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ORIGINAL RESEARCH
PEDIATRICS

Predicting Drug Treatment Outcomes in Childrens with
Tuberous Sclerosis Complex–Related Epilepsy: A Clinical

Radiomics Study
Z. Hu, D. Jiang, X. Zhao, J. Yang, D. Liang, H. Wang, C. Zhao, and J. Liao

ABSTRACT

BACKGROUND AND PURPOSE: Highly predictive markers of drug treatment outcomes of tuberous sclerosis complex–related epilepsy
are a key unmet clinical need. The objective of this study was to identify meaningful clinical and radiomic predictors of outcomes of
epilepsy drug treatment in patients with tuberous sclerosis complex.

MATERIALS AND METHODS: A total of 105 children with tuberous sclerosis complex–related epilepsy were enrolled in this retro-
spective study. The pretreatment baseline predictors that were used to predict drug treatment outcomes included patient demo-
graphic and clinical information, gene data, electroencephalogram data, and radiomic features that were extracted from pretreatment
MR imaging scans. The Spearman correlation coefficient and least absolute shrinkage and selection operator were calculated to select
the most relevant features for the drug treatment outcome to build a comprehensive model with radiomic and clinical features for
clinical application.

RESULTS: Four MR imaging–based radiomic features and 5 key clinical features were selected to predict the drug treatment out-
come. Good discriminative performances were achieved in testing cohorts (area under the curve ¼ 0.85, accuracy ¼ 80.0%, sensi-
tivity ¼ 0.75, and specificity ¼ 0.83) for the epilepsy drug treatment outcome. The model of radiomic and clinical features
resulted in favorable calibration curves in all cohorts.

CONCLUSIONS: Our results suggested that the radiomic and clinical features model may predict the epilepsy drug treatment out-
come. Age of onset, infantile spasms, antiseizure medication numbers, epileptiform discharge in left parieto-occipital area of elec-
troencephalography, and gene mutation type are the key clinical factors to predict the epilepsy drug treatment outcome. The
texture and first-order statistic features are the most valuable radiomic features for predicting drug treatment outcomes.

ABBREVIATIONS: ASM ¼ antiseizure medication; AUC ¼ area under the receiver operating curve; EEG ¼ electroencephalography; GLCM ¼ gray-level co-
occurrence matrix; GLDM ¼ gray-level dependence matrix; GLRLM ¼ gray-level run-length matrix; GLSZM ¼ gray-level size zone matrix; LASSO ¼ least abso-
lute shrinkage and selection operator; TSC ¼ tuberous sclerosis complex

Tuberous sclerosis complex (TSC) is a rare autosomal domi-
nant disorder caused by loss-of-function mutations of the

TSC1 or TSC2 genes, which can affect multiple organ systems1

and is frequently associated with tumors of the brain, skin, heart,
lungs and kidneys, seizures, and TSC-associated neuropsychiatric
disorders, including autism spectrum disorder and cognitive dis-
ability.2 Epilepsy is the most common and clinically challenging
symptom of TSC, affecting approximately 85% of patients,3,4 of
which nearly two-thirds have the first seizure in the first year of
life.5,6

The goal of treatment in TSC is to prevent or control seizures
as soon as possible after TSC diagnosis, which will improve cog-
nitive neurodevelopment and enhance the quality of life.3 The
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classic treatment for epilepsy is antiseizure medication (ASM).7

However,.50% of patients with TSC will develop drug-resistant
epilepsy,8,9 and diagnosing it may take a long time.10 Therefore,
there is an urgent need to investigate the predictive biomarkers
for the effectiveness of ASM treatment for patients with epilepsy.

Nervous system manifestations can be observed in almost all
cases of TSC, and MR imaging is a technique used routinely to
diagnose TSC.11 Cortical tubers are major TSC-related brain
manifestations, which show abnormal high or low signals in
FLAIR sequences.12 In addition, FLAIR imaging is widely used to
study the epileptogenic zone13 and epilepsy mechanism of TSC.14

Jesmanas et al9 reported that MR imaging–defined tuber types
were found to be associated with early seizure onset in TSC. In
addition, lesion location and type of information features in MR
imaging have been shown to be associated with the outcomes of
epilepsy drug treatment.10 However, the features of MR imaging
were typically extracted manually, and the description of these
features was usually qualitative, subjective, and nonspecific.

