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Convolutional Neural Network-Based Automated
Segmentation of the Spinal Cord and Contusion Injury: Deep
Learning Biomarker Correlates of Motor Impairment in Acute
Spinal Cord Injury
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ABSTRACT

BACKGROUND AND PURPOSE: Our aim was to use 2D convolutional neural networks for automatic segmentation of the spinal cord and
traumatic contusion injury from axial T2-weighted MR imaging in a cohort of patients with acute spinal cord injury.

MATERIALS AND METHODS: Forty-seven patients who underwent 3T MR imaging within 24 hours of spinal cord injury were included. We
developed an image-analysis pipeline integrating 2D convolutional neural networks for whole spinal cord and intramedullary spinal cord
lesion segmentation. Linear mixed modeling was used to compare test segmentation results between our spinal cord injury convolutional
neural network (Brain and Spinal Cord Injury Center segmentation) and current state-of-the-art methods. Volumes of segmented lesions
were then used in a linear regression analysis to determine associations with motor scores.

RESULTS: Compared with manual labeling, the average test set Dice coefficient for the Brain and Spinal Cord Injury Center segmentation
model was 0.93 for spinal cord segmentation versus 0.80 for PropSeg and 0.90 for DeepSeg (both components of the Spinal Cord Toolbox).
Linear mixed modeling showed a significant difference between Brain and Spinal Cord Injury Center segmentation compared with PropSeg
(P < .001) and DeepSeg (P < .05). Brain and Spinal Cord Injury Center segmentation showed significantly better adaptability to damaged
areas compared with PropSeg (P << .001) and DeepSeg (P < .02). The contusion injury volumes based on automated segmentation were
significantly associated with motor scores at admission (P = .002) and discharge (P = .009).

CONCLUSIONS: Brain and Spinal Cord Injury Center segmentation of the spinal cord compares favorably with available segmentation
tools in a population with acute spinal cord injury. Volumes of injury derived from automated lesion segmentation with Brain and Spinal
Cord Injury Center segmentation correlate with measures of motor impairment in the acute phase. Targeted convolutional neural network
training in acute spinal cord injury enhances algorithm performance for this patient population and provides clinically relevant metrics of
cord injury.

ABBREVIATIONS: BASICseg = Brain and Spinal Cord Injury Center segmentation; CNN = convolutional neural network; SC = spinal cord; SCI = spinal cord injury;

SCT = Spinal Cord Toolbox

he natural history of recovery after spinal cord injury (SCI) is
highly variable and often difficult to predict."* Early objective
neurologic assessment of injury severity in these patients is chal-
lenging due to several confounding factors, such as traumatic
brain injury, severe pain, intubation, spinal shock, and sedative
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medications, among others.>” Early and accurate classification of
patients with SCI as close to the time of injury as possible is im-
perative for the guidance of triage, acute management, prognos-
tication, and for patient selection in the design of clinical trials in
which novel therapies are tested.”” MR imaging is the criterion
standard imaging technique for evaluation of the injured spinal
cord (SC) and has been extensively studied for its ability to assess
injury severity and predict outcome.>*° However, to date, there
are mixed results with respect to the accuracy of MR imaging
biomarkers for injury prognostication.*>”°

Recent advances in SC imaging analysis have led to the devel-
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opment of a robust anatomic template and atlas incorporated into
an open-source platform referred to as the Spinal Cord Toolbox
(SCT; https://sourceforge.net/projects/spinalcordtoolbox/).'*!"
Similar tools have greatly advanced brain image analysis in recent
years, offering accurate and less biased methods for analyzing
quantitative and semiquantitative multiparametric MR imaging
data.'>"? Such tools applied to the SC offer great potential for a
unique MR imaging biomarker identification.'"'*'> SC seg-
mentation is a first step in atlas-based SC analysis.'® Manual
SC segmentation techniques are not conducive to clinical
workflow or high-volume batch analysis because they are time-
consuming and have interrater variability. Advances in auto-
mated SC segmentation algorithms have been made during the
past decade, though currently available algorithms have pri-
marily been tested in healthy controls or nontraumatic pathol-

19718 The latest generation segmentation algorithms in

ogies.
acute SCI are challenged by coexisting spinal pathology such as
canal stenosis, SC compression, and intrinsic SC signal abnor-
malities, leading to gross segmentation errors. A model specif-
ically targeted to deal with the challenges of the acute blunt SCI
population is needed for application of advanced MR imaging
analysis tools in traumatic SCI.

