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ORIGINAL RESEARCH
SPINE IMAGING AND SPINE IMAGE-GUIDED INTERVENTIONS

Automated Detection of Cervical Spinal Stenosis and Cord
Compression via Vision Transformer and Rules-Based

Classification
David L. Payne, Xuan Xu, Farshid Faraji, Kevin John, Katherine Ferra Pradas, Vahni Vishala Bernard, Lev Bangiyev, and

Prateek Prasanna

ABSTRACT

BACKGROUND AND PURPOSE: Cervical spinal cord compression, defined as spinal cord deformity and severe narrowing of the spi-
nal canal in the cervical region, can lead to severe clinical consequences, including intractable pain, sensory disturbance, paralysis,
and even death, and may require emergent intervention to prevent negative outcomes. Despite the critical nature of cord com-
pression, no automated tool is available to alert clinical radiologists to the presence of such findings. This study aims to demon-
strate the ability of a vision transformer (ViT) model for the accurate detection of cervical cord compression.

MATERIALS AND METHODS: A clinically diverse cohort of 142 cervical spine MRIs was identified, 34% of which were normal or had
mild stenosis, 31% with moderate stenosis, and 35% with cord compression. Utilizing gradient-echo images, slices were labeled as
no cord compression/mild stenosis, moderate stenosis, or severe stenosis/cord compression. Segmentation of the spinal canal was
performed and confirmed by neuroradiology faculty. A pretrained ViT model was fine-tuned to predict section-level severity by
using a train:validation:test split of 60:20:20. Each examination was assigned an overall severity based on the highest level of section
severity, with an examination labeled as positive for cord compression if $1 section was predicted in the severe category.
Additionally, 2 convolutional neural network (CNN) models (ResNet50, DenseNet121) were tested in the same manner.

RESULTS: The ViT model outperformed both CNN models at the section level, achieving section-level accuracy of 82%, compared
with 72% and 78% for ResNet and DenseNet121, respectively. ViT patient-level classification achieved accuracy of 93%, sensitivity of
0.90, positive predictive value of 0.90, specificity of 0.95, and negative predictive value of 0.95. Receiver operating characteristic
area under the curve was greater for ViT than either CNN.

CONCLUSIONS: This classification approach using a ViT model and rules-based classification accurately detects the presence of
cervical spinal cord compression at the patient level. In this study, the ViT model outperformed both conventional CNN
approaches at the section and patient levels. If implemented into the clinical setting, such a tool may streamline neuroradiology
workflow, improving efficiency and consistency.

ABBREVIATIONS: AI ¼ artificial intelligence; AUC ¼ area under the curve; CNN ¼ convolutional neural network; ER ¼ emergency room; GRE ¼ gradient-
echo; NPV ¼ negative predictive value; PPV ¼ positive predictive value; ViT ¼ vision transformer

Cervical spinal cord compression, a clinical entity which results
from severe narrowing of the spinal canal by an extrinsic

source, is widely recognized as a clinical emergency, and can lead
to severe clinical consequences, including muscular weakness,
pain, sensory disturbances, paralysis, and even death. Early medi-
cal and surgical intervention in the setting of severe spinal canal

stenosis and spinal cord compression has been shown to improve
long-term neurologic outcomes.1 Although CT has its own advan-

tages in evaluation of the spine in terms of bone integrity, MR
imaging is the reference standard for evaluation of the soft tissues,

intervertebral discs, and spinal cord. MR imaging examinations of
the cervical spine are increasingly utilized in the acute or emergent
setting and are frequently interpreted by general radiologists.2,3

A continuous growth in frequency of cross-sectional imaging
performed has led to explosive growth in demands on interpreting

radiologists, who are now often required to interpret an average of
one image every 3–4 seconds to meet workload demands.4 There

is extensive academic research and private investment aiming to
utilize artificial intelligence (AI) as a tool to augment radiologist
productivity, improve accuracy, and reduce cognitive strain.
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Additionally, radiology AI has shown promise as a triaging tool to
preview examinations as soon as they are performed, reorganizing
these examinations to the top of the clinical worklist and alerting
radiologists to possible abnormal findings.5-7

Previous work in this domain has demonstrated the ability
of convolutional neural network (CNN) algorithms to detect
cervical cord compression at the section level in patients with
known diagnosis of cervical myelopathy.8 Additional studies
have shown ability of CNNs to detect patient-level spinal
pathology; however, most of these have focused exclusively on
degenerative disc disease, the lumbar spine, or have utilized
nonclinically representative cohorts.9-14 To our knowledge, no
study has leveraged individual section-level predictions to gen-
erate an overall patient-level severity prediction, a method of
classification that mimics the manner in which a practicing radi-
ologist would view cervical spine MR imaging.

