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Characteristic Features of MR 
Truncation Artifacts 

815 

Truncation artifacts occur in MR imaging because Fourier transforms are used to 
process MR signal data. These artifacts may alter the intensity, shape, and anatomic 
detail of structures in the spine. Ring artifacts (Gibb phenomenon) occurring near highly 
contrasting interfaces represent but one manifestation of truncation artifacts visible on 
MR images. We review truncation phenomena by providing graphic and phantom models. 
Ways in which truncation artifacts alter the MR appearance of the spine are discussed. 

We found that truncation phenomena are reduced most effectively by using a 256 x 
256 matrix whenever feasible. 

Truncation artifacts (Gibb phenomenon) have been described thoroughly in 
mathematical terms in the physics and engineering literature [1-4]. Certain features 
and examples of the Gibb phenomenon have been explained in the radiologic 
literature [5-8] . The concept of the Gibb phenomenon , however, is not generally 
known to most clinical radiologists. The purpose of this article is to provide a 
practical explanation of the Gibb phenomenon and discuss its importance in 
evaluating MR images for radiologists who are not familiar with this topic . The 
significant features of truncation phenomena relevant to MR imaging include: (1) 
ring artifacts that parallel high-contrast interfaces, (2) artifactual false widening of 
edges at these interfaces , and (3) edge enhancement of the interface with distortion 
of tissues immediately adjacent to the interface. Methods of reducing truncation 
artifacts are discussed. 

Mathematical Description of the Truncation Artifact and Gibb Phenomenon 

Truncation artifacts occur as a direct result of using Fourier transforms to 
reconstruct MR signals into images. MR signals are stored in a data array or matrix 
in the form of free induction decay (FlO) signals or echoes of the FlO [9] . Each 
column of information in the data array has a different frequency imparted by the 
frequency-encoding gradient, and each row of the data array has a different phase 
relationship imparted by the phase-encoding gradient. Two successive Fourier 
transforms (actually inverse Fourier transforms) of the data array are carried out to 
reconstruct the MR data into images. 

By means of Fourier transforms, any object may be represented as a sum of 
multiple sine or cosine waves, each with a given amplitude and frequency [9, 10]. 
The Fourier transform method is most accurate in depicting regions where there is 
a gradual change in signal intensity. The use of Fourier transforms to describe a 
region where there is an abrupt change in signal intensity results in imprecise 
representation of the interface and tissues immediately adjacent to the interface. 
This imprecision is represented on the images by truncation phenomena. 

An abrupt change in the signal intensity of a region of tissue can be represented 
graphically by the "step function " shown in Figure 1 A. The vertical line between the 
zones of high and low signal intensi ty represents a high-contrast interface on an 
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Fig. 1.-A, Graphic representation of step function shows abrupt transition in signal intensity. Vertical line between step of high and low signal intensity 
represents discontinuity in function or interface in image. 

B, Step function is shown when Fourier transforms are used to reconstruct image from finite (truncated) data series. Oscillating functions composed of 
overshoots and undershoots occur on either side of interface and are connected by sloping line passing through interface. The function plotted is a sine 
integral (Sl) function , the oscillating components of which are generated by sinc functions in the reconstruction process. The difference between the sine 
integral function and the ideal step function is truncation artifact. 

MR image. In mathematical terms, this interface is called a 
discontinuity. 

The use of Fourier transforms results in imprecise repre­
sentation of the discontinuity, which is shown in Figure 1 B. In 
this figure , the step function is present but superimposed on 
it is another function with peaks and valleys that overshoot 
and undershoot the intensity of the object on either side of 
the interface. 

A more detailed view of the oscillating function on one side 
of the interface is seen in Figure 2. Note that the first peak 
(primary maximum) overshoots the ideal intensity line to a 
greater degree than successive peaks and valleys do. A 
similar oscillating function is generated on the low-intensity 
side of the interface, as seen in Figure 1 B. The sum total of 
the oscillating functions on either side of the interface and the 
sloping , nearly vertical line passing through the ideal interface 
is called a sine integral function . This function is the graphic 
representation of the object and includes truncation artifact. 
The difference between the ideal step function and the sine 
integral function shown in Figure 1 B is truncation artifact. 

