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3D Capsule Networks for Brain Image Segmentation
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ABSTRACT

BACKGROUND AND PURPOSE: Current autosegmentation models such as UNets and nnUNets have limitations, including the inabil-
ity to segment images that are not represented during training and lack of computational efficiency. 3D capsule networks have the
potential to address these limitations.

MATERIALS AND METHODS: We used 3430 brain MRIs, acquired in a multi-institutional study, to train and validate our models. We
compared our capsule network with standard alternatives, UNets and nnUNets, on the basis of segmentation efficacy (Dice scores),
segmentation performance when the image is not well-represented in the training data, performance when the training data are
limited, and computational efficiency including required memory and computational speed.

RESULTS: The capsule network segmented the third ventricle, thalamus, and hippocampus with Dice scores of 95%, 94%, and 92%,
respectively, which were within 1% of the Dice scores of UNets and nnUNets. The capsule network significantly outperformed UNets
in segmenting images that were not well-represented in the training data, with Dice scores 30% higher. The computational memory
required for the capsule network is less than one-tenth of the memory required for UNets or nnUNets. The capsule network is also
>25% faster to train compared with UNet and nnUNet.

CONCLUSIONS: We developed and validated a capsule network that is effective in segmenting brain images, can segment images
that are not well-represented in the training data, and is computationally efficient compared with alternatives.

ABBREVIATIONS: CapsNet = capsule network; Convl = first network layer made of convolutional operators; ConvCaps3 = third network layer made of
convolutional capsules; ConvCaps4 = fourth network layer made of convolutional capsules; DeconvCaps8 = eighth network layer made of deconvolutional
capsules; FinalCaps13 = final thirteenth network layer made of capsules; FinalCapsi3 = final layer; GPU = graphics processing unit; PrimaryCaps2 = second net-

work layer made of primary capsules

N euroanatomic image segmentation is an important compo-
nent in the management of various neurologic disorders.'”
Accurate segmentation of anatomic structures on brain MRIs is
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an essential step in a variety of neurosurgical and radiation ther-
apy procedures."”® Manual segmentation is time-consuming and
is prone to intra- and interobserver variability.”® With the advent
of deep learning to automate various image-analysis tasks,”'’
there has been increasing enthusiasm for using deep learning for
brain image autosegmentation.'''*

UNets are among the most popular and successful deep learn-
ing autosegmentation algorithms.'"'>"'” Despite the broad suc-
cess of UNets in segmenting anatomic structures across various
imaging modalities, they have well-described limitations. UNets
perform best on images that closely resemble the images used for
training but underperform on images that contain variant
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Table 1: Study participants tabulated by the training, validation, and test sets

Data Partitions ~ No. of MR Imaging Volumes  No. of Patients  Age (mean) (yr) Sex Diagnosis

Training set 3199 841 76 (SD,7) 42% F, 58% M 29% CN, 54% MCI, 17% AD
Validation set 7 30 75 (SD, 6) 30% F, 70% M 21% CN, 59% MCI, 20% AD
Test set 114 30 77 (SD, 7) 33% F, 67% M 27% CN, 47% MCI, 26% AD

Note:—F indicates female; M, male; CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer disease.

anatomy or pathologies that change the appearance of normal
anatomy.® Additionally, UNets have a large number of trainable
parameters; hence, training and deploying UNets for image seg-
mentation often requires substantial computational resources
that may not be scalable in all clinical settings."” There is a need
for fast, computationally efficient segmentation algorithms that
can segment images not represented in the training data with
high fidelity.