Additionally, while previously published work has demon-
strated impressive results utilizing CNNs, none to our knowledge
has leveraged vision transformers (ViTs), a cutting-edge deep
learning architecture, for the detection of cervical spinal pathol-
ogy. ViTs have gained prominence in the medical/radiologic
image analysis field since 2020 for their facility in segmentation
and classification, frequently demonstrating comparable or supe-
rior results to CNNs.15-19 In addition to their measurable per-
formance, ViTs hold great promise as a tool in medical imaging
analysis because of their ability to capture long-range, global
dependencies within an image compared with the local receptive
fields of CNNs.20,21

ViT brought forth a novel approach by considering images as
sequences comprising patches, subsequently processing these
patches by using transformer blocks. The self-attention mecha-
nism present in ViT enables the capture of comprehensive global
contextual information by facilitating long-range interactions
between different regions or patches within the images.22 As
such, ViT offers a promising solution for encoding meaningful
and intricate representations of complex structures, wherein both
shape and spatial arrangement are pivotal elements in cord com-
pression classification.

Developing a reliable and validated tool to detect cord com-
pression could meaningfully streamline the work of practicing
emergency room (ER), general, and neuroradiologists by helping
to triage their worklist. Without such a tool, the practicing radiol-
ogist may have a cervical spine MR imaging on their worklist with
critical cord compression but no warning until they physically
open the examination. This study demonstrates the ability of a
ViT combined with simple rules-based classification to accurately
evaluate cervical spineMRIs for cord compression with high accu-
racy. This study also compares the performance of the proposed
ViT model to 2 conventional CNN architectures.

MATERIALS AND METHODS
Patient Selection and Image Preprocessing
Following institutional review board approval for this retrospec-
tive study, an initial cohort was identified utilizing an internal
proprietary search engine that indexes radiology reports per-
formed at our institution. Search terms included “MR imaging
cervical spine,” “severe stenosis,” “cord compression,” “moderate

stenosis,” and “mild stenosis.” Examination reports were then
reviewed chronologically preceding from 2022 backward until a
sufficient number of examinations was identified, culminating in
a study period extending from 2017–2022.

To ensure a balanced representation of the disease severity
categories at the patient level, the cohort was constructed such
that 63 of the patients had radiologic reports describing normal
examinations or mild stenosis, 64 with up to moderate stenosis
at least 1 or more spinal level, and 55 had severe stenosis or
cord compression at 1 or more levels, comprising a total of 182
studies.

A total of 40 of these examinations were excluded secondary
to severe artifacts (9 patients), presence of metallic hardware (1
patient), data quality (21 patients), or a lack of an axial gradient-
echo (GRE) sequence (9 patients) (Fig 1). Of the resulting cohort
of 142 patients, 34% were described in their final radiology
reports as normal or with up to mild stenosis, 31% with up to
moderate stenosis, and 35% with cord compression.

A total of 27% of studies were obtained on a 3T Siemens mag-
net, and the remainder were obtained on 1.5T GE Healthcare and
Siemens magnets. Typical scanner parameters for the axial GRE
sequence included TR of 538–761 ms, TE of 13 ms, flip angle of
30°, field of view of 165–180mm, number of excitations of 1–3,
section thickness of 3mm, section gap of 0mm, matrix size of
320–384 � 128–192, 34–64 slices, and sequence acquisition time

FIG 1. Flow chart of patient inclusion.
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of 2.5–4.0 minutes. Gradient-echo imaging was selected as our
sequence of interest because of prominent CSF flow artifact on a
large number of spin-echo T2 images that were initially reviewed,
as well as internal clinical protocols specific to our institution.