Leveraging a robust, prospectively maintained clinical and
radiologic data base of patients with acute blunt traumatic SCI
as part of the ongoing prospective clinical trial entitled Trans-
forming Research and Clinical Knowledge in Spinal Cord
Injury (TRACK-SCI), we present 3 models using 2D convolu-
tional neural networks (CNNs) to segment the SC from T2-
weighted axial images of patients with acute SCI. These net-
works, named Brain and Spinal Cord Injury Center
segmentation (BASICsegl-3), are fully automated and use axial
image augmentation and a network architecture. Furthermore,
we present preliminary data using the same network architecture
to automatically segment intramedullary contusion in patients
with acute SCI on T2WI. To assess the clinical validity of injury
volumes segmented by this network, we correlated the contusion
volumes segmented by BASICseg with lower extremity motor
scores. Targeted 2D convolutional neural network training with a
cohort of patients with acute SCI, in whom whole-cord and con-
tusion-injury segmentation is particularly challenging, enhances
the performance of automated spinal cord and contusion injury
segmentation for this patient population compared with cur-
rently available state-of-the-art algorithms and also provides clin-
ically relevant metrics of cord injury.

MATERIALS AND METHODS

Study Population

The study population included all consenting patients admitted
for an acute traumatic SCI at Zuckerberg San Francisco General
Hospital between June 2015 and January 2017. This study was in
compliance with the Health Insurance Portability and Account-
ability Act and was approved by the institutional review board for
human research. The medical imaging and clinical records in-
cluded in this study are compiled as part of the TRACK-SCI re-
search trial conducted under the auspices of the Brain and Spinal
Injury Center at Zuckerberg San Francisco General Hospital. This
prospective study consecutively enrolled all consenting patients
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Table 1: Summary of patient demographics and injury

Patient Demographics and
Injury Characteristics (N = 47)

Age (mean) (SD) (yr) 55(19)
Sex (M/F) 3215
Time from injury to MRI (mean) (SD) (hr) 5.4(4.8)
Admission ASIA Grade

A 10

B 3

C 5

D 21

Unknown? 8
Admission lower extremity motor score (mean) (SD) 25(23)
Discharge lower extremity motor score (mean) (SD) 29(21)

Note:—ASIA indicates American Spinal Injury Association.
#We could not perform full formal ASIA grade assessment at admission.

with acute traumatic spinal cord injury at Zuckerberg San Fran-
cisco General Hospital between June 2015 and January 2017, with
the collection of imaging, acute neurologic examinations, intra-
operative and intensive care unit monitoring, and long-term neu-
rologic and functional outcome assessment. Inclusion criteria
were the following: 1) blunt acute cervical or thoracic SCI, 2) 18
years of age or older, 3) presurgical cervical or thoracic spine MR
imaging performed within 24 hours after injury, and 4) docu-
mented motor score assessment and American Spinal Injury
Association Impairment Scale score obtained during first hos-
pitalization. Exclusion criteria were the following: 1) penetrat-
ing SCI, 2) surgical decompression and/or fusion before MR
imaging, 3) MR imaging that was too degraded by motion or
other artifacts so that images were nondiagnostic, 4) pre-exist-
ing surgical hardware, and 5) incomplete clinical data for the
outcome (American Spinal Injury Association Impairment
Scale score) or relevant confounders. We identified 56 pa-
tients, of whom 47 met all inclusion criteria and were enrolled
in the study. More detailed patient demographics and injury
characteristics are summarized in Table 1. Penetrating injuries
were excluded due to their unique clinical, imaging, and
pathophysiologic characteristics.

MR Imaging Acquisition Parameters

All MR imaging studies were performed on a single 3T Mag-
netom Skyra scanner with software Version E11 (Siemens, Er-
langen, Germany). Only the axial and sagittal T2 fast spin-echo
sequences from the routine cervical spine trauma protocol
were used for image analysis and were performed with the
following parameters: axial T2; TR = 3870 *= 400 ms, TE =
96 * 4 ms, slice thickness = 3 mm, echo-train length = 16,
FOV = 240 X 120 mm, nominal in-plane pixel size = 0.47
mm?®. Additional sequences performed as part of the routine
clinical spine MR imaging protocol were not evaluated for this
study.