Capsule networks (CapsNets) represent an alternative
autosegmentation method that can potentially overcome the limi-
tations of UNets.'®?° CapsNets can encode and manipulate spatial
information such as location, rotation, and size about structures
within an image and use this spatial information to produce accu-
rate segmentations. Encoding spatial information allows CapsNets
to well generalize on images that are not effectively represented in
the data used to train the algorithm.w’zo Moreover, CapsNets use a
smarter paradigm for information encoding, which relies on fewer
parameters leading to increased computational efficiency.'®

Capsule networks have shown promise on some biomedical
imaging tasks”” but have yet to be fully explored for segmenting
anatomic structures on brain MRIs. In this study, we explore the
utility of CapsNets for segmenting anatomic structures on brain
MRIs using a multi-institutional data set of >3000 brain MRIs.
We compare the segmentation efficacy and computational effi-
ciency of CapsNets with popular UNet-based models.

MATERIALS AND METHODS

Data Set

The data set for this study included 3430 T1-weighted brain MR
images belonging to 841 patients from 19 institutions enrolled in
the Alzheimer’s Disease Neuroimaging Initiative study.*' The inclu-
sion criteria of the Alzheimer’s Disease Neuroimaging Initiative
have been previously described.”> On average, each patient under-
went 4 MRI acquisitions. Details of MRI acquisition parameters are
provided in the Online Supplemental Data.*’ We randomly split
the patients into training (3199 MRI, 93% of the data), validation
(117 MR imaging volumes, 3.5% of the data), and test (114 MRI
volumes, 3.5% of the data) sets. Data were divided at the patient
level to assure that all images belonging to a patient were assigned
to either the training, validation, or test set. Patient demographics
are provided in Table 1. This study was approved by the institu-
tional review board of Yale School of Medicine (No. 2000027592).

Anatomic Segmentations

We trained our models to segment 3 anatomic structures of the
brain: the third ventricle, thalamus, and hippocampus. These
structures were chosen to represent structures with varying
degrees of segmentation difficulty. Preliminary ground truth seg-
mentations were initially generated using FreeSurfer (http://

23-25

surfer.nmr.mgh harvard.edu) and then manually corrected
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by 1 board-eligible radiologist with 9 years of experience in brain
image analysis. The Online Supplemental Data detail the process
by which ground truth segmentations were established.

Image Preprocessing

MR imaging preprocessing included correction for intensity
inhomogeneities, including B, field variations.”>*” We used FSL’s
Brain Extraction Tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET)
to remove the skull, face, and neck tissues, resulting in the
extracted 3D image of the brain.”**® To overcome memory limi-
tations, we performed segmentations on 64 X 64 x 64 voxel
patches of the MR imaging volume that contained the segmenta-
tion target. The patch was automatically placed over the expected
location of the segmentation target using predefined coordinates
referenced from the center of the image. The coordinates of each
patch were computed during training and were fixed during test-
ing, without any manual input and without using the ground
truth segmentations. Details of preprocessing are provided in the
Online Supplemental Data.

CapsNets
CapsNets have 3 main components: 1) capsules that each encode
a structure together with the pose of that structure: the pose is an
n-dimensional vector that learns to encode orientation, size, cur-
vature, location, and other spatial information about the structure;
2) a supervised learning paradigm that learns how to transform
the poses of the parts (eg, head and tail of the hippocampus) to
the pose of the whole (eg, the entire hippocampus); and 3) a clus-
tering paradigm that detects a whole if the poses of all parts trans-
form into matching poses of the whole. Further details regarding
differences between CapsNets and other deep learning models are
provided in the Online Supplemental Data.

2D CapsNets were previously introduced by LaLonde et al*° to
segment 1 section of the image at a time. We developed 3D
CapsNets for volumetric segmentation of a 3D volume, with the
architecture shown in Fig 14.*° We developed 3D CapsNets for
volumetric segmentation of a 3D volume, with the architecture
shown in Fig 1A. The first layer, Convl, performs 16 convolutions
(5% 5x5) on the input volume to generate 16 feature volumes,
which are reshaped into 16D vectors at each voxel. The 16D vector
at each voxel is reshaped into a pose that learns to encode spatial
information at that voxel. The next layer, PrimaryCaps2, has 2
capsule channels that learn two 16D-to-16D convolutional trans-
forms (5 x 5 x 5) from the poses of the previous-layer parts to the
poses of the next-layer wholes. Likewise, all capsule layers (green
layers in Fig 1A) learn m- to n-dimensional transforms from the
poses of parts to the poses of wholes.

