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ORIGINAL RESEARCH
SPINE

Spinal Cord Gray Matter Atrophy in Amyotrophic Lateral
Sclerosis

X M.-Ê. Paquin, X M.M. El Mendili, X C. Gros, X S.M. Dupont, X J. Cohen-Adad, and X P.-F. Pradat

ABSTRACT

BACKGROUND AND PURPOSE: There is an emerging need for biomarkers to better categorize clinical phenotypes and predict progres-
sion in amyotrophic lateral sclerosis. This study aimed to quantify cervical spinal gray matter atrophy in amyotrophic lateral sclerosis and
investigate its association with clinical disability at baseline and after 1 year.

MATERIALS AND METHODS: Twenty-nine patients with amyotrophic lateral sclerosis and 22 healthy controls were scanned with 3T MR
imaging. Standard functional scale was recorded at the time of MR imaging and after 1 year. MR imaging data were processed automatically
to measure the spinal cord, gray matter, and white matter cross-sectional areas. A statistical analysis assessed the difference in cross-
sectional areas between patients with amyotrophic lateral sclerosis and controls, correlations between spinal cord and gray matter
atrophy to clinical disability at baseline and at 1 year, and prediction of clinical disability at 1 year.

RESULTS: Gray matter atrophy was more sensitive to discriminate patients with amyotrophic lateral sclerosis from controls (P � .004)
compared with spinal cord atrophy (P � .02). Gray matter and spinal cord cross-sectional areas showed good correlations with clinical
scores at baseline (R � 0.56 for gray matter and R � 0.55 for spinal cord; P � .01). Prediction at 1 year with clinical scores (R2 � 0.54) was
improved when including a combination of gray matter and white matter cross-sectional areas (R2 � 0.74).

CONCLUSIONS: Although improvements over spinal cord cross-sectional areas were modest, this study suggests the potential use of
gray matter cross-sectional areas as an MR imaging structural biomarker to monitor the evolution of amyotrophic lateral sclerosis.

ABBREVIATIONS: ALS � amyotrophic lateral sclerosis; ALSFRS-R � arm-revised ALS Functional Rating Scale; CSA � cross-sectional area; GMCSA � gray matter
cross-sectional area; SC � spinal cord; SCCSA � spinal cord cross-sectional area

Although amyotrophic lateral sclerosis (ALS) remains a rela-

tively rare disease (median incidence rate was 2.08 per

100,000 in Europe for 2010,1 the loss of autonomy, short survival

rate (median survival from onset, 23–52 months),1,2 and lack of

proper treatment motivate the development of robust biomarkers to

better categorize clinical phenotype and improve prognosis.3,4 Com-

mon clinical manifestations include muscle weakness or clumsiness,

atrophy, cramps, fasciculations, dysphagia, dysarthria, and respira-

tory symptoms such as dyspnea, orthopnea, and respiratory failure.2

Because the clinical presentation and progression rate are highly het-

erogeneous,5 it remains challenging to identify the true biologic ef-

fects of drug testing in clinical trials. Exploring new processing meth-

ods and hypotheses would promote a greater understanding of the

physiopathologic processes.6 In particular, imaging biomarkers of

the spinal cord (SC) can potentially provide a relevant measure of the

degeneration of lower motor neurons.3,4

A recent study showed that spinal cord cross-sectional area

(SCCSA) measured with MR imaging improves prediction of the

arm-revised ALS Functional Rating Scale (ALSFRS-R) subscore at

1 year.3 Another study7 established a strong link between SCCSA

and the degeneration of lower motor neurons. The main limita-
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From the Faculté de Médecine (M.-Ê.P.) and Functional Neuroimaging Unit,
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S.M.D., J.C.-A.), Montreal, Quebec, Canada; Sorbonne Universités (M.M.E.M., P.-F.P.)
UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, Paris,
France; Department of Neurology (M.M.E.M.), Icahn School of Medicine, Mount
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tion of these studies is that they looked at cord atrophy, hindering

the separation of the specific contribution of GM and WM atro-

phy. Recent advances in analysis tools for segmenting the SC GM8

now permit such exploration.

The objective of the present study was to quantify spinal GM

atrophy in ALS and to investigate its association with clinical dis-

ability at baseline and after 1 year.