Each peak and valley of the sine integral function will 
correspond to a band of high and low intensity on MR images. 
The first peak adjacent to the interface always overshoots 
the ideal intensity line to a greater degree than subsequent 
peaks do. In similar fashion , the first valley on the low-intensity 
side of the interface undershoots the ideal intensity line to a 
greater degree than subsequent valleys do. 

The term Gibb phenomenon refers to the fact that the initial 
overshoot on either side of the interface (primary maximum 
and primary minimum) will persist with an amplitude of 9% of 
the step function height [5-7] , even if an infinite Fourier series 
is used. Therefore, the Gibb phenomenon can never be 
completely eliminated even if the data matrix was made 
infinitely large. In the literature, the concept of Gibb phenom­
enon has sometimes been broadened to include all fluctua­
tions in signal intensity near a high-contrast interface, but this 
is not accurate because, in the strict sense, it only refers to 
the first fluctuation in intensity on either side of the interface 
[1 , 7] . 

The term truncation artifact is used because the Fourier 
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Fig. 2.-Graph of sine integral function generated on high-intensity side 
of high-contrast interface. The function is oscillating, passing above and 
below the ideal intensity of the object (step function). The highest peak is 
called a primary maximum or first overshoot and successive peaks dimin­
ish in amplitude with distance from the interface. The first peak overshoots 
the ideal intensity line by 9%. 

series used to reconstruct the signal is not infinite but rather 
is limited or "truncated" because only a finite amount of data 
is stored in the matrix (e.g., 128 phase-encoding steps and 
256 frequency-encoding steps for a 128 x 256 matrix). 

The origin of truncation artifacts in two-dimensional Fourier 
transformation MR imaging is best understood by using a 
mathematical approach . The FID signals obtained from a 
volume of tissue are functions of time. Phase- and frequency­
encoding the FID signal effectively converts this function of 
time into a function of frequency , the components of which 
are stored in the raw data matrix in rows and columns. The 
number of frequency (spectral) components stored in the 
matrix is limited by the size of the image matrix selected . 

The truncated data can be written 

f,(w) = f(w) x g(w), (1 ) 

where f,(w) represents the truncated frequency spectrum and 
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f(w) is a function representing the potentially infinite number 
of frequency components contained in the FlO. The quantity 
g(w) is called a "gate" or "window" function [2] . It is a 
rectangular function of frequency that "recognizes" only fre­
quency components in f(w) that are within a certain range, 
and discards all others. The frequency range is limited by the 
sampling frequency . A window function is established in the 
frequency domain each time the image matrix size is selected. 
When a larger image matrix is selected , more frequency 
components contained in f(w) are recognized because the 
rectangular window is made larger , and the amount of data 
stored in the matrix will increase accordingly , thereby improv­
ing the representation of the object. 

The window function g(w) represents the source of trun­
cation artifacts in Fourier transform MR imaging . This can be 
understood by reconstructing one dimension , for example the 
"rows" of the data matrix. The Fourier reconstruction of a 
function f(t) from truncated data is obtained by taking the 
inverse Fourier transform of equation 1, which results in the 
formula: 

f,1(t) = f(t) * F- 1 [g(w)]. (2) 

Stated in words , this equation says that the reconstructed 
function , f~t) , obtained from truncated data is made of two 
intertwined (convolved) components: f(t) , which is the function 
describing the precise wave shape and intensity of an object 
had an infinitely long Fourier series been used, and g(w), the 
inverse Fourier transform of the window function. A mathe­
matically imprecise but practical way of stating equation 2 is: 
object appearance in MR image = ideal appearance of object 
+ truncation phenomena. 