Our CapsNet has downsampling and upsampling limbs. The
downsampling limb learns what structure is present at each voxel,
and the skip connections from downsampling to upsampling limbs
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FIG 1. CapsNet (A) and UNet (B) architectures. The nnUNet architecture was self-configured by the model and is already published."® All models
process 3D images in all layers, with dimensions shown on the left side. The depth, height, and width of the image in each layer is shown by D,
H, and W, respectively. A, The number over the Convl layer represents the number of channels. The numbers over the capsule layers
(ConvCaps, DeconvCaps, and FinalCaps) represent the number of pose components. The stacked layers represent capsule channels. B, The num-
bers over each layer represent the number of channels. In UNet and nnUNet, the convolutions have stride = 1and the transposed convolutions
have stride = 2. Note that the numbers over the capsule layers show the number of pose components, while the numbers over the noncapsule

layers show the number of channels.

preserve where each structure is on the image. Downsampling uses
5 x 5x5 convolutional transforms with stride = 2. Layers in the
deeper parts of CapsNet contain more capsule channels (up to 8)
and poses with more components (up to 64) to be able to encode
more complex structures, because each capsule in the deeper parts
of the model should be able to detect complex concepts in the
entire image. Upsampling uses 4 x 4x4 transposed convolutional
transforms with stride = 2 (turquoise layers in Fig 1A). The final
layer, FinalCaps13, contains 1 capsule channel that learns to acti-
vate capsules within the segmentation target and deactivate them
outside the target. The Online Supplemental Data explain the
options that we explored for developing our 3D CapsNets and

how we chose the best design options. The Online Supplemental
Data explain how the final layer activations were converted into
segmentations. Details about how the model finds agreeing poses
of parts that vote for the pose of the whole are provided in the
Online Supplemental Data.

Comparisons: UNets and nnUNets
Optimized 3D UNets and nnUNets were also trained on the same

training data,''"'>*°

and their segmentation efficacy and computa-
tional efficiency were compared with our CapsNet using the same
test data. UNets and nnUNets have shown strong autosegmentation

performance across a variety of different imaging modalities and
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anatomic structures and are among the most commonly used
segmentation algorithms in biomedical imaging.''"'>'>?"%?
Figure 1B shows the architecture of our UNet. The input image
undergoes 64 convolutions (3 x3x3) to generate 64 feature
maps. These maps then undergo batch normalization and recti-
fied linear unit activation. Similar operations are performed
again, followed by downampling using max pooling (2 x 2x2).
The downsampling and upsampling limbs each include 4 units.
Upsampling uses 2 x 2x2 transposed convolutions with stride =
2. The final layer performs a 1 x 1x1 convolution to aggregate all
64 channels, followed by soft thresholding using the sigmoid
function. The model learns to output a number close to 1 for
each voxel inside the segmentation target and a number close to
zero for each voxel outside the target. We also trained self-config-
uring nnUNets that automatically learn the best architecture as
well as the optimal training hyperparameters.'®

Model Training

The CapsNet and UNet models were trained for 50 epochs using
the Dice loss and the Adam optimizer.*® The initial learning rate
was set at 0.002. We used dynamic paradigms for learning rate
scheduling, with a minimal learning rate of 0.0001. The hyperpara-
meters for our UNet were chosen on the basis of the best-perform-
ing model over the validation set. The hyperparameters for the
nnUNet were self-configured by the model.'® The training hyper-
parameters for CapsNet and UNet are detailed in the Online
Supplemental Data.