MATERIALS AND METHODS
Patients
Twenty-nine patients with ALS and 22 age-matched controls were

recruited at the ALS Center of the Pitié-Salpêtrière Hospital in Paris,

France. Patients with ALS were diagnosed with probable (n � 20),

laboratory probable or definite (n � 9) ALS according to the El Es-

corial criteria.9 Exclusion criteria included important acute and

chronic medical conditions interfering with the clinical evaluation,

significant psychiatric or neurologic history (other than ALS for pa-

tients), and standard contraindications to MR imaging. Controls had

no known neurologic disorder and no family history of neurologic

diseases, and they were recruited to identify MR imaging markers in

the SC that distinguish them from patients with ALS. The study was

reviewed by the local ethics committee board, and written informed

consent was obtained from each participant.

The following clinical assessments were conducted on patients

with ALS: ALSFRS-R (total score and arm subscore [arm subscore

included evaluation of handwriting, cutting food, and handling

kitchen utensils]),10 manual muscle testing (7 proximal and distal

muscles of the arm were tested) by using the Medical Research

Council score. The progression rate at baseline of the ALSFRS-R

score was defined as � by the following equation:

� � �ALSFRSMax � ALSFRSMRI�/�

where ALSFRSMax � 48, corresponding to the maximum ALSFRS-R

score (ie, that of a healthy control); ALSFRSMRI is the ALSFRS-R

score at the time of MR imaging; and � is the delay (in months)

between the first symptoms and the time of MR imaging. The pro-

gression rate � thus corresponds to the “speed” of the progression of

the disease at the time of MR imaging (ie, baseline).

ALSFRS-R and manual muscle testing were performed on the

same day as the MR imaging acquisition. Clinical evaluation was

performed by an experienced neurologist specialized in ALS

(P.-F.P., 15 years’ experience).

One patient with ALS was excluded from the study because the

MR imaging acquisition was interrupted for medical reasons, and

3 patients were excluded because of excessive motion during ac-

quisition. The total number of patients used in this study was 25.

Table 1 lists demographic data, Table 2 lists clinical data com-

monly used for prognosis, and Table 3 lists clinical scores at base-

line and 1 year after.

MR Imaging Acquisition
Data were acquired on a 3T MR imaging system (Tim Trio; Sie-

mens, Erlangen, Germany) by using the product 12-channel head,

4-channel neck, and the 3 most rostral elements of a spine coil for

signal reception.

A 3D T2-weighted fast spin-echo sequence (sampling perfection

with application-optimized contrasts by using different flip angle

evolution, or SPACE) was acquired as an anatomic image for subse-

quent registration to a common template (see “Data Processing” sec-

tion). Parameters were: TR, 1500 ms; TE, 120 ms; 52 sections; field of

view, 280 � 280 mm2; voxel size, 0.9 � 0.9 � 0.9 mm3; acceleration

factor, R � 2; and acquisition time, 3 minutes.

An axial 2D T2*-weighted multiecho gradient-echo sequence

(multiecho data image combination, or MEDIC; Siemens propri-

etary sequence) was acquired for GM cross-sectional area

(GMCSA) measurements thanks to the good white-to-gray mat-

ter contrast available in this type of sequence. Parameters were:

TR, 470 ms; average TE, 17 ms; 23 sections; field of view, 180 �

Table 1: Demographic data for the 25 patients with ALS and the
22 healthy controls

Characteristics Controls

Patients with
ALS

At Baseline

1-Year
Follow-Up
Subgroup

Number 22 25 19
Sex 11 F/11 M 6 F/19 M 3 F/16 M
Age at baseline, yr � SD 50.9 � 13.0 53.3 � 10.1 52.8 � 9.2

Note:—F indicates female; M, male.

Table 2: Clinical data commonly used as prognostic factors for the 25 patients with ALS

Clinical Data

Patients with ALS

Baseline 1-Year Follow-Up Subgroup
Body mass index at MRI (� SD) 23.7 � 2.7 24.0 � 2.7
Familial transmission 2 SOD1 mutated 1 SOD1 mutated
Site of onset 1 bulbar; 18 upper; 6 lower 1 bulbar; 12 upper; 6 lower
Delay from first symptom to diagnosis, mo � SD 9.9 � 5.6 10.7 � 6.0

Note:—SOD1 indicates SuperOxide Dismutase 1 gene.