In equation 2, the inverse Fourier transform of the window 
function is called a sinc function, and has the form sinc x = 

(sin 7r x)/7f'X , where x in this example is a product of frequency 
and time (x = wt). This sinc function is an oscillating sinusoidal 
function and it introduces the fluctuation in signal intensity 
seen on MR images, near high-contrast interfaces. The sinc 
function is the mathematical representation of truncation ar­
tifact. 

However, the position of the truncation artifacts (fluctua­
tions in Signal intensity) in the image is not represented 
precisely by a sinc function , but rather by an integral of the 
sinc function , the sine integral function [2]. This is because 
the signal output is expressed in terms of a convolution of 
two functions of time in equation 2, but this equation cannot 
be solved in this form. To solve equation 2, it must be rewritten 
as a so-called convolution integral, which for a step function 
is given by: 

f,(t) = V2 + 1/7r J X sinc x dx, (3) 

where x = wt (i.e ., frequency x sampling time) . The recon­
structed signal is now expressed as a sine integral function. 
When equation 3 is solved, the result is a distribution of signal 
intensities at different frequencies. Because the strength of 
the read-out gradient is known across the object , the spatial 

distribution of signal intensities can be plotted for the step 
function as in Figure 1 B. 

Analytically , it can be shown that the function in equation 3 
changes polarity in the image; that is , crosses the ideal 
intensity line in Figure 2, whenever the product wt = 1. This 
happens whenever the frequency (w) of the output signal 
increases by an amount equal to 1/t, where t = sampling 
time. In terms of the image this occurs at a distance of every 
n7r radians (where n = 1,2,3 . .. ). 

Since the wavelength L of an oscillating function with a 
constant frequency of oscillation is always a distance of 27f' 
radians , the peaks and valleys (maxima and minima) of the 
sine integral function always occur at distances from the 
interface that are multiples of 7r (Fig. 2) . Because pi xel diam­
eter (PO) is defined as PO = FOV/N (FOV = field of view, N 
= matrix size) and L = 2 x PO, then a 1-pixel diameter is a 
distance of 17f' radians from the interface. Therefore, the 
peaks and valleys of the sine integral function always occur 
at distances from the interface that are integer multiples of 
the pixel diameter, regardless of field of view or matrix. It is 
the pixel diameter that determines the width and spacing of 
the truncation bands seen on MR images. It is apparent from 
Figure 2 that each peak or valley is slightly less than 1 pixel 
in width (measured as the width of each peak at one-half its 
height). The effect of decreasing pixel diameter is to compress 
the oscillating function toward the interface (i.e ., narrowing 
the width of each peak and valley thereby crowding them 
closer together [2]) . 

Materials and Methods 

Truncation phenomena were studied with a computer simulation 
to display graphically the sine integral function , which is the mathe­
matical function describing object appearance including truncation 
artifact. The sine integral function was generated for 128 x 256 and 
256 x 256 matrices, for one interface and for two interfaces separated 
by a variable distance. The distance between the interfaces ranged 
from two to four wavelengths of the sine integral function (the 
interfaces were separated by 4-8 pixels). 

The MR appearance of the truncation artifacts was studied in a 
phantom made with three test tubes with inner diameters of 6, 8, and 
11 mm. The test tubes were filled with normal saline and the tubes 
were placed in normal saline-containing gelatin . MR scans of this 
phantom were obtained by using a 1.5-T MR scanner" with spin-echo 
techniques, 2000/20-80 (TRITE range) , a standard head coil, 128 x 
256 and 256 x 256 matrices, 20- and 24-cm fields of view, and 5-
mm slice thicknesses. 

Results 

The plot generated by a sine integral function produced at 
a single discontinuity interface is seen in Figure 2. Note that 
the function initially overshoots the intensity of the object by 
approximately 9%. This is represented by the primary maxi­
mum or first peak. The first minimum (valley) is lower in signal 
intensity than the object. Successive peaks and valleys dimin­
ish in amplitude with increasing distance from the interface . 