Model Performance

The segmentation efficacy of the 3 models was measured using
Dice scores. To compare the performance of each segmentation
model when training data are limited, we also trained the models
using subsets of the training data with 600, 240, 120, and 60
MRIs. We then compared the segmentation efficacy of the mod-
els using the test set. The relative computational efficiency of the
models was measured by the following: 1) the computational
memory required to run the model (in megabytes), 2) the com-
putational time required for training each model, and 3) the time
that each model takes to segment 1 MR imaging volume.

Out-of-Distribution Testing

To evaluate the performance of CapsNet and UNet models on
the images that were not represented during training, we trained
the models using images of the right hemisphere of the brain that
only contained the right thalamus and right hippocampus. Then,
we evaluated the segmentation efficacy of the trained models on
the images of the left hemisphere of the brain that contained
the contralateral left thalamus and left hippocampus. Because the
left-hemisphere images in the test set are not represented in the
right-hemisphere images in the training set, this experiment eval-
uates the out-of-distribution performance of the models. We
intentionally did not use any data augmentation during training
to assess out-of-distribution performance of the models. Given
that nnUNet paradigm requires data augmentation, the nnUNet
was not included in this experiment. We additionally tested
whether the fully-trained models can generalize to segment
raw images that did not undergo steps of preprocessing. The
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Online Supplemental Data summarize the results of these
experiments.

Implementation

Images were preprocessed using Python (Version 3.9) and
FreeSurfer (Version 7). PyTorch (Version 1.11; https://pytorch.
org/) was used for model development and testing. Training
and testing of the models were run on graphics processing unit
(GPU)-equipped servers (4 virtual CPUs, 61 GB RAM, 12 GB
NVIDIA GK210 GPU with Tesla K80 accelerators; https://www.
nvidia.com/). The code used to train and test our models, our
pretrained models, and a sample MR imaging is available on the
GitHub page of our lab (www.github.com/Aneja-Lab-Yale/
Aneja-Lab-Public-CapsNet).

RESULTS

All 3 segmentation models showed high performance across all 3
neuroanatomic structures with Dice scores of >90% (Fig 2).
Performance was highest for the third ventricle (95%-96%) fol-
lowed by the thalamus (94%-95%) and hippocampus (92%-
93%). Dice scores between the CapsNet and UNet-based models
were within 1% for all neuroanatomic structures (Table 2).

Although both CapsNet and UNet had difficulty segmenting
contralateral structures, the CapsNet significantly outperformed
the UNet (thalamus P value < .001, hippocampus P value
< .001) (Table 3). CapsNet models frequently identified the
contralateral structure of interest but underestimated the size of
the segmentation, resulting in Dice scores between 40% and
60%. In contrast, the UNet models frequently failed to identify
the contralateral structure of interest, resulting in Dice scores of
<20% (Fig 3).

Segmentation performance for each model remained high
across training data sets of varying sizes (Fig 4). When trained on
120 brain MRIs, all three models maintained their segmentation
accuracy within 1% compared to models trained on 3199 brain
MRIs. However, segmentation performance did decrease for all
three models when trained on 60 brain MRIs (83% for CapsNet,
84% for UNet, and 88% for nnUNet).

The CapsNet was more computationally efficient compared
with UNet-based models (Fig 5). The CapsNet required 228 MB,
compared with 1364 MB for UNet and 1410 MB for nnUNet. The
CapsNet trained 25% faster than the UNet (1.5 versus 2 seconds
per sample) and 100% faster than the nnUNet (1.5 versus 3 sec-
onds per sample). When we compared the deployment times of
the fully-trained models, CapsNet and UNet could segment images
equally fast (0.9 seconds per sample), slightly faster than the
nnUNet (1.1 second per sample).

