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Investigating Sea-Level Brain Predictors for Acute Mountain
Sickness: A Multimodal MRI Study before and after

High-Altitude Exposure
Wei Zhang, Jie Feng, Wenjia Liu, Shiyu Zhang, Xiao Yu, Jie Liu, Baoci Shan, and Lin Ma

ABSTRACT

BACKGROUND AND PURPOSE: Acute mountain sickness is a series of brain-centered symptoms that occur when rapidly ascending
to high altitude. Predicting acute mountain sickness before high-altitude exposure is crucial for protecting susceptible individuals.
The present study aimed to evaluate the feasibility of predicting acute mountain sickness after high-altitude exposure by using
multimodal brain MR imaging features measured at sea level.

MATERIALS AND METHODS:We recruited 45 healthy sea-level residents who flew to the Qinghai-Tibet Plateau (3650 m). We con-
ducted T1-weighted structural MR imaging, resting-state fMRI, and arterial spin-labeling perfusion MR imaging both at sea level and
high altitude. Acute mountain sickness was diagnosed for 5 days using Lake Louise Scoring. Logistic regression with Least Absolute
Shrinkage and Selection Operator logistic regression was performed for predicting acute mountain sickness using sea-level MR
imaging features. We also validated the predictors by using MR images obtained at high altitude.

RESULTS: The incidence rate of acute mountain sickness was 80.0%. The model achieved an area under the receiver operating char-
acteristic curve of 86.4% (sensitivity¼ 77.8%, specificity¼ 100.0%, and P, .001) in predicting acute mountain sickness At sea level,
valid predictors included fractional amplitude of low-frequency fluctuations (fALFF) and degree centrality from resting-state fMRI,
mainly distributed in the somatomotor network. We further learned that the acute mountain sickness group had lower levels of
fALFF in the somatomotor network at high altitude, associated with smaller changes in CSF volume and higher Lake Louise Scoring,
specifically relating to fatigue and clinical function.

CONCLUSIONS: Our study found that the somatomotor network function detected by sea-level resting-state fMRI was a crucial
predictor for acute mountain sickness and further validated its pathophysiologic impact at high altitude. These findings show prom-
ise for pre-exposure prediction, particularly for individuals in need of rapid ascent, and they offer insight into the potential mecha-
nism of acute mountain sickness.

ABBREVIATIONS: AMS ¼ acute mountain sickness; ASL ¼ arterial spin-labeling; AUC ¼ area under the curve; DC ¼ degree centrality; fALFF ¼ fractional
amplitude of low-frequency fluctuations; LASSO-LR ¼ Least Absolute Shrinkage and Selection Operator logistic regression; LLS ¼ Lake Louise Score; rs-fMRI ¼
resting-state fMRI; ROC ¼ receiver operating characteristic; SMN ¼ somatomotor network; SpO2 ¼ saturation of pulse oxygen

Approximately 25%–90% of sea-level residents who travel to
high altitude will have acute mountain sickness (AMS), depend-

ing on the altitude, the speed of ascent, and individual susceptibility.1

AMS is a series of symptoms including headache, dizziness, and

malaise. It can even lead to incapacitation or life-threatening condi-
tions such as high-altitude cerebral edema and pulmonary edema.2

It was recommended that high-altitude travelers have medical
consulting regarding AMS before exposure.3 Predicting AMS
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before exposure is also essential for protecting individuals from
greater health risks. Because rapid ascent is a risk factor of AMS,1

individuals requiring rapid ascent to high-altitude areas might
particularly need the prediction, such as those undertaking urgent
high-altitude missions like disaster relief, medical rescue, and
some scientific investigations. Currently, 2 main factors show
promise in predicting AMS: the history of AMS and migraine4

and the adaptation performance in moderate hypoxia, such as the
cardiopulmonary function in artificial hypoxic environments4-7

and adaptation extents at moderate altitudes.8-12 However, the
prediction performance was inconsistent and debated, because
studies have reported conflicting results using the same predic-
tors.13-16 Furthermore, most individuals have limited high-alti-
tude experience, making prediction based on history less
feasible. The artificial hypoxic environments, often requiring
specialized labs, are also debated for not adequately replicating
the hypobaric conditions of real high altitude.17

The inconsistent performance in predicting AMS may be due
to an incomplete understanding of the mechanisms.18 Among
the hypotheses, the brain plays a key role in both human and ani-
mal research.19,20 The physiologic adaptation after high-altitude
exposure is brain-centered and crucial for the onset of AMS,
which is hypothesized to involve multiple neural processes such
as the perception and processing of the sensory information from
a high-altitude environment21,22 and the activation of the auto-
nomic neural system.23,24 The swelling of gray and white mat-
ter, the morphologic changes of the cortex, the restricted
outflow of CSF, and the increased CBF can increase intracra-
nial pressure and thus cause AMS,25,26 while the contributions
of different components toward AMS are still debated.27 Those
hypotheses involve multiple aspects of the brain, including
function, structure, and perfusion. However currently, multi-
modal MR imaging studies for AMS scanned at both sea level
and high altitude are still rare and have not involved integrated
pre-exposure prediction.28,29 The feasibility of using multimo-
dal MR imaging to investigate and predict AMS requires fur-
ther verification.