These studies were then anonymized and converted to
NIfTI format. Axial gradient-echo slices were labeled as
0¼ normal/mild stenosis, 1¼ moderate stenosis, and 2¼ cord
compression utilizing a classification scheme simplified from
Kang et al, and adapted to the axial plane.22 Specifically, mild
stenosis was defined as loss of subarachnoid space up to 50%,
moderate stenosis with loss of subarachnoid space greater than

50%, and cord compression with complete loss of subarachnoid
space and frank cord deformity, with or without T2 hyperinten-
sity within the cord. Additionally, the spinal canal was manually
segmented by using ITK-SNAP segmentation software (Fig 2).
These tasks were performed by 3 senior radiology resident
physicians (PGY-4 and PGY-5 levels) and further confirmed by
senior neuroradiology faculty with . 15 years of experience.
Section-level ground truth severity was initially judged by the
resident team, with all cases reviewed and grading modified as
needed by the above criteria by fellowship-trained neuroradiol-
ogy faculty before any analysis was performed.

ViT Model and Patient-Level
Prediction
For our study, a ViT model pretrained
on ImageNet was fine-tuned by using
PyTorch (https://pytorch.org/) to pre-
dict section-level severity by using a
train:validation:test split of 60:20:20, a
batch size of 16, and 200 epochs.

Experiments were performed to
assess model accuracy at 3-level pre-
diction (normal/mild stenosis versus
moderate stenosis versus cord com-
pression) by using a forced square
centered on the manual segmentation
of the spinal canal as the area of inter-
est (Fig 3). Patient-level severity was
judged based on the highest degree of
section severity within each examina-
tion, with a patient/examination was
judged as having been categorized as
“severe” if $1 section was predicted

FIG 2. Representative GRE images of the cervical spine (top) with insets (middle) and examples
of spinal canal segmentations (bottom) performed by trained radiology physicians demonstrat-
ing examples of no/mild stenosis (A), moderate stenosis (B), and severe stenosis/cord compres-
sion (C).

FIG 3. Vision transformer analysis pipeline. Images are divided into flattened patches, which are then fed into the transformer encoder along
with positional encoding. For each section, a prediction of severity is generated.
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as having severe disease. Accuracy, sensitivity, specificity, posi-
tive predictive value (PPV), and negative predictive value
(NPV) were calculated based on a comparison of the patient-
level predictions with the ground-truth patient-level severity.

In addition to the ViT model, our study also encompassed
the evaluation of 2 popular CNN architectures, ResNet50 and
DenseNet121. These models were chosen because of their rec-
ognized efficacy and widespread popularity within radiology
AI, including within studies of cervical spine pathology.12,23

Performance of the 3 models (ViT, ResNet, DenseNet) was
compared, both at the section level and patient level.

RESULTS
Patient Characteristics
Patient characteristics are summarized in Table 1. No significant
differences were present when comparing differences in patient
age, sex, acute history of trauma, or clinical setting (emergency
room versus inpatient versus outpatient) between the training/
validation cohort and the testing cohort utilizing t-test for contin-
uous and x 2 for categoric variables (all P. .05, Table 1). The
most common etiologies of trauma were fall and motor vehicle
crashes. The most common presenting histories in patients

without history of acute trauma were degenerative disc disease,
malignancy, concern for infection, upper extremity sensory/motor
disturbances, and multiple sclerosis.

Section-Level Characteristics
To avoid overfitting, the model was trained and validated on a
balanced subset of the data, with a roughly equivalent number
of severe/moderate and normal/mild slices. The training/valida-
tion data set consisted of 716 normal/mild images, 496 moderate
images, and 234 images with cord compression and a total of
113 examinations.

To better reflect real-world conditions, the testing set, which
was balanced at the examination/patient level (10 cases with com-
pression, 9 with moderate disease, 10 with mild/no disease), was
left unbalanced at the section level. This left a data set with 1241
normal/mild slices, 99 moderate slices, and 25 severe slices.