Radiomics is an emerging research branch in the field of med-
ical imaging, which aims to extract mineable high-dimensional
data from clinical images.15,16 Radiomics capture tissue and
lesion characteristics, such as heterogeneity, texture, and shape
and can be used alone or in combination with demographic, his-
tologic, genomic, or proteomic data to solve clinical problems.17

Radiomic analyses have been successfully applied to predict the
type of tumor-related epilepsy or epilepsy presentation18-22 and
treatment outcomes for cancer.23-27 Thus, a noninvasive bio-
marker based on radiomic analyses that can predict the drug
treatment outcome in patients with TSC would be valuable.

In this study, we used FLAIR scans to extract radiomic fea-
tures including shape, first-order statistics, and textural features
that are associated with the drug treatment outcome in patients
with TSC. Moreover, we constructed a machine learning model
to investigate how accurately we can predict the drug treatment
outcome in patients with TSC using radiomic and clinical
information.

MATERIALS AND METHODS
Patients
A total of 105 patients with TSC at Shenzhen Children’s
Hospital between January 2013 and September 2018 were con-
secutively enrolled in this retrospective study, and informed
consent was obtained from all patients before the study. The
protocols were approved by the Ethics Committee of Shenzhen
Institutes of Advanced Technology, Chinese Academy of
Sciences. We included patients who met the following criteria:
1) They had undergone FLAIR MR imaging before ASM treat-
ment, 2) electroencephalography (EEG) was recorded on admis-
sion or as an outpatient, 3) they had ASM treatment for at least
1 year, and 4) the ages at MR imaging were younger than
6months.

Drug treatment outcome was defined according to the Gül
Mert et al6 and was recorded as controlled or uncontrolled.
Patients were considered as controlled if they had not had clinical
seizures for at least 1 year. Uncontrolled patients had at least 1
seizure in the past year. Data were randomly split into a training
data set (n ¼ 75) and an independent test data set (n ¼ 30). We

used stratified random sampling to ensure the same class ratios
for every set. There was no patient overlap between the training
and test sets. The training data set was used to derive clinical and
radiomic predictors of epilepsy; then, the classification perform-
ance of these predictors was internally validated on the test data
set.

Data of 59 routine clinical variables were collected, including
patient information, such as sex, age, typical symptoms of TSC,
and examination results, as well as TSC1 and TSC2 gene test
results and EEG features and so forth. This study further used the
clinical and MR imaging data of all enrolled cases. The flow chart
of the study is illustrated in Fig 1.

Image Acquisition
All MR imaging examinations were performed using a Magnetom
Trio 3T scanner (Siemens) with an 8-channel receive-only
head coil acquisition. The FLAIR parameters were as follows:
TR ¼ 9000ms, TE ¼ 132ms, TI ¼ 2600ms, flip angle ¼ 150°,
FOV ¼ 230� 194 mm2, voxel size ¼ 0.7� 0.7� 6.0 mm3, and
matrix ¼ 320� 224. The MR imaging data were stored in
DICOM format.

Image Processing and Segmentation
In neuroimaging studies, the ROIs are located in the brain tissue.
Therefore, we removed the nonbrain tissue in MR imaging using
a deep learning model.28

ROIs of the cortical tubers and migration lines were manually
drawn by 2 neuroradiologists with .15 years of experience who
were blinded to clinical data using open-source software (ITK-
SNAP, Version 3.8.0; http://www.itksnap.org). ROIs were merged
when the difference between the individual ROIs determined by
the 2 neuroradiologists was ,5%. When there was a.5% differ-
ence between these 2 ROIs, the ROI used was determined by a
senior neuroradiologist. ROIs of the cortical tubers and migration
lines were defined as areas of the MR images that exhibited
abnormal hyperintense or hypointense signals. Figure 2 shows
some cases of FLAIR images with and without lesions and seg-
mentation in children with TSC. Figure 2A shows the FLAIR
images of some children with TSC with lesions, and Fig 2B is the
segmentation of Fig 2A. Figure 2C shows the FLAIR images of
some children with TSC without lesions.

Radiomic Feature Extraction
Due to differences in equipment parameters such as layer thick-
ness and pixel pitch of MR images, all images were resampled to
1� 1� 1mm3. A publicly available Python package, pyradiomics
3.0.1 (https://pypi.org/project/pyradiomics/), was used to extract
radiomic features.29 A total of 1132 features consisting of gray-
level co-occurrence matrix (GLCM), gray-level run-length matrix
(GLRLM), gray-level size zone matrix (GLSZM), gray-level de-
pendence matrix (GLDM), first-order, and shape features were
extracted from ROIs on FLAIR.