Image Annotation

Images from patients with SCI were divided into training,'? vali-
dation,” and testing'* groups for analysis. Because our model is a
2D neural network, 1120 axial slices were used in the training set,
200 axial slices were used in the validation set, and 560 axial slices
were used in the test set. Two fellowship-trained neuroradiolo-
gists (J.F.T. and J.N.) performed image annotation indepen-


https://sourceforge.net/projects/spinalcordtoolbox/

dently and then reached consensus together on manual seg-
mentation in FSL (http://www.fmrib.ox.ac.uk/fsl) for both the
whole SC and areas of intramedullary T2 signal abnormality
related to the cord contusion referred to as the SC lesion. Sag-
ittal T2WTI was used only to cross-validate axial annotations.

Image Preprocessing

We used the Optic algorithm'® from the SCT to first detect the SC
centerline and create a 26 X 26 mm square mask around the
centerline. No denoising, smoothing, or inhomogeneity or bias
correction was applied. All raw images were resampled at 1 X 1
mm? to be robust to native image resolution. This mask dimen-
sion was sufficient to include the entire spinal cord and spinal
canal within the FOV for optimal segmentation. The raw images
were then cropped using this mask. Images were then resampled
to have a pixel size of 0.2 mm? in the axial plane, with no changes
made to slice thickness. Because all images had to be of the same
dimensions before entering the network for batch-wise process-
ing, this resampling and mask cropping resulted in an image ma-
trix size of 128 X 128 voxels.

BASICseg-1 Network Architecture

On-line Fig 1 graphically depicts the deep learning architectures
for BASICseg-1 and BASICseg-2. These network architectures
were used for both whole SC and intramedullary lesion segmen-
tation and are based on the U-net architecture (https://Imb.
informatik.uni-freiburg.de/people/ronneber/u-net/).”° The U-net
architecture for segmentation consists of contracting and expan-
sive paths. The contracting path follows the standard CNN archi-
tecture wherein the image is processed into a series of feature
maps. This pathway consists of 4 layers, each involving the follow-
ing: 1) 3 X 3 zero-padded convolutions followed by a rectified
linear unit,”' 2) 20% drop-out™ of the previous convolution, 3)
3 X 3 zero-padded convolutions followed by a rectified linear
unit, and 4) 2 X 2 max pooling operation (https://www.quora.com/
What-is-max-pooling-in-convolutional-neural-networks) with
Stride 2 for downsampling. At each iteration of the contracting
layer, the number of feature maps was doubled (first layer: 8 fea-
tures; second layer: 16 features; third layer: 32 features; fourth
layer: 64 features). The fifth layer consisted of the same processes
without drop-out (aforementioned processes 1 and 3) creating
128 feature channels. The expansive path consists of 4 layers to
rebuild a mask image to match the dimensions of the input
image. Upsampling and concatenation processes were fol-
lowed by two 3 X 3 upconvolutions using zero-padding, which
halves the number of feature channels each followed by recti-
fied linear unit. A 1 X 1 convolution with sigmoid activation
was used in the final layer to map each 8-component feature
vector as either SC tissue (value set to 1) or not SC tissue (value
set to 0). In total, the network comprises 19 convolutional layers.
Stochastic gradient descent was used with a learning rate of le-5 with
an Adam optimizer.>® All hyperparameters were the same for each of
the BASICseg architectures. Programming was performed in Python
with the TensorFlow framework (https://www.tensorflow.org/).
Training was performed on 2 GeForce-1080ti GPUs (NVIDIA, Santa
Clara, California) with a combined random-access memory of 22G.

BASICseg-2 Network Architecture
To complement the first network architecture, we created a second ar-
chitecture to study the impact of integrating batch normalization®* be-
tween every convolution and rectified linear unit (https://www.kaggle.
com/dansbecker/rectified-linear-units-relu-in-deep-learning activa-
tion) layer as shown in On-line Fig 1. Batch normalization in-
volves subtracting each value of the feature map from the feature
map mean and dividing by the feature map SD, or

Xi<—(xi— uB) + (\/(ng + €).
This process helps prevent interval covariate shift. With batch
normalization, the distribution of each feature map is the same
before activation, which leads to better performance and faster
convergence.