" General Electric Medical Systems , Milwaukee, w I. 
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Note that the maximum overshoot (or undershoot) occurs at 
a distance of precisely V2 pixel from the interface. The first 
minimum occurs precisely 1 pixel from the interface and so 
on. The plot shown in Figure 2 is a graphic description of 
truncation phenomena that occur when Fourier transforms 
are used to describe a discontinuity. This is well known in the 
physics and engineering literature [1 , 2, 7] . 

The sine integral functions generated by two boundaries 
are shown in Figure 3A. When two boundaries of high contrast 
are separated by 4 pixels, the sinc functions generated by 
these two boundaries overlap maximally. The function result­
ing when two sine integral functions are generated and 
summed together is shown in Figure 38 . Note that the central 
valley passes beneath the ideal intensity line and two promi­
nent peaks are adjacent to either interface above the ideal 
intensity line. The implication of this observation is that a 
prominent band will appear midway between the boundaries, 
which is lower in intensity than the adjacent tissue. The two 
peaks above the ideal intensity line on either side of midline 
indicate that bands of higher signal intensity than that of the 
actual tissue will occur on either side of the midway point , 
which distorts the signal intensity of the tissue in this region . 

The oscillating function that results when two boundaries 
are placed farther apart (4.5 pixels) is plotted in Figure 4A. 
The summation of these two functions is plotted in Figure 48 . 

Note that the central valley in this case is wider than that 
shown in Figure 38 and has diminished amplitude. In a similar 
fashion , the two peaks located above the ideal intensity line 
are wider compared with the situation demonstrated in Fig­
ure 3A. 

When the boundaries are moved 8 pixels apart , the over­
lapping sine integral functions generated by each boundary 
(Fig. 5A) produce the summation function plotted in Figure 
58. In this situation there are now four peaks above the ideal 
intensity line and three valleys below it. However, none of the 
valleys (minima) have as large an amplitude as that demon­
strated in Figure 38. Therefore, the maximum overlap of the 
sine integral function , produced by two boundaries, occurs 
when the distance between the boundaries is precisely 4 
pixels. 

The phantom study with test tubes of variable diameters 
illustrated the same features of the Gibb phenomenon as the 
computer simulation did . On the MR images of the phantom, 
alternating bands of high and low signal intensity parallel the 
edges of the test tube. They become less apparent at greater 
distances from the test tube (Fig . 6). The bands are most 
conspicuous in the direction of the phase-encoding axis be­
cause only 128 phase-encoding samples (views) are obtained 
in the phase-encoding direction with a 128 x 256 matrix. 
When the matrix size is changed to 256 x 256 , the bands 

Fig. 3.-lntensity vs distance graphs 
of two sine integral functions gener­
ated by interfaces separated by 4 pix­
els. 

A, Two sine integral functions are 
generated, one by each interface. 

B, The two functions in A are 
summed and plotted. The valley ex­
tending below the ideal intensity line 
midway between the interfaces corre­
sponds to a midline truncation band. 
The two peaks on either side of midline 
cause tissue in this region to have 
higher signal intensity than ideal tissue 
would have . 

..... ·1----4 Pixels---'" ....... -- 4Pixe/s--......j~ 

A 
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A 

8 
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Fig. 4.-lntensity vs distance plots 
of two sine integral functions gener­
ated by interfaces separated by 4.5 
pixels. 

A, Sine integral functions generated 
between interfaces are displayed. 

B, These functions are summed and 
plotted. Note that the two peaks above 
the ideal intensity line and centrally lo­
cated valley have diminished in ampli­
tude slightly but are wider than those 
seen in Fig. 38. 
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A B 
Fig. 5.-lntensity vs distance graphs of sine integral functions generated between interlaces separated by 8 pixels. 
A, The two sine integral functions generated are plotted. 
B, The summation of the two functions is plotted. At this interboundary spacing, four peaks extend above ideal intensity line and three peaks extend 

below it; each corresponds to alternating bright and dark truncation bands seen on MR images. The amplitudes of the peaks closest to the interlaces are 
similar in Figs. 3B, 4B, and 5B. However, the secondary peaks and valleys have progressively decreased in amplitude due to cancellation. 

