hr84-QIR3, Hr96-
QIR3, and Hr96-CNN. A P value ,

.05 was considered statistically
significant.

Denoising Performance Comparison
The residual encoder-decoder convo-
lutional neural network (RED-CNN)
and U-Net are 2 of the most widely
used models for CT image denoising.19

Using our proposed data set preparation
workflow, we conducted a comparative
analysis of the denoising performance
between RED-CNN and the U-Net
model we developed. Hr96-QIR1 was
used as the input reference, while
Hr96-QIR3 served as the conventional
denoised reconstruction. We compared
the difference images generated by
subtracting the reference noisy input
image from the conventional method,
RED-CNN, and U-Net denoised images.
Image quality was objectively assessed
using the structural similarity index
(SSIM) and image noise measure-
ments for each image set. This analy-
sis was repeated at the patient level,
with the mean (SD) of these metrics
reported.

RESULTS
NPS and MTFc Performance on the ACR Phantom
Figure 3 illustrates the noise textures, NPS, and MTFc for the
bone insert from axial slices of the ACR phantom across 3 config-
urations: Hr84-QIR3, Hr96-QIR3, and Hr96-CNN. The noise
levels in Hr84-QIR3 (s ¼ 90 HU) and Hr96-QIR3 (s ¼ 264
HU) are higher than those in Hr96-CNN (s ¼ 36 HU), with the
noise in these images exhibiting higher spatial frequency compo-
nents. This feature is consistent with the NPS measurements
shown in the middle panel of Fig 3. The NPS peak for Hr96
decreases from 30.4 to 4.4 cm�1 after applying CNN denoising,
whereas the NPS peak for Hr84-QIR3 is at 15.6 cm�1. The MTFc
results for the bone insert are displayed in the bottom panel of
Figure 3. The spatial frequencies at 10% indicate that both
Hr96-QIR3 and Hr96-CNN, using the sharp kernel, offer bet-
ter MTFc performance than the clinical routine Hr84-QIR3.
The CNN denoising method preserved resolution in the Hr96
sharp kernel, with the 10% MTFc at 36.8 and 38.4 cm�1 for the
CNN and QIR3, respectively.

Sample Images
Figure 4 displays representative images of the modiolus, stapes
footplate, and the incudomallear joint using Hr84-QIR3, Hr96-
QIR3, and Hr96-CNN and highlights the enhanced capability
of CNN denoising at the highest resolution (Hr96) to clearly
delineate each evaluated structure with acceptable noise levels.

FIG 3. Noise textures, NPS, and MTFc for the bone insert from axial slices of the ACR phantom
for Hr84-QIR3, Hr96-QIR3, and Hr96-CNN, displayed under a fixed window and level.
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The CNN effectively reduced image noise by approximately
80% compared with the highest-resolution commercial images
(Hr96-QIR3) and by 50% relative to clinical routine images
(Hr84-QIR3), while demonstrating UHR (as assessed

visually). Compared with the routine images (Hr84-QIR3),
CNN-denoised UHR images (Hr96-CNN) show substan-
tially improved spatial resolution and better delineation of
key anatomic structures.

FIG 4. Representative images of the modiolus, stapes footplate, and incudomallear joint using 3 different reconstructions: Hr84-QIR3, Hr96-
QIR3, and Hr96-CNN (W/L: 4000/1000 HU). Enhanced visualization with improved resolution and reduced noise is demonstrated, as indicated
by the yellow arrows, the Hr96-CNN provides improved delineation of three key anatomic structures. Image noise was quantified by measuring
the SD of CT numbers within a circular ROI placed in a uniform soft-tissue area, with values recorded in the lower left corner of each image.
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Reader Evaluation
Figure 5 shows the results of the reader study. For overall image
quality, Hr96-CNN images were ranked significantly higher
than both Hr84-QIR3 (P , .001) and Hr96-QIR3 (P , .001).
Both readers preferred CNN denoising images for visualization
of all 3 anatomic structures: the modiolus (Hr96-CNN/Hr84-
QIR3/HR96-QIR3: 1/1.8/2.8, P , .001), the stapes footplates
(Hr96-CNN/Hr84-QIR3/HR96-QIR3: 1/1.94/2.88, P , .001), and
the incudomallear joint (Hr96-CNN/Hr84-QIR3/HR96-QIR3:

1/1.64/2.53, P , .001). In both evaluations, equal ranking was
allowed.

