
of August 6, 2025.
This information is current as

and Prognosis
Malaria Offers Insights into Pathophysiology 

CerebralProspective Cohort of Children with 
Diffusion-Weighted MR Imaging in a

S.D. Kampondeni and M.J. Potchen
S.M. Moghaddam, G.L. Birbeck, T.E. Taylor, K.B. Seydel,

http://www.ajnr.org/content/early/2019/08/22/ajnr.A6159
 published online 22 August 2019AJNR Am J Neuroradiol 

http://www.ajnr.org/cgi/adclick/?ad=57975&adclick=true&url=https%3A%2F%2Fmrkt.us-marketing.fresenius-kabi.com%2Fajn1872x240_august2025
http://www.ajnr.org/content/early/2019/08/22/ajnr.A6159


ORIGINAL RESEARCH
PEDIATRICS

Diffusion-Weighted MR Imaging in a Prospective Cohort of
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ABSTRACT

BACKGROUND AND PURPOSE: Validation of diffusion-weighted images obtained on 0.35T MR imaging in Malawi has facilitated mean-
ingful review of previously unreported findings in cerebral malaria. Malawian children with acute cerebral malaria demonstrated restricted
diffusion on brain MR imaging, including an unusual pattern of restriction isolated to the subcortical white matter. We describe the
patterns of diffusion restriction in cerebral malaria and further evaluate risk factors for and outcomes associated with an isolated
subcortical white matter diffusion restriction.

MATERIALS AND METHODS: Between 2009 and 2014, comatose Malawian children admitted to the hospital with cerebral malaria
underwent admission brain MR imaging. Imaging data were compiled via NeuroInterp, a RedCap data base. Clinical information obtained
included coma score, serum studies, and coma duration. Electroencephalograms were obtained between 2009 and 2011. Outcomes
captured included death, neurologic sequelae, or full recovery.

RESULTS: One hundred ninety-four/269 (72.1%) children with cerebral malaria demonstrated at least 1 area of diffusion restriction. The
most common pattern was bilateral subcortical white matter involvement (41.6%), followed by corpus callosum (37.5%), deep gray matter
(36.8%), cortical gray matter (17.8%), and posterior fossa (8.9%) involvement. Sixty-one (22.7%) demonstrated isolated subcortical white
matter diffusion restriction. These children had lower whole-blood lactate levels (OR, 0.9; 95% CI, 0.85– 0.98), were less likely to require
anticonvulsants (OR, 0.6; 95% CI, 0.30 – 0.98), had higher average electroencephalogram voltage (OR, 1.01; 95% CI, 1.00 –1.02), were less likely
to die (OR, 0.09; 95% CI, 0.01– 0.67), and were more likely to recover without neurologic sequelae (OR, 3.7; 95% CI, 1.5–9.1).

CONCLUSIONS: Restricted diffusion is common in pediatric cerebral malaria. Isolated subcortical white matter diffusion restriction is a
unique imaging pattern associated with less severe disease and a good prognosis for full recovery. The underlying pathophysiology may be
related to selective white matter vulnerability.

ABBREVIATIONS: CM � cerebral malaria; IWMDR � isolated subcortical white matter diffusion restriction; EEG � electroencephalogram

Malaria remains a common burdensome disease with 219

million new infections and 435,000 deaths in 2017.1 Pedi-

atric cerebral malaria (CM), the most severe form of the disease,

maintains a fatality rate of 15%–25% with long-term neurologic

disability in 35%– 45% of survivors despite treatment with anti-

malarials that clear parasitemia within hours.2 Postmortem stud-

ies have shown that CM has diverse pathologic findings, high-

lighting the complex nature of the host/parasite interaction.3,4

MR imaging studies have shown a wide range of findings,5 further

underscoring the complex nature of this disease. Past use of im-

aging has helped illuminate pathophysiologic mechanisms driv-

ing morbidity and mortality of CM, showing that brain swelling

on initial MR imaging predicts death6 and demonstrating regions

of focal brain atrophy on CT in survivors with epilepsy that cor-

respond to the epileptic foci.7

Our group has previously reported the various patterns of MR

imaging findings in CM and discussed their implications in terms
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of the underlying pathophysiologic processes involved in CM.5,6,8

The most commonly observed patterns of structural abnormality

on CM brain MR imaging include diffuse brain swelling and dis-

tinct patterns of abnormalities on T2 in the basal ganglia, cerebral

cortex, and white matter.5 The initial reports did not include DWI

findings due to limitations of the 0.35T technology in our Malawi-

based study site. Through additional sequence acquisition and

postprocessing, we have now validated the DWI data from the

Malawi MR imaging.9 Therefore, this report details the DWI find-

ings in this large cohort of children with pediatric CM.

DWI is a mainstay of neurologic imaging and should offer

important insights into diseases in resource-limited tropical set-

tings that are only now benefiting from access to advanced imag-

ing technology. DWI signal changes reflect edematous changes in

the brain parenchyma from cytotoxic edema. One mechanism of

cytotoxic edema is transsynaptic injury, which is thought to be

caused by excitotoxic amines released through a number of

pathophysiologic mechanisms.10 Receptors associated with exci-

totoxic mechanisms are distributed throughout the brain, in both

gray and white matter.11 Resultant DWI changes from this mech-

anism occur in astrocytes, oligodendrocytes, the myelin sheath,

and axons, leading to intramyelinic cytotoxic edema. Low ADC

values are generally thought to represent areas of cell death. How-

ever, cytotoxic edema is a premorbid state, and in some circum-

stances, reversibility is possible.12 This is exemplified by recent

work in stroke imaging, which has found, with great accuracy,

differences in ADC values between infarcted white matter and

penumbra with a reversible potential after tissue plasminogen ac-

tivator administration.13

Diffusion-weighted sequences are commonly used to evaluate

ischemic stroke and neoplasms. However, diffusion restriction is

seen in a number of other conditions and provides insight into

their pathophysiology. These conditions include hypoxic-isch-

emic encephalopathy,14 diffuse axonal injury,15 and toxic16 or

metabolic17 leukoencephalopathy. Diffusion restriction revers-

ibility has been described in several conditions—most commonly

involving the white matter. Examples of conditions in which there

can be reversible white matter–restricted diffusion include demy-

elinating disease,18 heroin-induced encephalopathy,19 postictal

state,20 hypoglycemia,21 and vigabatrin-associated vacuolar my-

elinopathy.22

Among children admitted to the pediatric research ward with

CM in Blantyre during several years, we observed various patterns

of diffusion restriction, including the unusual finding of isolated

subcortical white matter diffusion restriction (IWMDR) in a sub-

stantial minority (22.7%) of children with CM. Given the unique

nature of this pattern of diffusion restriction and the limitations

in our present understanding of coma etiology in children with

CM, in addition to descriptively reporting the DWI findings from

the pediatric CM cohort, we further evaluated risk factors for and

outcomes associated with white matter–restricted diffusion in pe-

diatric CM.

MATERIALS AND METHODS
Children admitted to the pediatric research ward of Queen Eliza-

beth Central Hospital between 2009 and 2014 who met the World

Health Organization definition of CM and demonstrated malarial

retinopathy23,24 were eligible for inclusion in the study. When

possible, initial imaging was performed within 12 hours of admis-

sion. Children who died or regained consciousness before imag-

ing could be performed and those whose parents did not consent

to enrollment in the study were excluded. Standard clinical care

including emergent antimalarial treatment was provided accord-

ing to ward protocols in all cases.25

The appropriate local and United States research ethics com-

mittees approved this work. Demographic, clinical, electroen-

cephalogram (EEG), and imaging data were prospectively col-

lected. Clinical variables included temperature, Blantyre coma

scale score6 at admission, platelet count, whole-blood lactate

level, white blood cell and glucose levels, systolic blood pressure,

HIV status, seizures before admission, histidine-rich protein

levels—a marker of parasite burden,26 the presence/absence of

clinical seizures, and overall coma duration. Coma duration was

imputed for those who died to be 2 SDs above the mean coma

duration in the survivors. Outcomes captured included death,

neurologic sequelae at discharge, or intact survival. Admission

EEGs were obtained between 2009 and 2011.6 EEG characteristics

included average and maximal voltage, dominant rhythm fre-

quency, sleep architecture, variability, reactivity, presence and lo-

cation of slowing, and presence of asymmetry.

Two fellowship-trained radiologists, one trained in MR imag-

ing with 13 years of experience and the other trained in neurora-

diology with 16 years of experience, blinded to patient outcomes

interpreted all MR imaging. Data were compiled into a searchable

RedCap data base developed for this project called “NeuroInt-

erp.”27 Among imaging data collected were the presence or ab-

sence of DWI findings in various anatomic locations. DWI se-

quences were acquired via standard protocol, previously validated

on this 0.35T Signa Ovation Excite MR imaging scanner (GE

Healthcare, Milwaukee, Wisconsin).9 Abnormal findings on DWI

were described as being present versus absent; if findings were

present, we indicated the predominant location involved, includ-

ing involvement of the subcortical white matter, cortical gray

matter, globus pallidus, putamen, caudate, corpus callosum,

and/or posterior fossa. The radiologists provided independent in-

terpretations with discrepancies addressed by consensus review.

A case definition of IWMDR was developed using Neuro-

Interp-derived data. Cases included those that demonstrated sub-

cortical diffusion restriction, excluding those with concurrent

basal ganglia and cortical diffusion restriction.28 Of note, occa-

sional abnormal findings on DWI were also seen in the corpus

callosum and posterior fossa in this subgroup.

Statistical analysis was conducted using Epi Info, Version 7.2

(https://www.cdc.gov/epiinfo/index.html). Statistical associa-

tions for categoric clinical, and outcome variables were deter-

mined using Pearson �2 tests. Statistical differences in continuous

variables were determined using Student t and ANOVA tests.

Univariate logistic regression models were used to estimate rele-

vant correlation coefficients, which are reported as odds ratios. A

P value � .05 was considered significant.

RESULTS
A total of 269 consecutive pediatric patients with CM meeting the

inclusion criteria were imaged on the 0.35T Signa Ovation Excite
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MR imaging scanner between 2009 and 2014. The mean age was

51.4 months. One hundred ninety-four/269 (72.1%) demon-

strated at least 1 area of diffusion restriction. Patterns of gray

matter involvement included the cortex in 48/269 (17.8%) and

the basal ganglia in 99/269 (36.8%) children. Basal ganglia in-

volvement was most commonly seen in the globus pallidus (71/

269, 26.4%). White matter involvement was predominantly bilat-

eral and subcortical (112/269, 41.6%) and/or corpus callosal (101/

269, 37.5%). Diffusion restriction was

less commonly observed in the posterior

fossa (24/269, 8.9%) (Fig 1).

Sixty-one (22.7%) children with CM

demonstrated the unusual pattern of

IWMDR (Fig 2). IWMDR occurred ex-

clusively in the subcortical regions with

no periventricular involvement. Chil-

dren with IWMDR had significantly

lower whole-blood lactate levels (mean,

5.4 versus 6.9 mmol/L; OR, 0.9; 95% CI

0.85– 0.98). They were also less likely to

require anticonvulsant medication on

admission and have clinical seizures

(57% versus 71%; OR, 0.6; 95% CI,

0.30 – 0.98). There was no significant

difference between the groups in terms

of admission temperature and Blantyre

coma scale score, platelet count, white

blood cell count, serum glucose levels,

systolic blood pressure, HIV status, sei-

zures before admission, and histidine-

rich protein levels.

A total of 155/269 children had ad-

mission EEGs, of which 36 (23%) dem-

onstrated IWMDR. The average EEG

voltage was significantly higher in the

IWMDR group (128.9 versus 104.5 �V; OR, 1.01; 95% CI, 1.00 –

1.02). Higher average voltage was associated with survival in
prior studies on Malawian children with CM6,29 and in a

pooled Malawian and Ugandan CM population.29

Although additional EEG variables did not reach statistical

significance, likely due to the small sample size30 with IWMDR,

there were additional EEG trends within this group that previ-

ously conferred favorable outcomes.29 These include a higher

FIG 1. Patterns of diffusion restriction on admission MR imaging in children with retinopathy-positive cerebral malaria. Numbers in each
category are reported as No. (%). Examples of each observed pattern are illustrated with accompanying description.

FIG 2. IWMDR on initial brain MR imaging in children with cerebral malaria. A–C, Axial diffusion-
weighted images in 3 different comatose children with acute cerebral malaria. There are conflu-
ent regions of diffusion restriction in the subcortical white matter without involvement of the
cortex or deep gray matter. D–F, Axial DWI in a different patient demonstrates a similar pattern
of white matter hyperintensity on diffusion-weighted images, with corresponding hypointensity
on ADC maps, consistent with true diffusion restriction. Axial T2-weighted image demonstrates
subtle regions of corresponding T2 hyperintensity.
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maximum EEG voltage (251.1 versus 219.4 �V) and more likeli-

hood of demonstrating retained reactivity (58.8% versus 40.5%)

and nonfocal slowing (97.2% versus 90.5%). There were no dif-

ferences in dominant rhythm frequency, presence of sleep archi-

tecture, variability, or asymmetry.

In terms of outcomes, IWMDR was associated with a shorter

period of coma and improved outcome at discharge. Only one

(1.6%) of those with IWMDR died versus 33 (15.9%) of those

without the finding (OR, 0.09; 95% CI, 0.01– 0.67). Of those who

survived, 55 (90%) fully recovered without evidence of neurologic

sequelae at discharge (90% versus 71%; OR, 3.7; 95% CI 1.5–9.1)

(Table 1).

DISCUSSION
In the largest series of pediatric cases of CM imaged to date, re-

stricted diffusion was frequently seen, and the finding of isolated

restricted diffusion of the subcortical white matter, an MR imag-

ing finding not often seen with other conditions, was remarkably

common and was associated with less severe disease clinically and

better outcomes. White matter diffusion restriction was associ-

ated with lower lactate levels and a lower odds of clinical sei-

zure—2 established predictors of disease severity supporting

these patients having a less severe disease state.31 The preceding

finding may underscore the concept of “selective vulnerability,”

wherein white matter–restricted diffusion changes can be seen

without cortical or deep gray matter involvement because the

white matter is more susceptible to various transient deleterious

physiologic changes.14 In cases of CM coma with good outcome,

isolated white matter dysfunction related to selective and revers-

ible white matter vulnerability may explain the previously inex-

plicable nature of this rapidly reversible coma.

Although uncommon in other settings, isolated white matter

transient restricted diffusion has been described in several other

disease states (Table 2). Acute toxic leukoencephalopathy, which

occurs as a result of various drug or environmental exposures,

shows symmetric areas of T2 hyperintensity in the periventricular

white matter, often with associated diffusion restriction, and the

findings are frequently reversible if toxic exposure is removed and

follow-up imaging is performed.16,32 Acute toxic leukoencepha-

lopathy–associated isolated white matter–restricted diffusion is

thought to arise from intramyelinic cytotoxic edema and resul-

tant myelin vacuolization, capillary endothelial injury inducing

cytotoxicity, and/or direct toxic demyelination.16 Endothelial in-

jury is a central pathophysiologic mechanism in CM. A substan-

tial number of children in our cohort (61/269, 22.7%) demon-

strated diffuse subcortical white matter involvement, similar to

the typical appearance of acute toxic leukoencephalopathy

though with a distribution in the subcortical regions. A recent

large-scale study of Malawian children with CM found extensive

alterations in blood metabolites during CM compared with levels

during convalescence,33 implicating circulating metabolites pos-

sibly playing some role in the overall pathogenesis.

Reversible diffusion restriction is also described in acute severe

hypoglycemia, in which restricted diffusion most commonly in-

volves the internal capsule, centrum semiovale, and cerebral cor-

tex and is commonly reversible with appropriate timely treat-

ment.21,30,34,35 In hypoglycemia, the pathophysiology of diffusion

Table 1: Clinical characteristics and outcomes associated with IWMDR in children with cerebral malariaa

IWMDR+ IWMDR− OR 95% CI P Value
Clinical characteristics

Admission temperature (°C) 38.9 � 1.1 38.8 � 1.2 1.11 0.87–1.42 .40
Plasma lactic acid levels (mmol/L) 5.4 � 3.6 6.9 � 4.5 0.91 0.85–0.98 .02
Systolic blood pressure (mm Hg) 41.2 � 214.7 74.9 � 137.6 1.00 0.99–1.00 .14
HIV status 5 (9.6%) 32 (16.3%) 0.55 0.20–1.48 .23
Reported preadmission seizure 53 (89.8%) 171 (83.0%) 1.80 0.72–4.52 .21
Plasma glucose level (mmol/L) 6.4 � 2.1 6.7 � 3.6 0.97 0.89–1.06 .49
Plasma HRP-II levels 10.2 � 10.2 10.8 � 10.1 0.99 0.96–1.02 .67
Received anticonvulsant at admission 35 (57.4%) 148 (71.2%) 0.55 0.30–0.98 .04

Admission Blantyre coma scale score 1.4 � 0.6 1.3 � 0.6 1.44 0.90–2.31 .13
Admission white blood cell count � 10�9/L 10.5 � 7.9 11.3 � 7.9 0.98 0.95–1.03 .51
Platelet count � 10�9/L 56 � 60 59 � 64 1.00 1.00–1.00 .81
EEG characteristics

Average voltage (�V) 128.9 � 50.7 104.5 � 53.5 1.01 1.00–1.02 .02
Maximum voltage (�V) 251.1 � 75.8 219.4 � 88.5 1.00 0.99–1.01 .06
Sleep architecture 20 (55.6%) 66 (55.5%) 1.00 0.47–2.13 .99
Dominant rhythm frequency (Hz) 2.3 � 0.9 2.4 � 1.7 NA NA .56
Variability 24 (66.7%) 69 (58.0%) 1.45 0.66–3.17 .35
Reactivity 20 (58.8%) 45 (40.5%) 2.10 0.96–4.58 .06
General slowing 35 (97.2%) 105 (90.5%) 3.67 0.46–29.4 .22
Paradoxic reactivity 10 (50%) 17 (37.0%) 1.70 0.59–4.93 .32
Asymmetry 7 (19.4%) 34 (28.8%) 0.60 0.24–1.49 .27

Outcomes
Overall coma duration (hrs) 47.5 � 25.3 74.8 � 43.9 0.98 0.97–0.99 �.001
Full recovery 55 (90.2%) 148 (71.2%) 3.70 1.50–9.10 .004
Survival with sequelae 5 (8.2%) 27 (13.0%) 0.60 0.22–1.63 .32
Death 1 (1.6%) 33 (15.9%) 0.09 0.01–0.67 .02

Note:—HRP-II indicates histidine-rich protein, a marker of parasite burden; IWMDR�, subjects with purely subcortical white matter abnormalities, excluding those with cortical
DWI abnormalities and those with basal ganglia DWI abnormalities; IWMDR�, those who did not meet criteria for IWMDR�; NA, not applicable.
a Values are No. (%) or means.
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restriction is not definitively understood but is thought to be re-

lated to transmembrane pump energy failure leading to cytotoxic

edema and/or excitatory edema. The latter is thought to be re-

sponsible for those with predominantly white matter involve-

ment, whose outcomes tend to be more favorable. Our study also

showed this finding to be related to favorable CM outcomes with

a fatality rate of 0.7% versus 12.6% in the sample overall. Al-

though systemic hypoglycemia is rapidly addressed on admission

and would not have been present at the time of imaging, focal

metabolic energy failure due to vascular sludging, hyperpyrexia,

seizures, and other drivers of high-energy demand ubiquitous in

CM could be anticipated and could be reversible with optimal

care. Glutamate levels are significantly lower during the acute

phase of pediatric CM,33 supporting the supposition that energy

failure could play a role in diffusion restriction.

Hyperthermia has been shown to increase the excitatory

amino acids glutamate and aspartate as well as inhibitory amino

acids gamma-aminobutyric acid and glycine in the brain. Signif-

icant reduction in cerebral blood flow, edema formation, and cell

injuries is evident.36 While we did not find a direct relationship

between white matter DWI changes and temperature, the temper-

ature at the time of the MR imaging was not specifically noted and

markedly elevated temperatures of �39°C during the acute phase

are a hallmark of this disease. Therefore, the absence of an asso-

ciation may be related to the temporal nature of our data collec-

tion. These changes lead to excitatory edema rather than frank

cytotoxic edema. Review of postmortem specimens from prior

studies on Malawian children with cerebral malaria has failed to

demonstrate intramyelinic edema,4 and an excitatory edema state

is more likely present, which could lead to findings of restricted

diffusion. The presence of excitatory edema would also help ex-

plain another unusual finding in cerebral malaria, in which there

is an acute onset of coma, which generally resolves with a short

duration.

Mechanisms involved in early cytotoxic edema in infarct pen-

umbra12,13 are also of particular interest in CM. The current un-

derstanding of the pathophysiology of CM predominantly in-

volves the presence of microvascular sequestration. Postmortem

studies have demonstrated the presence of sequestration within

the postcapillary venules of the brain.25 Cerebral white matter is

highly vulnerable to the effects of focal ischemia. Pathologic

changes in oligodendrocytes and myelinated axons appear early

and seem to be concomitant with, but independent of, neuronal

perikaryal injury.37 Microvascular occlusion may lead to venous

congestion and regional hypoperfusion, with the downstream se-

quelae of excitatory edema in underperfused regions of the brain.

This phenomenon could be transient if the patient is treated be-

fore progression to cell death occurs.

CONCLUSIONS
Isolated restricted white matter diffusion is common in pediatric

CM and is associated with less severe disease and better outcomes

compared with patients who do not demonstrate this finding. The

underlying pathophysiology of this finding is not thoroughly un-

derstood and may result from the selective vulnerability of white

matter to several potentially reversible deleterious pathophysio-

logic changes that occur in patients with CM. IWMDR may rep-

resent a marker for a better prognosis. In CM, low ADC values

occur in the absence of cytotoxic edema. Other etiologies for fluid

redistribution resulting in restricted water motion, such as excit-

atory edema, should be considered.
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