1 2 3 

Fig. 6.-Spin-echo images, 2000/20, of test tube phantom. Test tubes 
1, 2, and 3 have inner diameters of 6, 8, and 11 mm, respectively. 

Top , 128 x 256 matrix with left-to-right phase-encoding axis. 
Bottom, 256 x 256 matrix. Truncation bands are less apparent with 256 

x 256 matrix. The bands diminished in intensity with increasing distance 
from the outer margin of the test tubes. 

become thinner and less apparent and appear closer to the 
edges of the test tubes. Also notice that the walls of the test 
tube appear thinner in the direction of the phase-encoding 
axis as the phase-encoding steps are increased from 128 to 
256. 

The effect of altering interboundary spacing is also shown 
in the test tube phantom (Fig. 6). In the top row, test tube 2 

o 

Fig. 7.-Transverse spin-echo images of test tube phantom with phase­
encoding axis up and down. 

Top, 128 x 256 matrix. Central truncation band has slightly oval config­
uration and is most pronounced in test tube 2. Diameter of ovoid artifact 
is greater perpendicular to phase-encoding axis. It is of lower intensity in 
test tube 3 than in test tube 2. The shape of the test tube wall is distorted 
along superoinferior phase-encoding axis. Bright truncation ring adjacent 
to test tube wall imparts edge-enhancing effect. 

Bottom, 256 x 256 matrix. Truncation artifacts are symmetric and less 
conspicuous. 

contains a thinner and darker central band than is seen in 
test tube 3 because the inner diameter of test tube 2 is 
approximately 7.5 mm, which represents a distance of 4 pixels 
when a 128 x 256 matrix and 24-cm field of view are used. 
The change in appearance of the central dark band seen in 
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Fig. 8.-MR images 2000/20, of test tube phantom with 24-cm (top) and 
20-cm (bottom) fields of view. Effect of decreasing field of view is to 
decrease pixel diameter. Bottom image has more truncation bands be­
tween test tube walls. 
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test tubes 2 and 3 correlates with the configuration of the 
central valley seen in the plots shown in Figures 3B and 4B. 
In other words, the central dark band widens but diminishes 
in amplitude as the interboundary distance changes from 4 to 
4.5 pixels. 

With a 256 x 256 matrix, there are several faint alternating 
low- and high-signal bands within the test tubes (Fig. 6, 
bottom row, test tube 2). These bands appear thinner and 
less intense because the pixel diameters have been reduced 
by one-half by increasing matrix size from 128 x 256 to 256 
x 256. Therefore, increasing matrix size has an effect similar 
to increasing the distance between boundaries from 4 to 8 
pixels (Fig. 5). 

Figure 7 shows truncation artifacts in the test tube phantom 
imaged transversely (axial plane). Note that a 128 x 256 
matrix results in an asymmetric appearance of the truncation 
bands or rings . The rings appear more evident in the direction 
of the phase-encoding axis. The central dark band has an 
ovoid configuration. In addition, the walls of the test tubes 
are thicker along the phase-encoding axis (128 steps) com­
pared with the frequency-encoding direction (256 samples). 
When the matrix size is changed to 256 x 256, the truncation 
artifacts are less conspicuous and appear symmetrically 
around and within the test tube. In addition, the wall of the 
test tube is of uniform thickness with the 256 x 256 matrix. 

The effect of changing the field of view is shown in Figure 

c 
Fig. g.-A , Diagram of cord/CSF interlace for T1-weighted image where CSF has lower signal intensity than cord. Sine integral functions generated at 

each interlace are shown and reinforce one another between the two interlaces. The small valley (arrow) projecting below ideal intensity of cord produces 
central dark truncation band seen in B. 