First-order features described the distribution of voxel inten-
sity within the ROI 3D matrix and the overall information about
the cortical tubers. The shape features reflected the volume, sur-
face area, and shape of the cortical tubers. GLCM, GLRLM,
GLSZM, and GLDM were collectively referred to as texture
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features. The detailed information and formulas for the detection
of the 1132 radiomic features are described in https://pyradiomics.
readthedocs.io/en/latest/.

Feature Selection
The 1132 radiomic features and 59 routine clinical variables were
normalized with z score normalization before feature selection.

FIG 1. The flowchart of the current study. Patient information, including sex, age, the existence of typical symptoms of TSC, and some examina-
tion results. TSC1 and TSC2 were gene test results.

FIG 2. Some cases of FLAIR images with and without lesions and segmentation in children with TSC. A, The FLAIR images of some children with
TSC with lesions. B, The segmentation of A. C, The FLAIR image of some children with TSC without lesions. The red color represents the segmenta-
tion of lesions.
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First, a bivariate analysis was conducted to screen the radiomic
and clinical features. We calculated the P values of the Spearman
correlation coefficient between each feature and the treatment
outcome and identified the features with P values, .05. Least
absolute shrinkage and selection operator (LASSO) was widely
used to compress the coefficients of features and select features to
prevent overfitting, so we used a LASSO algorithm to select the
key radiomic and clinical features.

Development and Evaluation of an Individualized
Prediction Model
On the basis of a cohort of all patients, we used 11 machine learn-
ing classifiers, such as support vector machines, random forest,
logistic regression, AdaBoost (https://www.machinelearningplus.
com/machine-learning/introduction-to-adaboost), gradient boost-
ing, and decision tree to build models to predict treatment out-
come with clinical information and radiomic features.

Each classifier was trained on the training set using a 10-fold
cross-validation procedure and the training process needed to
determine the optimal hyperparameters of the classifiers, which
were determined by grid search. We selected the best classifier by
comparing the performance of classifiers on the validation set. The
classifier that achieved the highest area under the receiver operat-
ing curve (AUC) score was selected as a candidate solution.

Once trained, the best model was evaluated on the test set.
The classification performance of the model was assessed by the
receiver operating characteristic curves and AUCs in each cohort.
Calibration curves were also plotted to assess the calibration of
the radiomic and clinical features.30

Statistical Analysis
In this study, we use frequencies and percentages for categoric vari-
ables and median and range for continuous variables. The differen-
ces between groups were assessed by an independent samples t
test, and P, .05 was defined as significant. Model training, valida-
tion, and testing were implemented with Python (Version 3.8.0).

RESULTS
Demographic and Clinical Data
The main clinical and pathologic characteristics of all 105 patients
are listed in the Online Supplemental Data. Of the 105 enrolled
patients, 43 (40.9%) were controlled and 62 (59.1%) were

uncontrolled by drug treatment. Age of
onset, infantile spasms, gene mutation
type, ASM numbers, and epileptiform
discharge in the left parieto-occipital
area of the EEG were significantly differ-
ent between the controlled and uncon-
trolled patients (P, .05).

Performance of the Radiomic
Signature
Four key radiomic features and 5 clinical
features were selected using the Spearman
correlation analysis and LASSO regres-
sion (Table 1), and the distribution of
each radiomic feature in the controlled

and uncontrolled groups is shown in Fig 3A–D. According to the
AUC of the validation set that was used to select the best hyper-
parameters and model, the best classification model is logistic
regression (Fig 4). The predictive ability of the model with radio-
mic and clinical features was shown by the receiver operating
characteristic curve (Fig 5A), achieving the best performance of
AUC ¼ 0.96, classification accuracy ¼ 90.7%, sensitivity ¼ 0.97,
and specificity ¼ 0.86 in the training cohort; AUC ¼ 0.94, classi-
fication accuracy ¼ 88.0%, sensitivity ¼ 0.94, and specificity ¼
0.84 in the validation cohort; and AUC ¼ 0.854, classification
accuracy¼ 80.0%, sensitivity¼ 0.75, and specificity¼ 0.83 in the
test cohort, respectively. Table 2 shows the test set results on
logistic regression models with input of clinical features alone
and with input of radiomic and clinical features. Figure 6 shows a
performance comparison of clinical features alone and radiomic
and clinical features on a logistic regression model in the testing
cohorts. The results of the test set with the logistic regression
model are shown in Table 2. The model of radiomic and clinical
features demonstrated favorable calibration in the training, vali-
dation, and testing cohorts (Fig 5B). Figure 5C–E shows the
waterfall plots of radiomics and the clinical model to differentiate
controlled from uncontrolled patients in the training, validation,
and testing cohorts.