We removed the drop-out of the feature maps from the con-
tracting path, replaced them with batch normalization layers, and
added them in the expanding path. Additionally, we doubled the
number of feature maps created at each layer. All other elements
of the architecture remained the same. This network was applied
to both spine- and lesion-segmentation tasks.

BASICseg-3 Network Architecture and Noise-Adaption
Layer

We expected that in areas of SC compression, where there is no-
table damage and substantially less signal delineation between the
SC tissue and adjacent extramedullary tissues, the labeling mask
will be imperfect and therefore prone to label noise. To address
potentially erroneous labels, we introduced an additional “noise-
adaptation layer” into the network between the final feature maps
per pixel (in this case, a tensor of 128 X 128 X 16) and the 1 X 1
convolution-to-sigmoid activation layer (On-line Fig 2).*” Thus,
each pixel feature map (1 X 16) is augmented by a 16 X 16 weight
matrix. This weight matrix can be thought of as an additional
Softmax layer (https://stats.stackexchange.com/questions/79454/
softmax-layer-in-a-neural-network), which modifies the feature
vectors for each pixel before compression to 128 X 128 X 1 and
calculation of the loss. The weights of this noise layer are estimated as
part of the training process to reduce the overall loss of the system.
This process is illustrated in On-line Fig 2.

Data Augmentation

To avoid overfitting, we implemented data augmentation of the
images using the Keras framework (https://keras.io/). We also
augmented T2WT and the corresponding masks pair-wise in
batches of 32. Additionally, data are augmented by the drop-out
after each convolution in the contracting path by randomly re-
moving feature channels during training.

Model Performance and Statistical Analysis
Spine-segmentation and lesion-segmentation performances were
evaluated using the Dice coefficient.”>*” The Dice coefficient is a
measure of overlapping defined as

@[T APl |T] + |P]),

Where T is the criterion standard segmentation performed by
a fellowship-trained neuroradiologist and P is the predicted
segmentation of the SC. The proposed segmentation method
(BASICseg) was compared with 2 state-of-the-art methods:
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FIG1. Whole spinal cord and lesion segmentation performance by epoch for BASICseg algorithms for the whole spinal cord (A—C) and the lesion

(D-F).

Propseg (https://sourceforge.net/p/spinalcordtoolbox/wiki/sct_
propseg/)'® and Deepseg,”® both included in the SCT.""' Deepseg
(sct_deepseg_sc module in SCT; https://sourceforge.net/p/
spinalcordtoolbox/discussion/help/thread/c9972de78a/) is a re-
cently described deep-learning-based spinal cord segmentation
using a succession of 2 CNNs, the first one to detect the SC and the
second one to perform the segmentation.”®

Dice coefficient results for the 3 evaluated methods (BASICseg,
Propseg, and Deepseg) were compared using linear mixed mod-
eling. This initial analysis included all axial images from the test
set (including both injured and normal-appearing SC on the
T2WI). We restricted the analysis to include injured axial slices
only and used the same linear mixed modeling to evaluate differ-
ences in segmentation quality based on the Dice coefficient
among the evaluated segmentation methods. To determine
whether there were relative differences in the models for damaged
slice-versus-nondamaged slice segmentation, we used a linear
mixed model with an interaction term for model by lesion.

Simple linear regressions were conducted to determine the asso-
ciation between volumes of lesions segmented by the BASICseg and
with lower extremity motor scores at day 0 (initial injury) and ata
subacute period at the time of patient discharge from the hospital.
Data that did not show linearity were appropriately transformed,
and R* was compared with linear regression; if there was no im-
provement, a Spearman correlation was used. All statistical anal-
yses were performed in R statistical and computing software
(http://www.r-project.org/)"’; the significance threshold was a <
.05. Because our cohort of patients had injuries at a variety of
cervical and upper thoracic levels (Table 1), which confounds
evaluation of upper extremity motor scores, outcome correla-
tions with injury volume were focused on lower extremity motor
scores, which are less likely to be confounded by the level of
injury for cervical and upper thoracic spinal cord injuries.
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Model Comparison