Table 3: Clinical scoresa

ALSFRS-R MMT

At MRI
Progression Rate at

MRI Per Month At 1 Year after MRI At MRI
Total score, mean � SD (/maximum) 37.96 � 6.06 (/48) 0.59 � 0.45 36.79 � 4.84 (/48) 114.46 � 24.36 (/140)
Arm subscore, mean � SD (/maximum) 5.11 � 2.20 (/8) 0.18 � 0.14 5.74 � 2.10 (/8) 53.71 � 12.25 (/70)

Note:—MMT indicates manual muscle testing.
a Clinical scores are presented both in total (top row) and for the upper limbs only (arm subscore, bottom row). Presented clinical scores are, from left to right: the revised
ALSFRS-R at the time of MRI, ALSFRS-R progression rate at MRI, ALSFRS-R at 1 year after MRI, and MMT at MRI. The progression rate represents the decline of ALSFRS-R score
per month between the first onset of symptoms and the MRI.
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180 mm2; voxel size, 0.7 � 0.7 � 3 mm3; acceleration factor, R �

2; acquisition time, 3 minutes; and intersection gap, 1.5 mm.

Acquisition parameters and .edx protocols can be down-

loaded from the Open Science Framework public repository

(https://osf.io/9xkxx/).

Data Processing
All data were processed by using the open-source software Spinal

Cord Toolbox v3.0.11 All processing commands are available at the

Open Science Framework public repository. In brief, T2-weighted

and T2*-weighted images were automatically registered to a com-

mon template image, which was generated in a previous study by

averaging spinal cord MRIs from 50 adult subjects.12,13 The T2-

weighted image was used to precisely identify vertebral levels, and the

T2*-weighted image was used to automatically measure the GMCSA

thanks to its good white-to-gray matter contrast. Figure 1 illustrates

the processing pipeline, which can be broken down into 7 steps:

1) The spinal cord was automatically segmented by using

“PropSeg”14 on T2-weighted and T2*-weighted images. Note that

the segmentation was slightly manually corrected when needed.

2) The PAM50 template15 was registered to the T2-weighted

anatomic data by using 3 consecutive steps: i) a section-wise rigid

transformation (translation and rotation) based on the center of

mass of the segmentations; ii) a nonrigid regularized registration

by using the BSplineSyn algorithm16 based on cord segmenta-

tions; and iii) a nonrigid registration by using the SyN algorithm17

on the images (as implemented in Advanced Normalization

Tools18).

3) The T2-weighted template registered into the T2-weighted an-

atomic space was then registered on the T2*-weighted image by using

3 consecutive steps: i) a section-wise regularized rigid registration19

based on cord segmentations; ii) a nonrigid regularized registration

by using the BSplineSyn algorithm on cord segmentations; and iii) a

nonrigid registration by using the SyN algorithm on the images.

4) Both registrations (template to T2-weighted and T2-

weighted space to T2*-weighted) output forward- and backward-

warping fields. Concatenating the 2 forward-warping fields allows

for warping the template (and all its elements) into the T2*-

weighted space (WARP[template to T2*]), and concatenating all

the backwards-warping fields allows for warping the T2*-

weighted image into the template space (WARP[T2* to tem-

plate]). Here, we took advantage of the second concatenation

(WARP[T2* to template]) to warp the T2*-weighted image and

the automatic SC segmentation into the template space.

5) The GM was automatically segmented on the T2*-weighted

image in the template space. The GM segmentation was per-

formed by using the multiatlas-based segmentation method in-

FIG 1. Processing pipeline for the GM segmentation and computation of the GMCSA.
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cluded in the Spinal Cord Toolbox.8 The automatic GM segmen-

tation was visually assessed for all patients. A more thorough

quantitative validation has been conducted in a previous study.8

6) The GM segmentation was warped back into the T2*-

weighted space by using the forward-warping field (WARP[tem-

plate to T2*]).

7) The SCCSA and GMCSA were computed in the T2*-

weighted space. The area computed for each section was corrected

for the curvature of the spine by using the angle of the section with

the SC centerline. Note that the cross-sectional area (CSA) was

not normalized across subjects, as further discussed in the “Meth-

odologic Considerations” section.

Statistical Analysis

Differences between Patients and Controls. All statistical anal-

yses were performed with Python 2.7. A 1-sample Kolmogorov-

Smirnov test was used to confirm that SCCSA and GMCSA fol-

lowed a Gaussian distribution within the patients and controls

groups. Consequently, a 2-sample Student t test assessed potential

CSA differences between the 2 groups.