DISCUSSION

Neuroanatomic segmentation of brain structures is an essential
component in the treatment of various neurologic disorders.
Deep learning-based autosegmentation methods have shown
the ability to segment brain images with high fidelity, which was
previously a time-intensive task.'>'*'”** In this study, we com-
pared the segmentation efficacy and computational efficiency of
CapsNets with UNet-based autosegmentation models. We
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FIG 2. CapsNet, UNet, and nnUNet segmentation of brain structures that were represented in
the training data. Segmentations for three structures are shown: third ventricle, thalamus, and
hippocampus. Target segmentations and model predictions are, respectively, shown in red and
white. Dice scores are provided for the entire volume of the segmented structure in this patient

(who was randomly chosen from the test set).

Table 2: Comparing the segmentation efficacy of CapsNets, UNets, and nnUNets in
segmenting brain structures that were represented in the training data®
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L

% f A
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\
S

data, suggesting an ability to generalize
beyond their training data.
1 g Our results corroborate previous
studies demonstrating the ability of
deep learning models to reliably seg-
ment anatomic structures on diagnostic
images.'"'>'* UNet-based models have
been shown to effectively segment nor-
mal anatomy across a variety of different
imaging modalities including CT, MR
imaging, and x-ray images.'>>"?>**%
Moreover, Isensee et al'® showed the
ability of nnUNets to generate reliable
segmentations across 23 biomedical
image-segmentation tasks with auto-
mated hyperparameter optimization.
We have extended prior work by dem-
\, . , onstrating similar segmentation efficacy
% Dice score: 95% and UNet-based

models, with CapsNets being notably

between CapsNets

more computationally efficient. Our
CapsNets require <10% of the amount
of memory required by UNet-based
methods and train 25% faster.

Our findings are consistent with prior

—

; Qg" L 4
¢ studies demonstrating the efficacy of
CapsNets for image segmentation.**”®

W LaLonde et al* previously demonstrated

-
Dice score: 92%

that 2D CapsNets can effectively segment
lung tissues on CT images and muscle
and fat tissues on thigh MRIs. Their
group similarly found that CapsNets can
segment images with performance rival-
ing UNet-based models while requiring
<10% of the memory required by UNet-
based models. Our study builds on prior

UNet Dice
(95% Cl)

nnUNet Dice
(95% Cl)

CapsNet Dice

Brain Structure (95% Cl)

Repeated Measures

studies by showing the efficacy of CapsNets

Third ventricle
Thalamus
Hippocampus

95% (94-96)
94% (93-95)
92% (91-93)

96% (95-97)
95% (94-96)
93% (92-94)

96% (95-97)
94% (92-96)
92% (91-93)

ANOVA P Value® for segmenting neuroanatomic substruc-
03 tures on brain MRIs. Additionally, when
1 we compared this work with prior work,
1 we have implemented 3D CapsNet archi-

*The segmentation accuracy was quantified using Dice scores on the test set (114 brain MRIs). The third ventri-
cle, thalamus, and hippocampus, respectively, represent easy, medium, and difficult structures to segment.

bdf=3—-1=2.

Table 3: Comparing the efficacy of CapsNets and UNets in seg-
menting images that were not represented in the training data®

Brain CapsNet Dice  UNet Dice  CapsNet vs UNet
Structure (95% Cl) (95% Cl) (P Value®)
Thalamus 52% (46-58)  16% (11-2) < .0l
Hippocampus  43% (38—48) 10% (6-14) < .01

®Both models were trained to segment the right thalamus and hippocampus.
Then, they were tested on segmenting the contralateral left thalamus and
hippocampus.

Pdf =14 -1=13,

found CapsNets to be reliable and computationally efficient,
achieving segmentation accuracy comparable with commonly
used UNet-based models. Moreover, we found CapsNets to
have higher segmentation performance on out-of-distribution

tecture, which has not been previously
described in the literature.