Image and Patient-Level Experiment Results
ViT outperformed ResNet50 and DenseNet121 at the section
level, achieving 82% accuracy in the classification of spinal steno-
sis and cord compression. By comparison, ResNet50 achieved
section-level accuracy of 72% and DenseNet121 yielded 78%
accuracy. Significance of these differences in accuracy was con-
firmed by using pair-wise comparison (ViT versus ResNet50,
ViT versus DenseNet121, ResNet50 versus DenseNet121) using
the McNemar test (P, .001 comparing ViT versus ResNet50,
P ¼ .008 comparing ViT versus DenseNet 121, P, .001 com-
paring ResNet50 versus DenseNet121).

ViT also outperformed the CNNs at patient-level prediction,
with sensitivity of 0.90, PPV of 0.90, specificity of 0.95, and NPV
value of 0.95. Receiver operating characteristic curves were gener-
ated for each model’s patient-level classification accuracy, with
area under the curve (AUC) of 0.92 for ViT, 0.71 for ResNet50,
and 0.66 for DenseNet121 (Fig 4). Pair-wise comparison was

Table 1: Patient demographics and clinical setting in the train-
ing/validation and testing cohorts

Characteristic
Training/Validation

(n = 113)
Testing
(n = 29)

Demographics
Male 56 (49.5%) 11 (37.9%)
Age 57.5 53.1

Clinical setting
ER 64 (56.6%) 18 (62.1%)
Inpatient 16 (14.2%) 3 (10.3%)
Outpatient 33 (29.2%) 8 (27.6%)
History of trauma 49 (43.4%) 14 (48.3%)

FIG 4. Receiver operating characteristic curves comparing patient-level performance of ViT, DenseNet121, and ResNet50 in detecting cord
compression.
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performed for each model by using the DeLong test, which dem-
onstrated significantly greater AUC of ViT compared with both
DenseNet 121 and ResNet50 (P¼ .014 comparing ViT versus
ResNet50, P¼ .015 comparing ViT versus DenseNet121), but no
significant difference between ResNet50 and DenseNet121
(P¼ .66).

Two cases within the testing set were misclassified: 1 falsely
negative and the other falsely positive for cord compression
(Fig 5). No differences in accuracy were observed when con-
sidering differences in sex, age, or clinical setting.

While the ResNet50 model demonstrated 100% sensitivity
and NPV in patient-level classification, specificity and PPV were
poor, at 0.42 and 0.47, respectively. DenseNet121-based patient-
level classification underperformed both models at patient-level
prediction, with sensitivity of 0.8, specificity of 0.52, PPV of 0.47,
and NPV of 0.83. These results are summarized in Table 2.

Post hoc power analyses were performed for both section-
level and patient-level classification by using commercially avail-
able sample size calculation software nQuery as well as the
Cleveland Clinic Department of Quantitative Health Sciences
Sample Size Calculator.24 With both methods of power calcula-
tion, power met or exceeded 0.95 (both for section and patient
classification), utilizing a null hypothesis of AUC equal to 0.5,
analogous to random guessing. Additionally, 95% CIs were calcu-
lated for the ViT patient-level AUC of 0.92, yielding 0.80–1.00.

DISCUSSION
In our study, we presented a ViT model to classify MR imaging
images of the cervical spine as normal/mild stenosis, moderate

stenosis, or cord compression by using a diverse clinical cohort
taken from emergency, inpatient, and routine outpatient settings.
Based on the predictions of this model, we utilized a simple rules-
based approach to label entire examinations as positive for cord
compression or negative for cord compression. Based on this
methodology, we achieved a high accuracy, sensitivity, specificity,
PPV, and NPV. In our study, ViT outperformed 2 popular CNN
architectures. To our knowledge, our work presented the first
attempt at approximating the pattern of human interpretation of
MR imaging cervical spine examinations by utilizing section-level
predictions to generate an overall patient-level severity classifica-
tion for cervical spinal pathology. Additionally, no other study
has utilized ViT models for such a task within the cervical spine.
We believe the results of our experiments are meaningful for sev-
eral reasons.