Correlation between GM Atrophy and Clinical Disability at MR
Imaging (Baseline) and at 1 Year After. The association between

spinal cord atrophy and clinical disability at baseline and at 1 year

was investigated. The hypothesis was that atrophy of the cervical

GM measured in MR imaging is associated with clinical outcome.

At baseline, Pearson correlation coefficients between CSA of GM

and SC and ALSFRS-R/manual muscle testing scores were com-

puted. Similarly, Pearson correlation coefficients were computed

between GMCSA and ALSFRS-R score and between SCCSA and

ALSFRS-R score at 1 year after baseline with the 19 patients with

ALS who were available to follow-up (referred to as the 1-year

cohort). GMCSA and SCCSA values were averaged across the

C4 –C6 vertebral levels to be more specific with the arm subscore,

which is associated with shoulder abduction (myotome C5), el-

bow flexion (myotome C6), and wrist extension (myotome C7).

Prediction of Clinical Disability at 1 Year After Baseline. The

prediction of clinical disability was performed on the 1-year co-

hort. Regression trees20 were used to evaluate the potential of MR

imaging biomarkers to predict the total ALSFRS-R score at 1 year

after MR imaging. Regression trees as used here are a supervised

learning method aimed at predicting the ALSFRS-R score at 1 year

by learning simple decision rules inferred from clinical predic-

tors (sex, age, body mass index, site of onset, delay between

first symptom and diagnosis, ALSFRS progression rate at base-

line [see equation 1], and ALSFRS-R at baseline) and MR im-

aging measures. Several models were tested with 1) clinical

predictors only; 2) clinical predictors and SCCSA; and 3) clin-

ical predictors, GMCSA, and the ratio of WM CSA to GMCSA.

MR imaging biomarkers were progressively added to the clin-

ical predictors to test the impact of each MR imaging measure.

The hypothesis was that at 1 year, the prediction score of dis-

ability would be higher when adding MR imaging measures at

baseline to clinical predictors. Here, WM CSA was used instead

of SCCSA to avoid colinearity between predictors (because

SCCSA � WM CSA 	 GMCSA). As in the previous subsection,

GMCSA and WM CSA values were averaged across the C4 –C6

vertebral levels.

A leave-one-out cross-validation was performed to evaluate

how each prediction model will generalize to a new dataset. A

FIG 2. GM automatic segmentation and manual delineation patients with ALS. Manual delineation of the GM is displayed with the blue line,
automatic probabilistic segmentation is shown in red-to-yellow. Dice coefficient comparing the automatic and manual segmentation is shown
on the bottom line.
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patient was randomly discarded from the list of patients, and a

new prediction model was created from the remaining (n 
 1)

patients. From this model, we computed the prediction error,

which is defined as the difference between the true and the pre-

dicted value of the ALSFRS-R score. This procedure was run 25

times, and the distribution of error was reported.

RESULTS
Data Processing
The proposed processing pipeline was fully automatic. The results

have been visually inspected by an experimented rater, and a man-

ual correction was only needed for the SC segmentation of 8 pa-

tients with ALS out of the 47 processed subjects (22 controls and

25 patients). The correction took approximately 1 minute per

subject and consisted of a slight manual adjustment of the SC

segmentation on T2*-weighted images. The accuracy of the GM

automatic segmentation has been validated in 5 randomly se-

lected patients with ALS, with a Dice coefficient of 0.708. Figure 2

shows a visual illustration of the GM segmentation.

Differences between Patients and Controls
Figure 3 shows the average (� SD) of GMCSA (Fig 3A) and

SCCSA (Fig 3B) in controls (blue) and patients with ALS (orange)

across the SC cervical axis. Qualitatively, a larger difference be-

tween patients and controls is observed for GMCSA compared

with SCCSA (7.2% difference for GMCSA versus 3.6% difference

for SCCSA averaged between the C4 –C6 vertebral levels, t test P

values for each vertebral level are shown in Fig 3). Figure 4 shows

a boxplot distribution of GMCSA and SCCSA averaged between

the C4 –C6 vertebral levels.

Correlation between GM Atrophy and Clinical Disability
at MR Imaging (Baseline) and at 1 Year After
A correlation study was performed between clinical disability (at

baseline, then at 1 year after MR imaging) and MR imaging bio-

markers of grouped vertebral levels (C4 –C6) (Table 4). GMCSA

and SCCSA measures revealed significant correlations with the

ALSFRS-R subscore at baseline and at 1 year after, suggesting an

association between cervical GM atrophy and clinical disability of

the upper limbs at baseline as well as after 1 year. For the manual

muscle testing arm subscore at baseline, significant correlations

were only found for GMCSA, although P values between GMCSA

and SCCSA were very close (.049 versus .054 [Table 4]).