The 3 models (BASICseg-1 using drop-out, BASICseg-2 using
batch normalization, BASICseg-3 using batch normalization and
a noise-adaptation layer) were compared for their segmentation
performance in the test set data. Models were selected on the basis
of the highest validation accuracy, not total completion of epochs;
these models were applied to the test sets. For SC segmentation,
the model with the highest Dice coefficient was used in statistical
analysis to compare with Propseg'® and Deepseg.”® Propseg is
based on iterative propagation of deformable models for SC
segmentation, while Deepseg uses a machine learning—based
automatic SC segmentation approach with convolutional neu-
ral networks. For lesion segmentation, the results for the model
with the best performance were modeled with lower extremity
motor scores.

RESULTS

Comparison of BASICseg with Existing Models for
Traumatic SC Segmentation

The average SC segmentation time for each test patient was 5
seconds. The whole SC Dice coefficient by epoch for each model is
plotted and shown in Fig 1A—C. For SC segmentation, BASICseg-1
performed best with a Dice coefficient of 0.93 in the test set versus
0.91 for BASICseg-2 and 0.90 for BASICseg-3. The SC segmenta-
tion output at a representative injury level is shown in Fig 2 for 1)
the criterion standard manual segmentation, 2) the BASICseg-1
model, 3) Propseg segmentation, and 4) Deepseg segmentation in
5 different subjects from the test set cohort with respective Dice
coefficients for each slice. Furthermore, the mean dice coefficients
across patients for each segmentation model with corresponding
95% confidence intervals overall and stratified by injury subgroup
are presented in On-line Table 1. Linear mixed-effects modeling
of Dice coefficients in the test set for segmentation across all axial
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FIG2. Sample segmentation outputs for the criterion standard manual segmentation and each model for whole spinal cord (columns 2-5) and
lesions (columns 6 and 7) in 5 sample patients. The first column contains the sample axial T2WI on which segmentation was performed.

Table 2: Results from linear mixed modeling

significant difference in segmentation

Model Estimate  SE

df TValue PValue  performance was found between BA-

Overall spine segmentation
BASICseg-1vs Propseg
BASICseg-1vs Deepseg
Spine segmentation at levels of lesion
BASICseg-1vs Propseg
BASICseg-1vs Deepseg
Spine segmentation at normal-appearing level
BASICseg-1vs Propseg
BASICseg-1vs Deepseg
Relative difference in model segmentation
between lesion and normal-appearing levels
Lesion category difference in Propseg
compared with BASICseg-1
Lesion category difference in Deepseg
compared with BASICseg-1

—0.12166 0.01765 484
—0.03382 0.01765 484

—0.22028 0.04410 102.62 —4.995 <.001
—0.10254 0.04347 102.62 —2.359  .020

—0.09525 0.01687 367.5

—0.01338 0.01694 367.5

—0.12249 0.03928 484.4

—0.08689 0.03889 484.4

SICseg-1 and Deepseg (difference =
0.013, P = .43), but there was a signifi-
cant difference compared with Propseg
(difference = 0.0953, P < .001; On-line
Fig 3). The relative variance in segmen-

—6.893 <.001
—1916  .056

tation performance in areas of damage

—5.645 <.001 versus no damage among the models
—0790 43 showed a significant difference (Deep-
seg: estimate = 0.087, P <.026; Propseg:
—3719  <.00] estimate = 0.122, P <.001). Violin plots
illustrate the Dice distribution by model
—2.234 026

and by lesion in On-line Fig 3. Table 2
shows the results from linear mixed

Note:—SE indicates standard error.

slices (both normal-appearing and lesion levels on axial T2WT)
showed a significantly higher Dice coefficient for BASICseg-1
compared with Propseg (estimate difference = 0.12, P < .001)
and borderline significance compared with Deepseg (estimate dif-
ference = 0.03, P < .056).

When analysis of the SC segmentation was restricted to slices
of SC lesions on axial T2WI, the BASICseg-1 had significantly
higher Dice coefficients compared with Propseg (difference =
0.220, P < .001) and Deepseg (difference = 0.102, P = .020;
On-line Fig 3). In undamaged regions of the cord, no statistically

modeling.