B, Sagittal T1-weighted image of cervical spine with 128 x 256 matrix. Peaks above ideal intensity line make cord appear brighter on either side of 
central dark band (anteroposterior phase-encoding direction). 

C, 256 x 256 matrix. Truncation bands are not apparent. Anteroposterior diameter of cord appears smaller in B than in C. 



AJNR:9. September/October 1988 MR TRUNCATION ARTIFACT 821 

INTENSITY 

-4pixe/s 

DISTANCE 

A B c 
Fig. 10.-A , Signal intensities of cord and CSF for T2-weighted image. In this case, overlapping sine integral functions between cord interlaces are 

reversed when compared with Fig. 9A. A central peak (arrow) extends above ideal intensity line of cord, and two valleys are seen on either side of central 
peak. 

e, Sagittal T2-weighted image of cervical spine shows bright, centrally located truncation band (large arrows) in cord corresponding to midline peak 
seen in A. Signal intensity of cord (small arrows) on either side of this central bright band is darker than it should be because of undershoot on either side 
of central peak, shown in A. 

C, Same parameters as e except for 256 x 256 matrix. Central bright truncation band disappears, leaving thin strip of high signal intensity in cord 
anterior to midline representing central gray matter. Anteroposterior diameter of spinal cord appears smaller in e than in C. 

I"lg. 11 .-Sagittal T1-weighted image, 800 /20, 
of cervical spine obtained with a 24-cm field of 
view and 128 x 256 matrix with anteroposterior 
phase-encoding axis in spine. Note dark truncat ion 
bands (arrows) altering signal intensity of marrow 
in these vertebral bodies. Also note faint, dark, 
centrally located truncation band in spinal cord. 
Incidentally, disk material protrudes into ventral 
aspect of spinal canal at C3-C4, C4- C5, and C5-
C6levels. 

Fig. 12.-Single-slice gradient-echo images, 100/ 12, with a 24-cm field of view, 30 0 flip angle, 
and up-and-down phase-encoding axis. 

A, 128 x 256 matrix. Note bright ovoid truncation artifact in spinal cord. Surrounding this is ring of 
lower signal intensity (arrows) representing initial " undershoot" adjacent to interlaces. 

e, 256 x 256 matrix. Artifact is less evident. Anteroposterior diameter of cord in A appears smaller 
than in e. 
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A B 

8. Figure 8, top row, was obtained with a 24-cm field of view 
and is identical to Figure 6, top row. Figure 8, bottom row, 
was obtained with a 20-cm field of view, the other parameters 
being identical. Here, test tube 1 contains a prominent dark 
central truncation band , whereas test tubes 2 and 3 contain 
several bright and dark truncation bands. Therefore, the effect 
of decreasing the field of view is the same as increasing the 
interboundary spacing and is similar to that graphically shown 
in Figures 3 and 5. 

Discussion 

A test tube phantom is not a perfect phantom for demon­
strating truncation artifacts because the test tube walls have 
thickness, and therefore both the outer and inner walls of the 
test tube represent four high-contrast interfaces in proximity. 
Therefore, the truncation effects produced by these four 
interfaces are not identical to the situation simulated graphi­
cally by the computer. However, the test tubes do illustrate 
the effect of altering matrix size, field of view, and changing 
interboundary spacing as predicted by the computer-gener­
ated plots. 

In reality , MR images depict body tissues composed of 
many high- and low-contrast interfaces. The sine integral 
functions generated by these multiple interfaces summate 
and tend to reinforce or cancel each other to give the overall 
truncation effect seen on the MR image. The maximum trun­
cation effect occurs midway between two interfaces when 

Fig. 13.-Sagittal proton-density-weighted im­
ages, 2500/20, of thoracolumbar spine with 24-cm 
field of view and 128 x 256 matrix. 