Prediction of Clinical Disability at 1 Year After Baseline
The purpose of this analysis was to investigate the benefits of

adding MR imaging biomarkers to clinical predictors in a gener-

alizable model of clinical disability prediction.

Table 5 shows the results of regression trees between total ALS-

FRS-R score at 1 year after baseline and several predictors fre-

quently used in practice, with or without MR imaging biomark-

ers. Figure 5 shows the distribution of the prediction error for the

3 prediction models based on a leave-one-out cross-validation,

suggesting that the prediction model including MR imaging bio-

markers results in a more accurate score prediction. The model

including all the proposed MR imaging biomarkers predicted the

ALSFRS-R score with an average error of 1.63 � 8.42 versus

2.05 � 12.97 with clinical predictors only.

DISCUSSION
This study focused on using the CSA of the cervical SC GM in pa-

tients with ALS for 1) discriminating between patients with ALS and

controls; 2) correlating CSA with clinical scores (ALSFRS-R and

manual muscle testing); and 3) predicting clinical score (ALSFRS-R)

at 1-year follow-up. The following subsections will compare

our results with the previous literature and discuss their limi-

tations and relevance for clinical implications.

GM Atrophy Detected in Patients with ALS
SCCSA exhibited significant differences between patients with

ALS and healthy controls, confirming the results obtained by an-

other study.3 More interestingly, GMCSA showed larger differ-

ences between the 2 groups (P � .004 for GMCSA versus .02 for

SCCSA at the C4 –C6 vertebral levels), suggesting that GMCSA is

a more sensitive marker of atrophy in ALS and that cord atrophy

in ALS is predominantly driven by lower motor neuron degener-

ation. Although WM is expected to degenerate as a secondary

effect of upper motor neuron degeneration, gliosis and myelin

debris forming in the SC WM might somewhat lower the sensi-

tivity of global cord atrophy.21,22

FIG 3. GMCSA and SCCSA measured on controls and patients with ALS
between the C6–C3 vertebral levels. GMCSA (A) and SCCSA (B) averaged
within group and plot against the cervical SC axis. Overall, a stronger
intergroup difference can be observed for GMCSA. Asterisk (P � .05) and
double asterisk (P � .01) at specific vertebral levels indicate significant
differences between patients with ALS and controls according to Stu-
dent t test P values representing control-to-patient differences in
GMCSA and SCCSA for each cervical level between C6 and C3 and across
levels.
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In addition, the control-to-patient difference was larger at the

C4 –C6 vertebral level region (Fig 3), which is the site of large

pools of motor neurons. Larger GM atrophy at the C4 –C6 verte-

bral levels could be explained by a larger absolute number of at-

rophied motor neurons at this level and/or by a higher sensitivity

of the MR imaging– based GMCSA measure at this level because

of the increased size of the structure that facilitates delineation of

the GM interface. Further studies covering a larger portion of the

spinal cord would shed light on these possible explanations.

From a clinical perspective, having SCCSA and GMCSA highly

correlated raises the question of the relevance of measuring GMCSA

in patients with ALS as a diagnostic measure, especially given that it is

more difficult to reliably measure GMCSA from standard clinical

scans because of the need for high axial resolution and sufficient

GM/WM contrast-to-noise. Nevertheless, having access to a more

specific assessment of GM atrophy still has potential for monitoring

the efficiency of new drugs, though this has not been tested here.

GM Atrophy Correlates with Clinical Disability at MR
Imaging and 1 Year After
As shown in Table 4, GMCSA seems to be a relevant biomarker of

clinical disability at vertebral levels C4 –C6 (ALSFRS-R and man-

ual muscle testing arm at baseline, P � .004 and P � .05, respec-

tively; ALSFRS-R at 1 year, P � .03). SCCSA also reflected clinical

disability as previously shown,3 though with lower sensitivity than

GMCSA. A previous study7 established a strong link between

SCCSA and lower motor neuron degeneration by relating motor-

evoked potential amplitude of the adductor digiti minimi and

deltoid, respectively, with cord atrophy at spinal levels C8 and C5

(here, it was not possible to study the C8 spinal level; see “Limi-

tations” section). However, combining advanced image process-

ing and better MR imaging pulse sequences is promising to inves-

tigate the effect of GM atrophy on muscle-specific deficits in the

low thoracic and lumbar cord.23 The ability to isolate lower motor

neuron from upper motor neuron contribution in ALS might

provide additional information for understanding the pathogen-

esis of the disease.