First, while there is tremendous interest in utilizing AI-based
classification tools in neuroimaging, applications in cervical spine
pathology as depicted by MR imaging are relatively limited. Most
AI-based research in spinal neuroimaging and pathology relates
to lumbar spinal disease.11,13 There are also several published
studies demonstrating the ability of deep learning algorithms to
detect cervical spinal fractures via CT.25,26

The few studies that exist relating to cervical spinal cord pa-
thology differ from our study in meaningful ways. For example,
Merali et al8 demonstrate impressive performance of a deep
learning model at section-level prediction within a cohort of
patients with known cervical myelopathy. While such approaches
have yielded excellent performance, they may not retain their ac-
curacy when applied to our cohort, which represents a broader
array of etiologies for spinal stenosis and cord compression.
Tamai et al,9 Hopkins et al,10 and Ma et al12 also differ from our
methodology substantially by focusing solely on degenerative
disc disease, section-level prediction, classifying images/patients
into categories different from our study, utilizing a different deep
learning methodology, and/or utilizing a cohort of patients with
known cervical myelopathy.

By contrast, our study leverages a vision transformer model
combined with simple rules-based logic dictating that an exami-
nation with predicted cord compression at any level equals an

Table 2: Section-level and patient-level test results for ViT,
ResNet50, and DenseNet121 models

ViT ResNet50 DenseNet121
Section-level classification
accuracy

82% 72% 78%

Patient-level accuracy 93% 62% 62%
Patient-level sensitivity 0.90 1.0 0.8
Patient-level specificity 0.95 0.42 0.52
Patient-level PPV 0.90 0.47 0.47
Patient-level NPV 0.95 1.0 0.83

FIG 5. False-positive and -negative cases. A, False-positive: Diffuse congenital moderate stenosis with small superimposed annular bulge, incor-
rectly categorized as positive for cord compression. B, False-negative: Large annular bulge with severe spinal stenosis and cord compression and
abnormal T2 hyperintense signal within the cord, incorrectly categorized as negative for cord compression.
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examination positive for suspected cord compression. This meth-
odology is inspired by working clinically with commercially avail-
able intracranial hemorrhage detection software that labels an
examination with “suspected hemorrhage” if a section on a given
CT demonstrates evidence of hemorrhage.

This methodology holds a distinct advantage given the clinical
significance of the finding of cervical cord compression, as a false-
positive is far less likely to cause patient harm than a false-negative.
Therefore, any images flagged for possible compression should
trigger immediate review by the radiology physician and/or the cli-
nician who ordered the examination. Critically, however, the ViT
model was also highly specific with a high PPV. Although the
ResNet50 model achieved a sensitivity of 100% (ViT achieved
90%), given its poor performance in regard to specificity, PPV, and
lower AUC compared with ViT, its clinical usefulness would likely
be limited, given that greater than one-half of the examinations it
predicted as positive for cord compression were false-positives.

Given the ever-increasing workload of radiology physicians,
augmentation via AI is needed more than ever to improve work-
flow and speed, decrease cognitive load, and reduce misdiagnosis.
If implemented in a clinical setting, a triaging tool for detecting
cervical cord compression could be a meaningful aid to the prac-
ticing radiologist.

Limitations of our study include a relatively small sample
size, single-center data set, and categoric/nonquantitative classi-
fication of disease. Given that our study has a relatively low n
and is sourced from a single tertiary care academic medical cen-
ter, our results should be considered preliminary until replicated
across multiple additional sites. Additionally, there is increasing
recognition of a significant proportion among healthy popula-
tions, particularly the elderly, of asymptomatic cervical cord
compression.27 Therefore, a tool similar to the one described in
this manuscript, which flags examinations with potential cord
compression, would likely be more useful in the setting of con-
cern for acute pathology, such as trauma; less likely for outpa-
tient examinations evaluating for chronic processes, such as
degenerative disc disease. Notably, however, 58.2% of patients
with severe spinal stenosis in our cohort had clinical signs and
symptoms retrospectively referable to myelopathy.

Future directions will include expanding our data set to
include a larger multi-institutional cohort, quantitative analysis
(eg, spinal canal measurements), auto-segmentation, and possibly
an evaluation of clinical implementation.

CONCLUSIONS
This study demonstrates accurate detection of cervical spinal
cord compression at the patient level by combining vision trans-
former section-level predictions with rules-based classification. If
implemented into the clinical setting, this tool could serve as a
meaningful aide to radiologists by flagging potentially abnormal
examinations for expedited review.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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