Intramedullary Lesion Segmentation and Correlation

with Motor Impairment

BASICseg-3 demonstrated the best lesion segmentation perfor-
mance as shown in Fig 1 D-F. All models showed overfitting of the
training set. Univariate analysis (On-line Table 2) of volumes of
intramedullary injury segmented by BASICseg-3 showed signifi-
cant association with day 0 lower extremity motor scores (esti-
mate = —4.583, P = .002), indicating that for each increase in
lower extremity motor score, the volume of damage decreases by
approximately 6 mm?®. Similarly, BASICseg-3 segmented volumes
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showed a significant association with lower extremity motor
scores at the time of patient discharge: estimate = —4.030, P =
.009. Additionally, application of BASICseg-3 to segment lesions
from the test set images took approximately 3 seconds per patient.

DISCUSSION

In the present study, we show results for automated whole-SC and
traumatic-SC lesion segmentation from axial T2WI performed
acutely after blunt SCI. Specifically, we applied a customized im-
age-analysis and processing pipeline integrating 3 different novel
2D-CNN architectures for both whole-SC and traumatic lesion
segmentation. Segmentation results from these CNNs were com-
pared with each other and with the criterion standard manual
segmentation as well as with current state-of-the-art SC segmen-
tation algorithms.

The BASICseg-1 model, which uses drop-out, showed slightly
better performance than models using batch normalization
(BASICseg-2) and batch normalization with a noise-adaptation
layer (BASICseg-3) for automated segmentation of the SC in this
cohort. Because drop-out randomly sets a certain proportion of
network weights to zero during training and scales the weight
activations by proportion during testing, it may be that better
testing segmentation occurs with drop-out because of more dis-
tributed learning of the features that map to SC tissue. This result
is surprising because many deep learning architectures for image
classification have adopted batch normalization; however, our
results may be due to the network architecture being compara-
tively shallow. Additionally, the performance differences between
BASICseg-1 and BASICseg-2 and -3 are not large.

BASICseg-1 also demonstrates significantly better perfor-
mance for overall SC segmentation compared with Propseg and
borderline significance compared with Deepseg, the 2 state-of-
the-art methods for SC segmentation presently included in the
SCT. Additionally, our model shows significantly better SC seg-
mentation in areas of injury and better overall adaptivity as mea-
sured by an interaction term using linear mixed-effects modeling.
Deepseg, another CNN algorithm developed for automated SC
segmentation, was trained primarily with a combination of
healthy control subjects in addition to a more heterogeneous co-
hort of patients with diverse spinal pathologies, primarily includ-
ing patients with multiple sclerosis, but also those with neuromy-
elitis optica, amyotrophic lateral sclerosis, degenerative cervical
myelopathy, syringomyelia, and 4 patients with traumatic spinal
cord injury.”® Our cohort, enhanced with patients with acute
traumatic SCIs, is more specifically focused on image analysis in
this patient population, and segmentation performance for other
SC disease was not tested. SC segmentation for acute SCI is par-
ticularly challenging given the high frequency of SC distortion
related to compression and associated geometric distortion as
well as heterogeneous intramedullary signal abnormality.>>**°
Our targeted, disease-specific approach to network training likely,
in part, explains performance differences between BASICseg and
Deepseg algorithms for our SCI cohort. All CNN-based algo-
rithms (BASICsegl-3 and Deepseg) outperformed Propseg; this
difference highlights the value of CNN applications for SC
segmentation.

Current standard of care for MR imaging evaluation of trau-
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matic SCI largely relies on subjective and qualitative descriptions
of MR imaging findings such as the presence or absence of SC
edema and hemorrhage.”*" Thus, few validated MR imaging
biomarkers for SC injury stratification and prognosis have been
described, despite 4 decades of MR imaging clinical application
for SCL.>° In addition to development of improved quantitative
imaging sequences, advanced, nonbiased, and automated image-
analysis techniques may prove useful to accelerate robust MR im-
aging biomarker identification.”® As an important step toward
achieving this goal, current data show that CNNs can segment the
SCin a population with acute SCI with an accuracy close to that of
criterion standard manual segmentation by neuroradiologists.