A, Phase-encoding axis is anteroposterior in 
spine. Anterior and posterior cortical margins of 
vertebral bodies and adjacent ligaments appear 
thickened (straight arrows) relative to the same 
margins in B. Margins of dural sac are also thick­
ened (curved arrow). 

B, Superoinferior phase-encoding axis. Verte­
bral endplates appear thickened. Also, faint trun­
cation bands are seen in marrow (arrowheads) 
that parallel vertebral end plates. Posterior dural 
sac margin is thinner (curved arrow). 

the distance between the interface is precisely 4 pixels (Fig . 
3). One example is the highly contrasting interfaces between 
CSF and spinal cord on T1-weighted cervical spine MR im­
ages. When the distance between anterior and posterior 
margins of the cord is approximately 4 pixels (depending on 
field of view and matrix size), a midline truncation band is 
apparent in the cord (Fig. 9). A central truncation band is dark 
compared with the cord on T1-weighted images because the 
CSF is dark [11] . This situation is shown schematically in 
Figure 9A. The sum of the sine integral functions generated 
by each cordjCSF interface is negative midway between the 
interfaces and is negative in amplitude relative to the true 
tissue intensity of the cord. The central truncation band will 
never be as dark as CSF, however, because the amplitude of 
the function is never greater than 9% of the signal-intensity 
difference at the cordjCSF interface. The dark truncation band 
within the cord on a 128 x 256 matrix may be confused with 
a syrinx [11] . This truncation band is not apparent when the 
matrix size is changed to 256 x 256 (Fig . 9C). 

The opposite situation is seen whenever the CSF is of 
higher signal than the cord, such as on a T2-weighted image 
of the cervical spine (Fig. 10). This situation is shown sche­
matically in Figure 10A. Note that the summated sine integral 
functions result in a central peak above the real intensity line 
midway between the cord/CSF interfaces when the distance 
between the interfaces is 4 pixels. This results in the relatively 
bright truncation band seen midline in the cord in Figure 10B. 
This central truncation band should not be confused with the 



true central gray matter, which is seen on midsagittal images 
of the cord as a thin stripe of high signal anterior to cord 
midline when a 256 x 256 matrix is used (Fig. 1 dc) [11]. It is 
obvious from these two examples that the central truncation 
band between two interfaces always reflects the signal inten­
sity of the tissue outside the interfaces but not to the same 
degree of intensity. There are other situations in which trun­
cation bands distort the signal intensity of other tissues in the 
spine such as the intervertebral disk and bone marrow (Fig . 
11 ). 

Other features of truncation phenomena relevant to MR 
imaging have not been stressed in the literature. For example, 
truncation artifacts impart an edge-enhancing characteristic 
to any high-contrast interface. This edge-enhancing effect is 
due to the presence of the first large peak or valley adjacent 
to the interface. This can be seen schematically in Figure 10A. 
Note that the summed function dips below the intensity of 
the cord on either side of the cord midline. This results in an 
abnormally low signal intensity of the cord between the central 
bright truncation band seen in Figure 1 DB and the cordjCSF 
interface. Similarly, the CSF adjacent to the cord is brighter 
than in reality because of the overshoot of the sine integral 
functions seen in Figure 10A. The truncation bands in the 
CSF, however, may not be apparent depending on the win­
dow levels and widths selected . The initial overshoot and 
undershoot on either side of the interface cannot be eliminated 
even by increasing the matrix infinitely (refer to the mathe­
matical description of Gibb phenomenon). Therefore, this 
edge-enhancing feature of truncation phenomena cannot be 
eliminated completely. Increasing matrix size will diminish the 
width of the undershoot and overshoot adjacent to the inter­
face and thereby narrow the band of enhancement (compare 
Figs. 1 DB and 1 ~C). lhis edge-enhancing feature of truncation 
phenomena does not necessarily result in better definition of 
the interface. In fact, this edge enhancement distorts normal 
anatomic detail and may alter the apparent size of the object. 
For example, in Figures 9, 10, and 12, the anteroposterior 
diameter of the spinal cord appears smaller than normal 
because the CSF adjacent to the spinal cord margins is 