In this study, we arranged for 45 participants to fly from sea
level to the Qinghai-Tibet Plateau. They underwent 3 modalities
of MR imaging twice (before and after high-altitude exposure)
and were diagnosed as having AMS or non-AMS. On the basis of
the previous studies, we hypothesized that the AMS group would
have distinct cerebral features at sea level, detectable by multimo-
dal MR imaging, and that we could further investigate its patho-
physiologic impact using MR imaging after exposure.

MATERIALS AND METHODS
Study Design
This study was conducted in both sites of the Chinese People’s
Liberation Army General Hospital (Beijing, at sea level) and The
General Hospital of Tibet Military Region (Lhasa, 3650 m above
sea level). In Beijing as a baseline, participants were scanned by 3
modalities: T1-weighted imaging, resting-state fMRI (rs-fMRI),
and arterial spin-labeling (ASL) perfusion MR imaging. Then,
participants traveled to Lhasa via commercial flights within 2
days. In Lhasa, participants underwent the same MR imaging
protocol at 22 hours and were diagnosed as either having AMS or

not having AMS during the first 5 days at the following time
points: 9, 22, 46, 70, and 94hours. The flow chart of the study
design is shown in Fig 1A. Demographic and physiologic features
were recorded at baseline for prediction.

Participants
A total of 49 participants were recruited through community
advertising. Four participants were excluded due to strong head-
motion artifacts on MR imaging at baseline, identified after post
hoc checking. Two rs-fMRIs from the 45 participants at high
altitude were excluded due to poor image quality, but sea-level
data from these 2 participants were still valid and included for
prediction.

The recruitment criteria were as follows: 1) 20–40 years of age;
2) no history of severe head trauma, chronic headache, chronic
sleep disorders, other neuropathy, or psychosis; 3) nonsmokers
and not abusing alcohol; 4) not taking any prescription or non-
prescription medications at the time of the study; 5) no chronic
heart or lung disease, diabetes, hypertension, or other basic dis-
eases; 6) right-handed; 7) originally from and currently residing
at sea level and not having traveled to an altitude above 1500 m
in the past year; and 8) no carotid or intracranial vascular
lesions detected by MRA.

AMS Diagnosis
The AMS diagnosis is based on the latest Lake Louise scoring.30

Participants with a headache score of$1 and a Lake Louise
Score (LLS) of$ 3 were diagnosed with AMS on a daily basis.
Participants diagnosed with AMS at least once during the
5 days at high altitude were grouped as having AMS. The LLS
is composed of 4 main different subscores: 1) headache, 2) gas-
trointestinal symptoms, 3) fatigue and/or weakness, and 4)
dizziness/light-headedness. The extra subscore, the clinical-
functional score, was used to evaluate the overall impact on
patients with AMS but is not included in the total score.

Multimodal MR Imaging Acquisitions and Preprocessing
MR imaging was performed using a 3T Discovery MR 750 scan-
ner (GE Healthcare) both at sea level and high altitude to mini-
mize variance caused by scanner differences.

T1-weighted structural MR imaging was acquired using the
3D fast-spoiled gradient recalled protocol with the following pa-
rameters: TR ¼ 6.9ms, TE ¼ 3.0ms, TI ¼ 450ms, flip angle ¼
12°, FOV ¼ 25.6 cm, 188 slices with section thickness ¼ 1mm,
matrix ¼ 256� 256, voxel resolution ¼ 1mm, and number of
excitations¼ 1.

rs-fMRI was acquired measuring blood oxygenation level–de-
pendent signals with an EPI sequence: TR¼ 2000ms, TE¼ 30ms,
flip angle¼ 90°, FOV¼ 24.0 cm, 41 slices with section thickness¼
3mm, matrix ¼ 64� 64, voxel resolution ¼ 3.75mm, and time-
series length¼ 240.

For pseudocontinuous ASL perfusion images, the labeling
duration¼ 1.5 seconds, postlabel delay¼ 2.0 seconds, TR¼ 4844ms,
TE ