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ORIGINAL RESEARCH
PEDIATRICS

Predicting Ischemic Risk Using Blood Oxygen Level–
Dependent MRI in Children with Moyamoya

N. Dlamini, M. Slim, F. Kirkham, M. Shroff, P. Dirks, M. Moharir, D. MacGregor, A. Robertson, G. deVeber,
and W. Logan

ABSTRACT

BACKGROUND AND PURPOSE:Moyamoya is a progressive steno-occlusive arteriopathy. MR imaging assessment of cerebrovascular
reactivity can be performed by measuring the blood oxygen level–dependent cerebrovascular reactivity response to vasoactive
stimuli. Our objective was to determine whether negative blood oxygen level–dependent cerebrovascular reactivity status is pre-
dictive of ischemic events in childhood moyamoya.

MATERIALS AND METHODS:We conducted a retrospective study of a consecutive cohort of children with moyamoya who under-
went assessment of blood oxygen level–dependent cerebrovascular reactivity. The charts of patients with written informed con-
sent were reviewed for the occurrence of arterial ischemic stroke, transient ischemic attack, or silent infarcts. We used logistic
regression to calculate the OR and 95% CI for ischemic events based on steal status. Hazard ratios for ischemic events based on
age at blood oxygen level–dependent cerebrovascular reactivity imaging, sex, and moyamoya etiology were calculated using Cox
hazards models.

RESULTS: Thirty-seven children (21 female; median age, 10.7 years; interquartile range, 7.5–14.7 years) were followed for a median of
28.8months (interquartile range, 13.7–84.1 months). Eleven (30%) had ischemic events, 82% of which were TIA without infarcts. Steal
was present in 15 of 16 (93.8%) hemispheres in which ischemic events occurred versus 25 of 58 (43.1%) ischemic-free hemispheres
(OR 4 19.8; 95% CI, 2.5–160; P4 .005). Children with idiopathic moyamoya were at significantly greater risk of ischemic events (haz-
ard ratio, 3.71; 95% CI, 1.1–12.8; P4 .037).

CONCLUSIONS: Our study demonstrates that idiopathic moyamoya and the presence of steal are independently associated with
ischemic events. The use of blood oxygen level–dependent cerebrovascular reactivity could potentially assist in the selection of
patients for revascularization surgery and the direction of therapy in children with moyamoya.

ABBREVIATIONS: BOLD 4 blood oxygen level–dependent; CVR 4 cerebrovascular reactivity; HR 4 hazard ratio; IQR 4 interquartile range

Moyamoya is a chronic progressive steno-occlusive arteriopa-
thy, which typically involves the distal internal carotid artery

and/or the proximal anterior cerebral and middle cerebral arteries
of the circle of Willis, leading to the development of a compensa-
tory vascular network at the base of the brain.1,2 In childhood,
moyamoya is associated with a greater risk of recurrent ischemic

strokes and poor neurologic outcomes, which result in a substan-
tial and sustained economic burden to the family and society.3,4

There is no cure for the disease, and medical therapeutic strategies
are thus far inadequate at preventing the adverse outcomes associ-
ated with moyamoya. Surgical revascularization, the mainstay of
treatment, has been shown to be effective in improving cerebral
blood flow and reducing ischemic risk in children with moyamoya.5

However, multiple factors need to be considered when determining
the appropriateness and timing of surgical interventions, including
disease severity, risk of ischemic events, perioperative risk, technical
aspects of vascular surgery, and anesthesia risk.6-9

Cerebrovascular reactivity (CVR) is defined as the measure-
ment of vessel reactivity in response to a vasoactive stimulus such
as carbon dioxide. It is an important marker of cerebrovascular
reserve and autoregulation through which cerebral blood flow is
maintained under physiologic conditions of stress such as hypo-
tension and anemia.10-12
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Harnessing the paramagnetic properties of deoxygenated he-
moglobin, blood oxygen level–dependent (BOLD) MR imaging
can be used to perform in vivo assessment of cerebrovascular
reactivity and reserve by measuring the change in BOLD-MR
imaging signal in response to a hypercapnic-vasoactive chal-
lenge.13-15 Negative BOLD-CVR, referred to as “vascular steal”,
occurs when blood flow redistributes away from the correspond-
ing vascular territory during the global vasodilatory stimulus.
Impairment of CVR and negative BOLD reactivity or steal in
adults with arteriopathy are independent predictors of ischemic
risk, including stroke and TIA.16-18 Hence, the demonstration of
steal is used to identify adult patients with moyamoya who might
benefit from revascularization surgery.19,20 However, any associa-
tion between steal and ischemic risk has not been demonstrated
in children. Early diagnosis of children with moyamoya before
symptomatic ischemic presentation now occurs as a result of
increased syndrome-specific MR imaging screening protocols.
The incidence of ischemic events is reported to peak between 5
and 10 years, and the risk of recurrent ischemic events after the
first ischemic presentation is high.21-23 The need for improved
risk-stratification for the direction of care forms the basis of the
compelling need for a clinically useful tool for the prediction of
ischemic risk in children with moyamoya. AnMR imaging–based
biomarker of ischemic risk using standard MR images has the
potential to be such a tool and to provide a noninvasive, individu-
alized approach to the selection of pediatric patients for revascu-
larization surgery.

We hypothesized that negative BOLD-CVR status or steal is a
predictor of ischemic risk in children with moyamoya.

MATERIALS AND METHODS
Population and Study Definitions
We conducted a retrospective study of a consecutive cohort of
children with moyamoya who underwent BOLD-CVR assess-
ment and were followed in our clinic between November 2000
and September 2017. We included children 1–18 years of age,
diagnosed according to Fukui criteria and confirmed by conven-
tional angiography.24 Children with unilateral moyamoya and
collaterals were included in the study. Children without a comor-
bid condition were diagnosed as having idiopathic moyamoya.
Children with comorbid neurofibromatosis type 1, sickle cell dis-
ease, trisomy 21, other chromosomal conditions, or radiation vas-
culopathy were diagnosed as having moyamoya. Demographic
data, clinical characteristics, and treatment modalities were
reviewed for all eligible patients.

Ethics permission was obtained from the institutional research
ethics board at The Hospital for Sick Children, and written
informed consent was obtained from all study participants.

Study Outcomes
Our primary outcome was the occurrence or recurrence of ipsilateral
ischemic events following BOLD-CVR imaging evaluation. Patient
charts were reviewed for the occurrence of any of the following: arte-
rial ischemic stroke, TIA, or silent infarcts. Arterial ischemic stroke
was defined as the occurrence of a focal neurologic deficit with radio-
logic evidence of new focal areas of infarction on neuroimaging within
a vascular territory. TIA was defined as the occurrence of transient

focal neurologic deficits lasting ,24hours, without radiologic evi-
dence of new focal areas of infarction and which were not seizures or
migraines clinically. Silent infarcts were defined as the presence of
new focal areas of infarction on neuroimaging in the absence of a clin-
ically evident focal neurologic deficit.

MR Imaging Acquisition
MR imaging was performed on a 1.5T or 3T scanner (Achieva;
Philips Healthcare, Best, the Netherlands). Anatomic imaging
included standard fluid-attenuated inversion recovery, diffusion-
weighted imaging, and 3D time-of-flight MRA. High-resolution
3D T1-weighted structural images [160 slices; voxel size = (0.86–
1) � (0.86–1) � (1–2) mm3; FOV= 22–26 cm] were acquired for
tissue classification and coregistration of the CVR maps.

Cerebrovascular Reactivity Imaging Acquisition
Vasoactive stimulation was achieved by hypercapnic challenge
using breath-hold or targeted controlled delivery of carbon diox-
ide in children older than 7 years of age and ventilator-assisted
delivery of carbon dioxide under general anesthetic in children
younger than 7 years of age during CVR acquisition.15,25,26 CVR
data were acquired using a T2*-weighted single-shot echo-planar
gradient-echo sequence (25 slices; TE, 30–40 ms; TR, 2000ms;
flip angle, 90°; FOV , 22–26 cm; matrix, 64 � 64; section thick-
ness, 5mm; dynamics, 180–240).

Cerebrovascular Reactivity Postprocessing
Blood oxygen level–dependent MR imaging processing and the gen-
eration of CVR maps were conducted using Analysis of Functional
Neuro Images (AFNI; http://afni.nimh.nih.gov/afni),27,28 the FMRIB
Software Library (FSL; http://www.fmrib.ox.ac.uk/fsl),29-31 and cus-
tom scripts. The first 2 volumes were dropped for scanner stabiliza-
tion, and the data were section-time- and motion-corrected. The
maximum displacement, which is the maximum distance for each
volume from a reference volume during the registration, was calcu-
lated. The maximum distance signal was regressed from the data,
and volumes with a maximum distance exceeding 1.5mmwere cen-
sored. Data were smoothed using a 7-mm full width at half maxi-
mum Gaussian kernel, normalized to a mean intensity of 10,000,
and temporally filtered between 0.001 and 0.2Hz. Patients’ func-
tional data were registered to the Montreal Neurological Institute
space using each patient’s high-resolution T1 image. Signal contribu-
tions from the CSF, along with the 6 motion parameters, were
regressed from the data as covariates in a generalized linear model.

For CVR maps, the patient’s BOLD time-series in each voxel
of the brain was subjected to generalized linear model analysis
using the corresponding averaged cerebellar time courses as a
regressor. The regression coefficients (or the b weights) were
then calculated for each voxel. Negative b weights describing an
inverse relationship with the regressor are the markers of steal.
CVR maps consisting of voxelwise negative and positive b

weights (describing a negative and positive relationship with the
regressor, respectively) were coregistered to the high-resolution
T1 images in the native space for visualization.15,32

Visual inspection of the BOLD-CVR maps for hemispheric
negative reactivity/steal was conducted by study neurologists
blinded to the clinical information (Fig 1). The interrater
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reliability for the hemispheric scoring
by visual inspection was substantial
(weighted k of 1 for the left side and 0.83
for the right side).15

Statistical Analysis
Continuous variables were presented as
medians and interquartile ranges (IQRs).
Qualitative variables were described
using frequency distributions and
proportions. Patient characteristics were
compared using the Mann-Whitney U
test or Fisher exact test, as appropriate.

The evaluation of the ischemic risk
as a function of steal status was con-
ducted per hemisphere.33,34 In children
who had multiple BOLD-CVR assess-
ments during the study period, the
BOLD-CVR study before the occur-
rence of ischemic events or the end of
the study follow-up was considered.

We used logistic regression to calculate the OR and 95% CI for is-
chemic risk based on BOLD-CVR steal status. To control for the
effects of surgical interventions, we used multivariable logistic
models that controlled for procedures undertaken in the corre-
sponding hemispheres.

Hazard ratios (HRs) and the corresponding 95% CIs for ische-
mic events at the patient level (ie, occurring in any of 2 hemi-
spheres) as function of age at initial BOLD-CVR imaging
(dichotomized into 8 years of age and younger and older than
8 years of age),35,36 sex, and moyamoya etiology were calculated
by using Cox proportional hazards models. The compliance with
the proportional hazards assumption was assessed using the scaled
Schoenfeld residuals and by visual inspection of the log (minus
log) curves for the different Cox models. P, .05 was statistically
significant. Statistical analyses were conducted using R statistical
and computing software, Version 3.4.1 (http://www.r-project.org).

RESULTS
Population Description
Thirty-seven children (21 female; median age, 10.7 years; IQR,
7.5–14.7 years) were included in the study (Table 1). The median
age at moyamoya diagnosis was 9.9 years (IQR, 6.3–11.8 years).
Twelve (32%) presented with arterial ischemic stroke; 8 (22%),
TIAs (without infarction); 6 (16%) were asymptomatic; 8 (21.6%)
had headaches only; and 3 (8%), seizures. Twenty-eight children
(76%) were treated with aspirin; 4 children were on chronic blood
transfusion; 1 child had a bone marrow transplant; and another
underwent radiation therapy and chemotherapy during the study
period. Twenty-one children had revascularization surgery before
(7; 19%) or following (14; 38%) enrollment and before the study
end point.

Steal Status and Baseline Clinical and Demographic
Characteristics
Twenty-five children had steal in at least 1 hemisphere on
BOLD-CVR imaging. Thirty-seven of 74 hemispheres had steal:

Table 1: Baseline clinical and demographic characteristics
Total Sample

(n = 37)
Demographic characteristics
Female (No.) (%) 21 (56.8)
Age at moyamoya diagnosis (median) (IQR,

25–75) (yr)
10 (6.3–11.8)

Age at initial CVR (median) (IQR, 25–75) (yr) 10.7 (7.5–14.7)
Time to follow-up (median) (IQR, 25–75) (mo) 20.8 (13.7–84.1)

Moyamoya classification
Idiopathic 14 (37.8)
Syndromic 23 (62.2)
NF1 9 (24.3)
Trisomy 21/other chromosomal disorders 7 (18.9)
Sickle cell disease 5 (13.5)
Postradiation vasculopathy 2 (5.4)

Clinical presentation
Stroke (No.) (%) 12 (32.4)
Bilateral 2 (5.4)
Right 6 (16.2)
Left 4 (10.8)

TIA (No.) (%) 8 (21.6)
Seizure (No.) (%) 3 (8)
Headaches (No.) (%) 8 (21.6)
Asymptomatic (No.) (%) 6 (16.2)
Other (No.) (%) 2 (5.4)

Radiographic findings (No.) (%)
Parenchymal
Not ischemic 8 (21.6)
Watershed 12 (32.4)
Deep white matter 1 (2.7)
Cortical 12 (32.4)

Cortical 3 (8.1)
Cortical ischemic and watershed 14 (37.8)
Vascular
Moyamoya laterality (No.) (%)
Left 8 (21.6)
Right 6 (16.2)
Bilateral 23 (62.2)

Grade of stenosis (No.) (%)
50%–74% Occlusion 5 (13.5)
$75% Occlusion 32 (86.5)

Note:—NF1 indicates neurofibromatosis type 1.

FIG 1. Representative BOLD-CVR parametric maps demonstrating normal (positive) (A) reactivity
and abnormal (negative) reactivity (B, arrow).
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17 (23%) left and 20 (27%) right hemispheres. Comparisons of
clinical and demographic characteristics of patients with steal in
at least 1 hemisphere versus those with no steal are summarized
in Table 2. Patients with steal were more likely to experience is-
chemic events compared with those with no steal (36% versus
16.7%). They were more likely to be female (64% versus 41.7%)
and be diagnosed with idiopathic moyamoya (40% versus 33.3%)
(Table 2).

Predictors of Ischemic Events
During a median follow-up of 28.8 months (IQR, 13.7–84.1
months), ischemic events were documented in 11 children: 1
with arterial ischemic stroke, 9 with TIA without infarcts, and
1 with asymptomatic silent infarction. Five children had bilateral,
4 had left-sided, and 2 had right-sided ischemic events. No signif-
icant differences in clinical and demographic characteristics were
found between children who had ischemic events and those who
did not (Table 2).

Between-group comparisons of hemispheric steal status by ip-
silateral hemispheric ischemic event status demonstrated the
presence of steal in 15 of 16 (93.8%) hemispheres in which ische-
mic events occurred versus 25 of 58 (43.1%) ischemic-free hemi-
spheres (OR = 19.8; 95% CI, 2.5–160; P= .005). When adjusted
for surgical interventions in the corresponding hemisphere, the
odds of ischemic events remained significantly higher among
hemispheres with steal (OR = 19.9; 95% CI, 2.45–161; P= .005).

Univariable analysis using the Cox proportional hazards
model demonstrated that children with idiopathic moyamoya
were at significantly greater risk of ischemic events (HR=3.71;
95% CI, 1.1–12.8; P= .03) (Fig 2). Age as a continuous variable
was not predictive of ischemic events. Older age (older than
8 years) and male sex were suggestive of a lower risk of ischemic
events, though statistical significance was not reached (Fig 2). On
controlling for age and sex, the association of ischemic risk with

idiopathic moyamoya remained statistically significant (HR=
3.95; 95% CI, 1.12–13.9; P= .03). There were no violations of the
proportional hazards assumption in any of these models.

DISCUSSION
Our study suggests an association between BOLD-CVR steal sta-
tus, idiopathic moyamoya and an increased risk of ischemic
events in childhood moyamoya. Almost two-thirds of the chil-
dren with moyamoya had steal. Children with steal were more
likely to be female, diagnosed with idiopathic moyamoya, and ex-
perience ischemic events. The presence of steal was associated
with an increased risk of ischemic events in the corresponding
hemisphere, which is similar to findings in studies in adults with
arteriopathy.17,18 To our knowledge, this is the first study to
investigate the association between steal status and ischemic risk
in children with arteriopathy.

In a large single-center study of asymptomatic children with
syndromic moyamoya, radiographic progression occurred in most
and typically heralded clinical progression.37 Children with sickle
cell disease had a higher risk of radiographic and clinical progression
than children with neurofibromatosis type 1, and those with unilat-
eral moyamoya had the lowest overall rate of progression. In our
study, there were no differences in clinical characteristics between
the steal and no-steal or the ischemic and no ischemic event groups,
highlighting the limitations of current clinical approaches for the
assessment of ischemic risk in this population. Our study showed
that children with steal had significantly higher ipsilateral ischemic
risk. The odds for ischemic events remained significantly elevated
for children with steal after controlling for revascularization surgery
conducted in the respective hemispheres.

The current understanding of the natural history and
stroke risk profile of idiopathic moyamoya is mostly derived
from studies in Asian populations, which describe a bimodal
stroke-risk profile of ischemic stroke typically occurring in

Table 2: Comparison of clinical and demographic characteristics based on steal statusa and ischemic events

Steal Statusa

P Value
Ischemic Events

P ValueNo Steal (n = 12) Steal (n = 25) No (n = 26) Yes (n = 11)
Age at baseline CVR (median) (IQR, 25–75) (yr) 9.3 (5.6–14.5) 10.8 (8.3–15) .28 10.9 (8.3–15) 10.3 (7.2–12.5) .44
Female (No.) (%) 5 (41.7) 16 (64) .29 14 (53.9) 7 (63.6) .72
Moyamoya classification (No.) (%) .69 .06
Idiopathic 4 (33.3) 10 (40) 7 (26.9) 7 (63.6)
Syndromicb 8 (66.7) 15 (60) 19 (73.1) 4 (36.4)
NF1 2 (16.7) 7 (28) 7 (26.9) 2 (18.2)
Trisomy 21/other chromosomal disorders 3 (25) 4 (16) 6 (23.1) 1 (9.1)
Sickle cell disease 1 (8.3) 4 (16) 4 (15.4) 1 (9.1)
Postradiation vasculopathy 2 (16.7) 0 2 (7.7) 0

Stroke (No.) (%) 4 (33.3) 8 (32) 1 11 (42.3) 1 (9.1) .06
TIA (No.) (%) 2 (16.7) 6 (24) 1 5 (19.2) 3 (27.3) .67
Seizure (No.) (%) 2 (16.7) 1 (4) .24 2 (7.7) 1 (9.1) 1
Headaches (No.) (%) 3 (25) 5 (20) 1 6 (23.1) 2 (18.2) 1
Asymptomatic (No.) (%) 2 (16.7) 4 (16) 1 3 (11.5) 3 (27.3) .33
Others (No.) (%) 0 2 (8.3) .54 0 2 (18.2) .08
Moyamoya laterality (No.) (%) .77 .78
Left 3 (25) 5 (20) 6 (23.1) 2 (18.2)
Right 1 (8.3) 5 (20) 5 (19.2) 1 (9.1)
Bilateral 8 (66.7) 15 (60) 15 (57.7) 8 (72.7)

Note:—NF1 indicates neurofibromatosis type 1.
a Steal status before ischemic event occurrence or the end of follow-up.
b Comorbidities falling under syndromic moyamoya are shown for informative purposes only and were not included in the inferential analysis.
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the first decade of childhood and hemorrhagic syndromes
dominating in adulthood.24 In a recently published cross-sec-
tional study of a large international cohort of children with
predominantly syndromic moyamoya, older age was also
linked to a lower ischemic risk.38 Similarly, in our study,
older children had lower ischemic risk, but these results did
not reach statistical significance. While no significant differ-
ences in the ischemic risk between patients with idiopathic or
syndromic moyamoya were reported, our longitudinal analy-
sis using Cox regression models demonstrated significantly
higher ischemic risk associated with a diagnosis of idiopathic
moyamoya.

Hence, BOLD-CVR studies using standard T2* gradient-echo
sequences could potentially allow quantifiable clinical assessment
of ischemic risk and the subsequent prediction of future ischemic
events in children with moyamoya. The clinical correlates of
BOLD-CVR–detected steal are pertinent to and important for an
improved individualized model of care for children with
moyamoya.

Limitations of our study include the small sample size,
limiting our statistical analysis.39 However, to our knowledge,

this is the largest single-center North American study exam-
ining a functional MR imaging technique for the prediction
of ischemic risk in childhood moyamoya. BOLD-CVR studies
were systematically conducted at predetermined time points
according to institutional practice guidelines in most study
participants. Consequently, we were unable to determine the
temporal relationship between subclinical ischemic MR
imaging changes and changes in steal status. However, this
issue reflects real-world clinical practice. With the wider ac-
ceptance and implementation of BOLD-CVR studies in the
longitudinal follow-up of children with moyamoya, future
directions will include qualitative and quantitative predictive
analyses of a larger prospective cohort.15,40 However, the pur-
pose of this study was to evaluate whether qualitative analysis
of BOLD-CVR maps could be used as a biomarker of ische-
mic risk in childhood moyamoya and thus be translatable for
clinical use.

CONCLUSIONS
Our study demonstrated that the presence of steal was associated
with significantly greater odds of developing ipsilateral ischemic

FIG 2. Direct adjusted survival curves for ischemic-free survival as a function of the moyamoya comorbidities (A) (HR for idiopathic moyamoya:
3.71; 95% CI, 1.1–12.8; P = .03), sex (B) (HR for males: 0.65; 95% CI, 0.19–2.23; P = .49), and age group (C) (HR for older than 8 years: 0.62; 95% CI, 0.18–
2.1; P = .44). Age as a continuous variable was not predictive of ischemic events. Age is represented in years.
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events. Furthermore, idiopathic moyamoya etiology was predic-
tive of ischemic events. The use of hypercapnic challenge BOLD-
CVR in combination with other clinical predictors in children
with moyamoya represents a promising model for the clinical
assessment of ischemic risk and patient selection for revasculari-
zation surgery. Larger prospective clinical studies are warranted
to adequately elucidate the clinical utility of BOLD-CVR in pre-
dicting ischemic risk in this high-risk population.
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