Fig. 14.-Coronal images, 800/20, of vertebral 
body phantom. Centrally located intervertebral 
disk was removed and phantom immersed in bath 
of saline and copper sulfate. Image parameters 
were 20-cm field of view, right-to-Ieft phase-en­
coding axis, and 128 x 256 (A) and 256 x 256 (B) 
matrices. Lateral cortical margins (long arrows) of 
vertebral bodies are thicker in A than in B. How­
ever, thickness of vertebral endplates is the same 
in A and B. Note centrally located truncation arti­
fact in mid intervertebral disk space (short ar­
rows). 
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brighter than normal , especially when a 128 x 256 matrix is 
used. 

Truncation artifacts may also cause high-contrast inter­
faces (such as cortical bone edges) to appear thicker than in 
reality, because the sine integral function has a sloping line 
that extends through the actual interface (Fig. 1). This sloping 
line through the interface has a more vertical orientation with 
increased matrix size and therefore more accurately depicts 
the actual width of the boundary when the pixel diameter is 
smaller. False thickening and blurring of edges are seen 
readily adjacent to cortical bone such as vertebral body 
margins, vertebral endplates, ligaments, and margins of the 
dural sac (Figs. 13 and 14). 

Minimizing Truncation Artifacts in MR Imaging 

Ways of minimizing truncation artifacts have been de­
scribed [5, 6] . One method is decreasing pixel diameter, which 
can be accomplished either by increasing matrix size or by 
decreasing the field of view. With smaller pixel diameters 
edge detail is more accurately demonstrated on MR images 
(Fig. 14) and the truncation bands are less obvious. However, 
increasing the matrix size has the same effect as increasing 
the distance between two interfaces; that is, multiple trunca­
tion artifacts are seen between the boundaries but the inten­
sity and width of the truncation bands diminish (Figs. 5 and 
6). If the data matrix could be made infinitely large, all sec­
ondary peaks and valleys would cancel each other completely. 
However, the initial overshoot (or undershoot) of the sine 
integral function on either side of the interface always persists . 
Gibb phenomenon can never be completely eliminated even 
with an infinite Fourier series [1 , 7] . 

Another method of minimizing the effects of truncation 
artifacts is to filter the raw data. In the literature, this is 
sometimes called apodization [12, 13]. The raw data are 
collected and stored in the frequency domain. A mathematical 
filter, which is a function of frequency , is applied to the raw 
data to remove high-frequency information. Examples of such 
high-frequency filters go by such names as "Hamming win­
dow," "Hanning window," or "triangular window. " These high-

B 
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frequency filters either eliminate or partially eliminate the 
secondary maxima and minima of the sine integral function. 
However, filtering often does not eliminate the primary over­
shoot and undershoot. In fact, the width of the first peak may 
be increased by filtering [12 , 13]; in addition, filtering results 
in a more gradual slope of the sine integral function through 
the interface, and this results in a loss of spatial resolution; 
that is, image blurring (Figs. 15 and 16). Filtering has uses in 
Fourier spectroscopy but because of image blurring is not 
practical for MR imaging. 

Truncation artifacts may also be reduced by altering win­
dow levels and window widths. The visualization of certain 
tissues of interest may be affected as well. 

In summary, truncation artifacts may distort MR images in 
several ways, including (1) artifactual bands altering the signal 
intensity of tissue, (2) blurring and widening of high-contrast 
interfaces, (3) distortion of the size and shape of certain 
objects, and (4) edge enhancement and distortion of high­
contrast interfaces. 

The effects of truncation phenomena are most effectively 
reduced by increasing matrix size. Therefore, the use of a 
256 x 256 or larger matrix is recommended for MR imaging 
whenever feasible . 
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