Prediction of Clinical Disability at 1 Year After Baseline
A significant association was found between GMCSA (measured

at baseline) and the ALSFRS-R score at 1 year after MR imaging

acquisition (P � .03). However, it was not possible to perfectly fit

a regression model to predict clinical disability at 1 year by using

clinical biomarkers and MR imaging measures (CSA), which is

challenging regarding the heterogeneity of the present ALS cohort

in terms of clinical score and site of onset. The best prediction

score was obtained by combining MR imaging measures (GM,

WM, and ratio of WM CSA to GMCSA). Therefore, this suggests

that the association of MR imaging measures could be helpful to

predict the evolution of clinical disability for patients with ALS

(R2 � 0.54 without versus R2 � 0.74 with MR imaging measures).

Evaluated with a leave-one-out cross-validation, prediction accu-

racy and generalization were improved by including MR imaging

biomarkers in the prediction model (error � 1.63 � 8.42 with

versus 2.05 � 12.97 without MR imaging measures). More com-

plex models such as deep learning would be a potential alternative

to achieve a more specific prediction.24

Methodologic Considerations

Classical Bias in ALS Studies. Because patients with ALS with

heavy respiratory symptoms could not be recruited for the

study, a lack of external validity needs to be pointed out. By

recruiting subjects in a less drastic state (from a medical stand-

point), a certain selection bias takes place that limits general-

ization to the whole ALS population and affects the power of

the study. Moreover, the recruited population included mostly

FIG 4. Boxplot distribution of GMCSA (A) and SCCSA (B) averaged
between the C4 –C6 vertebral levels. Each dark point represents an
individual value. The median is represented as a thick horizontal line
and the interquartile range as a light rectangle. The horizontal bar at
both extremities of the whiskers represent the 5th and 95th percen-
tiles. The 2 patients presenting the SOD1 gene are identified in the
plot.

Table 4: Correlation coefficients between CSA (GM and SC) and
clinical scores at baseline and at 1 yeara

Predictors

At Baseline At 1 Year

ALSFRS-R
Subscore

MMT Arm
Subscore

ALSFRS-R
Subscore

GMCSA R � 0.56 R � 0.40 R � 0.48
P � .004b P � .049a P � .035c

SCCSA R � 0.55 R � 0.40 R � 0.54
P � .005b P � .054 P � .017c

Note:—MMT indicates manual muscle testing.
a CSA was averaged across the C4 –C6 vertebral levels. Clinical scores included: 1)
ALSFRS-R at baseline; 2) MMT subscores at baseline; and 3) ALSFRS-R subscore at 1
year.
b Significant (P � .01).
c Significant (P � .05).
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probable patients with ALS (n � 18) and only a few definite

patients with ALS (n � 7), which may have introduced heter-

ogeneity in the tested ALS population and thus impacted the

statistical analyses. However, further analysis performed with

the 18 probable patients with ALS led to a correlation between

GMCSA and ALSFRS-R of R � 0.61 and P � .006 (versus R �

0.56 and P � .004 when including all patients with ALS).

Vertebral Levels. Establishing a vertebral region that maxi-

mizes atrophy across patients with ALS was not feasible here

because of the large interpatient variability. Consequently, sta-

tistical analyses were conducted for each vertebral level be-

tween C3–C6. The average CSAs across the C4 –C6 vertebral

levels was also studied to maximize the sensitivity to clinical

markers of the brachial plexus.

In comparison with previous works,3 which included levels

C2–T6, the present study only focused

on the cervical region from C3–C6 be-

cause of the poor quality of the T2*-

weighted images below C6 caused by re-

spiratory-related dynamic B0 field

variations.25 Thus, the exclusion of the

C7 vertebral level slightly restricted the

study of the hand muscle deficit.7 More-

over, the exclusion of the lumbar and

thoracic regions (unavailable in the T2*-

weighted images) precluded studying

the correlation between GMCSA and the total ALSFRS-R score,

which includes a clinical evaluation of the lower limbs. Optimized

MR imaging sequences now provide the possibility to image the

thoracic and lumbar GM with satisfactory quality23 and should be

investigated in future studies.