Previous studies have suggested that
CapsNets are able to generalize beyond
their training data.">”® Hinton et al'® demonstrated that CapsNets
can learn spatial information about the objects in the image and can
then generalize this information beyond what is present in the train-
ing data, which gives CapsNet out-of-distribution generalization
capability. The ability to segment out-of-distribution images was
also shown by LaLonde et al*” for their 2D CapsNet model, which
segments images. We built on previous studies by demonstrating
out-of-distribution generalizability of 3D CapsNets for segmenting
medical images.

Although we found CapsNets to be effective in biomedical
image segmentation, previous studies on biomedical imaging have

138

shown mixed results.*® Survarachakan et al*® previously found 2D
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FIG 3. CapsNets outperforms UNets in segmenting images that were
not represented in the training data. Both models were trained to
segment right-brain structures and were tested to segment contralat-
eral left-brain structures. Target segmentations and model predic-
tions are, respectively, shown in red and white. Dice scores are
provided for the entire volume of the segmented structure in this
patient. The CapsNet partially segmented the contralateral thalamus
and hippocampus (white arrows), but the UNet poorly segmented
the thalamus (white arrow) and entirely missed the hippocampus.

CapsNets to be effective for segmenting heart structures but inef-
fective for segmenting the hippocampus on brain images. Our
more favorable results in segmenting the hippocampus are likely
because of the 3D structure of our CapsNet, which can use the
contextual information in the volume of the image rather than just
a section of the image to better segment the complex shape of the
hippocampus.®

Our study has several limitations. Our models were tested on
only 3 brain structures that are commonly segmented on brain
MRIs, meaning that our findings may not generalize across other
imaging modalities and anatomic structures. Nevertheless, our
findings show the efficacy of CapsNets on brain structures with
different levels of segmentation difficulty, suggesting the potential
utility for a variety of scenarios. Computational efficiency across
models was measured using the same computing resources and
GPU memory, and our findings may not translate to different
computational settings. Future studies can further explore the rel-
ative computational efficiency of CapsNets compared with other
autosegmentation models across different computing environ-
ments. We only compared the efficacy of CapsNets with UNet-
based models. While there are multiple other autosegmentation
models, UNet-based models are currently viewed as the most suc-
cessful deep learning models for segmenting biomedical images.
Further studies comparing the CapsNet with other deep learning
models are an area of future research. Last, we found CapsNets to
outperform UNet models when segmenting contralateral structures
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FIG 4. Comparing CapsNets, UNets, and nnUNets when training data
are limited. When the size of the training set was decreased from
3199 to 120 brain MRIs, hippocampus segmentation accuracy (meas-
ured by Dice score) of all 3 models did not decrease >1%. Further
decrease in the size of the training set down to 60 MRIs led to wors-
ened segmentation accuracy.
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FIG 5. Comparing the computational efficiency among CapsNets,
UNets, and nnUNets, in terms of memory requirements (A) and
computational speed (B). A, The bars represent the computational
memory required to accommodate the total size of each model,
including the parameters plus the cumulative size of the forward-
and backward-pass feature volumes. B, CapsNet trains faster, given
that its trainable parameters are 1 order of magnitude fewer than
UNets or nnUNets. The training times represent the time that each
model took to converge for segmenting the hippocampus, divided
by the number of training examples and the training epochs (to
make training times comparable with test times). The test times rep-
resent how fast a fully-trained model can segment a brain image.

not represented in the training data. Techniques like data augmenta-
tion have shown the ability to improve the generalizability of UNet
models in this scenario. Nevertheless, our findings demonstrate the
ability of CapsNets to encode spatial information without the need
for such techniques, which often require additional computational
resources. This result further highlights the potential computational
advantages of CapsNets for medical image segmentation.



CONCLUSIONS
In this study, we showed that 3D CapsNets can accurately seg-

ment neuroanatomic structures on brain MR images with seg-

mentation accuracy similar to that of UNet-based models. We

also showed that CapsNets outperformed UNet-based models in

segmenting out-of-distribution data. CapsNets are also more

computationally efficient compared with UNet-based models

because they train faster and require less computation memory.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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