Denoising Performance Comparison
Figure 6 presents a sample slice from 1 subject in the test data set,
processed using the conventional Hr96-QIR3, RED-CNN, and
the proposed U-Net, along with their corresponding difference
images compared with the reference input. Both the conventional
and CNN-based denoising methods successfully reduce noise

FIG 5. Rankings from 2 readers regarding overall image quality and delineation of 3 key anatomic structures. For all 3 structures and overall
image quality, CNN-Hr96 images rank the highest. Dull purple indicates the first rank; medium gray, the second rank; gold, the third rank.

FIG 6. Sample slice from the test data set processed with Hr96-QIR3, RED-CNN, and the proposed U-Net, alongside their corresponding differ-
ence images compared with the reference input. The CNN-based methods (RED-CNN and U-Net) primarily reduce noise, while the conventional
Hr96-QIR3 also removes subtle anatomic structures (indicated by the yellow dashed circle). The display window is W/L: 4000/1000 HU for
patient images and 3000/1000 HU for difference images.
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relative to the reference. Specifically, noise levels were reduced
from 572 to 235 HU, 53 HU, and 43 HU using Hr96-QIR3, RED-
CNN, and the proposed U-Net, respectively. As demonstrated in
the difference images, the CNN-based denoising methods pri-
marily remove noise, whereas the conventional method (Hr96-
QIR3) also removes subtle structures, as indicated by the yellow
dashed circle. This observation is further supported by the SSIM
values of 0.7045, 0.9865, and 0.9883 for Hr96-QIR3, RED-CNN,
and U-Net, respectively. Moreover, the comparison between the
RED-CNN and U-Net indicates that the proposed data-prepara-
tion workflow performs effectively across different network archi-
tectures, achieving satisfactory denoising performance while
preserving fine structural details. At the patient-level comparison,
shown in the Table, the proposed U-Net notably improves image
quality. Compared with the conventional method (Hr96-QIR3),
the U-Net significantly reduces image noise (from 204.63 to
47.35 HU) and enhances the SSIM (from 0.72 to 0.99).

DISCUSSION
In this work, the proposed CNN significantly reduced image
noise in UHR PCD-CT, allowing the use of the sharpest kernel
with acceptable noise levels, unlocking the full potential of the
UHR PCD-CT system. This combination of CNN denoising and
UHR PCD-CT substantially enhanced the diagnostic image qual-
ity and improved visualization of critical anatomic structures.

Previous research20,21 demonstrated that the spatial resolution
of PCD-CT was not fully used in routine practice. Graafen et al10

investigated the impact of kernel sharpness on image quality and
concluded that soft reconstruction kernels yielded the best overall
quality for the evaluation of hepatocellular carcinoma in PCD-
CT. The primary reason is the extensive noise associated with
sharper kernels, which can compromise diagnostic clarity.
Although some studies have used noise-reduction techniques,
including deep learning methods, to denoise UHR PCD-CT
images, these efforts have not maximized the use of the sharpest
available kernels. Our approach using CNN denoising allows the
use of the sharpest kernel in the UHR PCD-CT, maintaining
acceptable noise levels and broadening its clinical applicability.
The proposed method is fully based on images from patients’
routine clinical examinations, without the need for additional
low-dose images or any proprietary information. This flexibility
allows the method to be adapted to any scanner. Furthermore,
noise-only images in the workflow were generated from the same
kernel reconstructions at different strengths, making it a kernel-
based approach that can be applied to both smooth and sharp
kernels for various imaging tasks, such as coronary and abdomi-
nal imaging. Additionally, the weight factor in the workflow
allows control over the level of noise reduction, accommodating
the reader’s preference for noise acceptability.

This proof-of-concept study has several limitations. First, the
sample size of 20 testing patient cases was relatively small. Future

research will expand the sample size for more robust statistical
analysis and validation of findings. Second, the study focused
solely on demonstrating image-quality improvement without
targeting specific diagnostic tasks. This focus represents the initial
step in demonstrating the feasibility and potential of the algo-
rithm. Future studies on diagnostic performance and clinical
significance are warranted, including assessing how denoising
affects the visibility of pathologies. Furthermore, the proposed
CNN denoising offers significant potential for radiation dose
reduction while maintaining clinically acceptable image quality.
Because spatial resolution, image noise, and radiation dose are
interrelated, the CNN denoising can be used to either improve
spatial resolution, reduce image noise, or reduce the radiation
dose, or a combination.

CONCLUSIONS
We developed and evaluated a dedicated deep learning–based
denoising method for UHR PCD-CT. This method uses a training
data set sourced from commercially available images, requiring no
additional data preparation. The application of this algorithm in
temporal bone imaging shows high-resolution and low-noise
images with improved anatomic delineation. This advancement
significantly enhances temporal bone visualization by fully using
the spatial resolution capabilities of PCD-CT.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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