Measuring CSA with MR Imaging. Being able to measure spinal

GM atrophy has potential applications in other diseases, such as

spinal muscular atrophy.26 Furthermore, an original aspect of the

present study is the fully automatic segmentation of the cord and

its GM, providing minimum user bias and facilitating the repro-

ducibility of the current technique to other centers (software and

processing scripts were made freely available). Previous studies

have validated the accuracy of these segmentation methods for the

SC14,27 and the GM,8,28 including in patients with multiple scle-

rosis and degenerative cervical myelopathy.28 In particular, the

GM segmentation used in this study resorts to nonlinear defor-

mations to match the shape of atrophic cord exhibited by patients

with ALS. The accuracy has been further validated in the present

study in 5 randomly selected patients with ALS and showed satis-

factory results (Dice coefficient in the GM � 0.708) in compari-

son with healthy controls from a previous study8 (Dice coefficient

in the GM � 0.711).

Whereas previous studies have reported that the CSA of the SC

is associated with morphologic features such as brain volume29

and total intracranial volume,30 the correlations were mild, and

there is no clear consensus as to what is the best normalization

method to use31; several published studies have not performed

CSA normalization,3,26,31-33 and neither did we in the present

study. Future work could further investigate methods for normal-

ization, and specifically for the GMCSA.

As investigated in a previous study,30 age and sex could affect

both SC and GMCSA. In the present study, the controls and

patients were age-matched but not sex-matched (number of

women, 6 with ALS versus 11 controls). However, the larger pro-

portion of women in the control group would in fact decrease the

sensitivity to detect a CSA difference between controls and pa-

tients, given that both SC and GM are smaller in women com-

pared with men.30

Although it would have been relevant to measure CSA in the

lateral and anterior funiculi, the current MR imaging protocol,

which is based on T2*-weighted contrast, made it impossible to

distinguish the anterior and lateral fasciculus from the rest of the

WM tissue. Therefore, it was not feasible to measure specific CSAs

of these tracts from our data. Recent work combining multipara-

metric MR imaging at an ultra-high field showed promising re-

FIG 5. Prediction error on the ALSFRS-R at 1 year, from a leave-one-
out cross-validation with regression trees. Results are compared be-
tween the regression model including clinical predictors (left distri-
bution plot), clinical predictors 	 SCCSA (middle distribution plot),
and clinical predictors 	 GMCSA 	 WM/GMCSA (right distribution
plot), where each point represents 1 iteration of the leave-one-out
cross-validation. The best value is at 0.

Table 5: Results of regression tree predictions to make prediction of total ALSFRS-R score
at 1 year after MRI with several clinical and MRI predictorsa

Predictors

Coefficient of
Determination

R2 (Best Value = 1.0)

Mean Squared
Error

(Best Value = 0.0)
Clinical predictors 0.54 41.87
Clinical predictors 	 SCCSA 0.72 25.39
Clinical predictors 	 GMCSA 	 WMCSA/GMCSA 0.74 23.77

Note:—WMCSA indicates white matter cross-sectional area.
a GMCSA, WMCSA, and SCCSA are averaged across the C4 –C6 vertebral levels. Clinical predictors include age, body
mass index, sex, site of onset, delay between first symptoms and diagnosis, total ALSFRS-R score at baseline, and total
ALSFRS-R score progression rate at baseline.
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sults for isolating specific SC tracts, opening the door to such

evaluation.34

CONCLUSIONS
Gray matter atrophy as measured noninvasively with MR imaging

correlates with clinical disability in ALS at baseline and at 1-year

follow-up. Although efforts toward the development of sensitive

and reliable biomarkers for ALS need to be pursued and con-

firmed in larger cohorts, the present study offers an encouraging

incentive about the relevance of spinal cord gray matter cross-

sectional area. This article includes a downloadable link to the MR

imaging acquisition and processing protocol to enable other re-

searchers to reproduce the entirety of the analysis performed here.

We believe these efforts are critical not only for transparency, but

also for standardizing spinal cord imaging biomarkers to help

assess their reliability and make them more amenable to

clinicians.
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Disclosures: Marie-Êve Paquin—RELATED: Grant: Canada Research Chair in Quanti-
tative Magnetic Resonance Imaging (JCA), Canadian Institute of Health Research
(CIHR FDN-143263), Canada Foundation for Innovation (32454), Fonds de Recherche
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