DISCUSSION
With the increasing use of drug treatments in epilepsy, a better
understanding of patient response to the treatment could help
identify the optimal treatment strategy for individual patients.10

Radiomic approaches, when combined with clinical data, could
improve treatment selection. In this study, a prediction model of
drug treatment outcome based on radiomic data from MR imag-
ing and clinical data was developed. The results demonstrate that
the MR imaging–based radiomic and clinical models could suc-
cessfully predict the outcome of epilepsy drug treatment among
children with TSC.

Reliable prediction of epilepsy drug treatment outcome allows
the development of a more targeted treatment, and those patients
proved to be drug-resistant should be considered for surgical pro-
cedures or other treatment options to increase the curative ratio
and reduce mortality.31,32 However, determining the epilepsy
drug treatment outcome on the basis of its clinical and treatment
presentation imposes an apparent lag. Thus, there is a need for a

Table 1: The radiomic and clinical features selected by LASSO regression

Selected Features
P Value of Spearman

Correlationa
Coefficients of

LASSO
Radiomic features
log-sigma-2-0-mm-3D_gldm_
SmallDependenceHighGrayLevelEmphasis

.030 0.026695

wavelet-LLH_glcm_Idmn .036 –0.051160
wavelet-LLL_firstorder_10Percentile .012 0.023878
wavelet-LLL_firstorder_Mean .035 0.050790

Clinical features
Age of onset ,.001 0.117626
Infantile spasms ,.001 –0.147036
Epileptiform discharge in left parieto-
occipital area of EEG

,.001 0.098540

ASM numbers .018 –0.132026
Gene mutation type .025 –0.047780
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clinical model capable of predicting epilepsy drug treatment out-
come before treatment initiation. In this study, a new model with
radiomic and clinical features was developed at baseline to pre-
dict the epilepsy drug treatment outcome for patients with TSC,
which will provide clinicians with a reliable and noninvasive tool
to better select patients for epilepsy drug treatment.

With the rapid development of machine learning and image-
processing techniques, a number of studies have developed radio-
mics-based predictive models for various clinical characteristics,
including pathologic grade33,34 and treatment and survival

outcomes.35,36 The rapid increase of the
radiomic application is driven by enriched
quantitative image features that clinicians
can extract from medical images with
high efficiency to guide clinical decision-
making.37 Moreover, some researchers
have successfully applied radiomic analy-
sis to predict tumor-related epilepsy by
combining various quantitative MR
imaging features.18,20-22 Their works
mainly focused on tumor-related epi-
lepsy. However, epilepsy caused by
TSC is different. It has distinct clinical
manifestations and presentations on
MR imaging.10

To our knowledge, this is the first

study to show that radiomics can be

used to predict the outcome of epilepsy

drug treatment in patients with TSC.

Therefore, we tried to demonstrate the

associations of these radiomics-based

MR imaging features with TSC-related

epilepsy drug treatment outcome, and we have achieved a relatively

high discrimination accuracy and AUC in all cohorts, which sug-

gest that the radiomic model developed in this study was effective

in predicting the outcome of epilepsy drug treatment.
In our study, we selected 4 radiomic features to predict drug

treatment outcomes, including log-sigma-2–0-mm-3D_gldm_
SmallDependenceHighGrayLevelEmphasis (L_gldm_S), wavelet-
LLH_glcm_Idmn (W_glcm_I), wavelet-LLL_firstorder_10Per-
centile (W_firstorder_10), and wavelet-LLL_firstorder_Mean
(W_firstorder_M). L_gldm_S and W_glcm_I are texture features

FIG 3. Boxplot of the 4 selected values of radiomic features in controlled and uncontrolled groups. The small blue and red circles represent the
value of each radiomic feature in the controlled and uncontrolled groups. Themiddle line of the boxplot is the median of the radiomic feature,
representing the average level of the radiomic feature. The upper and lower bounds of the boxplot are the upper and lower quartiles of the
radiomic feature data, respectively. P values are the results of the Spearman correlation test.

FIG 4. The AUC scores of 11 machine learning models in the validation cohort. According to the
AUC of the validation set that was used to select the best hyperparameters and model, the best
classification model of radiomic and clinical features is logistic regression. NB indicates Naive
Bayes; SVM, support vector machine; XG, eXtreme Gradient.
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that reflect the homogeneity of the tubers. W_firstorder_10 and
W_firstorder_M are first-order statistical features that reflect the
distribution of signal intensities within the tuber region. Our
results imply that the texture features and first-order statistical fea-
tures are valuable for predicting drug treatment outcomes. Zhao et
al38 had reported that the type II lesions (the uneven thickening of
the cortex on T2-weighted and FLAIR) were statistically significant
between the uncontrolled and controlled groups, similar to find-
ings in our research. MR imaging lesion type features are related to
outcomes of epilepsy drug treatment in TSC,10,12 which can

indirectly support our present results
because the types of lesions are gener-
ally classified clinically according to tex-
ture structure and the signal intensity
of the lesions.