For traumatic SC lesion segmentation, the BASICseg-3 algo-
rithm performed best. The difference in performance for the net-
work using a noise-adaptation layer with batch normalization and
the other models may be due to the particularly noisy pixel label
data for lesions. During training, a high volume of erroneous label
data can impede adequate learning. The noise-adaptation layer
can absorb this noise and allows the network to correctly map
network features to labeled areas. We show that volumetric mea-
sures of SC injury derived from the BASICseg-3 correlate with
acute and subacute lower extremity motor scores, validating this
approach for injury-severity stratification. Ongoing studies with
long-term neurologic assessment and functional outcome mea-
sures are currently underway to determine the potential prognos-
tic value of CNN-derived biomarkers for acute SCI.

Similar to SC segmentation, automated injury segmentation
based on T2WT is an important advance toward enhanced MR
imaging biomarker identification for acute traumatic SCI. Man-
ual traumatic lesion segmentation is a time-consuming process
requiring an experienced technician and dedicated software pack-
ages. In this study, we have shown that volumetric measures of
lesions derived from the BASICseg CNN correlate with acute and
subacute lower extremity motor scores. To our knowledge, this is
the first demonstration of clinically relevant automated MR im-
aging biomarker extraction in the context of SCI. Most important,
accurate and automated SC and traumatic lesion segmentation
from T2WI enables rapid image processing for registration with
existing anatomic atlases so that whole-cord and subdomain-spe-
cific ROIs (for example, specific white matter tracts or gray matter
subregions) can be analyzed. We have recently demonstrated the
added value of atlas-based volumetric analysis of traumatic SCI
lesions using manual injury-segmentation methods.”” With rapid
and automated SC and injury segmentation using conventional
T2WI, atlas-based analysis tools could be feasibly integrated into
the radiologist’s workflow without the need for time-consuming
image postprocessing. Furthermore, large multi-institutional
studies incorporating high-volume MR imaging data would po-
tentially benefit from our proposed image-processing pipeline,
which is conducive to batch processing with few errors in auto-
mated segmentation. Application of radiomic and texture fea-
ture-analysis techniques may also potentially benefit from the
proposed image-segmentation techniques.**

Limitations of this study primarily relate to the relatively small
sample size of patients with SCI, which both lowers the power of
statistical tests using biomarkers and precludes the use of 3D con-
volutional neural networks. Despite application of data-augmen-



tation techniques to ameliorate feature learning particular to the
training set, differences in Dice values between training and vali-
dation datasets also suggest some degree of data overfitting for
lesion segmentation. 3D convolutional networks may improve
both lesion and SC segmentation by using features in the z-direc-
tion. Despite these limitations, the excellent Dice coefficient of the
BASICseg algorithms for SC and traumatic injury segmentation
and the correlation of CNN-based lesion volumes with motor
scores are reassuring for the application of these tools in the SCI
population. As an additional limitation, the current study only
evaluates the use of CNNs to segment tissues from T2WI in the
axial plane, whereas automated segmentation of the SC and le-
sions from multiplanar, multiparametric data will allow more ro-
bust analysis.”® In addition, our study cohort is derived from a
single institution with all imaging performed on a single MR im-
aging scanner using similar parameters, thus potentially biasing
our results. Future multi-institutional studies will be needed with
more diverse datasets to validate the current findings. Further-
more, similar to the Softmax layer to correct for possible bias in
the labels, clinical data can also be integrated into the final layer
infrastructure to modulate segmentation on the basis of clinical
variables. These limitations will be addressed in our future work.

CONCLUSIONS

This study demonstrates state-of-the-art performance for SC seg-
mentation after traumatic injury using CNNs. Our model per-
forms favorably in our cohort of patients with acute traumatic SCI
compared with currently available algorithms for SC segmenta-
tion in areas of damaged cord and shows better overall adaptabil-
ity with its ability to segment both damaged and undamaged ar-
eas. Additionally, we show that training a similar network
architecture with the addition of a noise-adaptation layer can suc-
cessfully segment areas of traumatic SClesion identified on T2WL.
Volumes extracted from lesion segmentation were significantly
associated with patient motor scores. Ultimately, the application
of these tools will potentially help to advance modernized SC MR
image analysis for both research and clinical application. Integra-
tion with currently available SC atlases and associated tools as part
of the SCT will potentially enhance MR imaging biomarker iden-
tification for predictive modeling.
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