Additionally, our model incorpo-
rated both radiomic features and clini-

cal characteristics that are helpful for prediction, such as the age
of onset, infantile spasms, ASM numbers, epileptiform discharge
in left parieto-occipital area of the EEG, and gene mutation type,
making our model more comprehensive and reliable for clinical
application. Our study found that about 59.1% of patients with
TSC were in the uncontrolled group. It was reported that the
drug resistance ratios of TSC-related epilepsy were 59.6%,38

60%,5and 62%,39 which were similar to those in our study. In
addition, about 30 (48.4%) patients in the uncontrolled group
had experienced infantile spasms, and 4 (9.3%) patients in the

FIG 5. Receiver operating characteristic curve (A), calibration curve (B), and waterfall plots (C–E) of the radiomic and clinical features model in
training, cross-validation, and testing cohorts.

Table 2: The results of the logistic regression model in testing cohorts
Input Features Model AUC ACC SEN SPE

Clinical features Logistic regression 0.783 0.767 0.769 0.765
Radiomic and clinical features Logistic regression 0.854 0.800 0.750 0.830

Note:—ACC indicates accuracy; SEN, sensitivity; SPE, specificity.
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controlled group had experienced infantile spasms. Previous
studies have shown similar results: TSC patients with infantile
spasms are more likely to develop drug resistant epilepsy.4,40 In
our study, the mean age of seizure onset was 10.34months in
the uncontrolled group and 31.17months in the controlled
group. Patients with TSC epilepsy before 1 year of age are more
likely to develop resistance than those with onset after 1 year of
age,40 consistent with our results. Compared with TSC1 patho-
genic mutations, TSC2 mutations have a more severe clinical
phenotype, and the conditions of these patients are usually
more difficult to control,39,41 consistent with our findings that
the proportion of TSC2 gene mutations was higher in the
uncontrolled group.

Our results showed that the severity of EEG discharge in the
left parieto-occipital area was correlated with the epilepsy drug
treatment outcome, and the EEG discharge in the uncontrolled
group was more serious. Previous reports also showed similar
results. Some patients with TSC with severe EEG discharges have
multifocal EEG discharges related to bilateral asymmetric spike-
and-wave complexes. The onset is partial seizures or convulsive
seizures, which later develop into drug-resistant epilepsy.39,40 In a
study of 83 patients with TSC, ASM numbers have been reported
as an important risk factor for development of refractory epilepsy
in patients with TSC.6 In our study, the history of using .3
ASMs is the risk factor that will lead to occurrence of drug-resist-
ant epilepsy.

LASSO is a widely accepted algorithm in feature selection.
The 1132 radiomics features extracted in this study may cause
overfitting when constructing the model. Therefore, feature
dimension reduction and selection were performed to screen
the key features that are most closely related to the epilepsy drug

treatment outcome using bivariate
analysis and the LASSO algorithm.
With features associated with epilepsy
drug treatment outcome, we used 11
classic machine learning models for
classification and selected the best
model on the basis of AUC of cross-
validation. Finally, we evaluated the
performance of the selected model on
the independent test set consisting of
unseen data.

Although this study is novel and
conducted with advanced methodology,
there are several limitations. First, it is a
single-center cohort study, and a multi-
center cohort study should be further
considered to verify the findings of this
study. Second, the data set is relatively
small because TSC is a rare disease.
However, we will collect more data from
additional patients with TSC and will
use advanced algorithms such as deep
learning to make more precise predic-
tions in the future. Finally, our study
used only the MR imaging technique,
which contains limited information. We
will explore the multimodal data such as

CT and PET to construct a more comprehensive radiomic model
in future exploration.

CONCLUSIONS
Our study suggests that radiomics could be a noninvasive, effi-
cient, and reliable way to predict patient outcome to drug treat-
ment when combined with clinical data. Furthermore, we
identified novel models containing informative clinical covari-
ates and radiomic image features to predict drug treatment out-
come. Our results implied that the texture features and first-
order statistics features are the most valuable radiomic features
for predicting drug treatment outcomes. Age of onset, infantile
spasms, ASM numbers, epileptiform discharge in the left pari-
eto-occipital area of EEG, and gene mutation type are the key
clinical factors that are most likely to predict the epilepsy drug
treatment outcome.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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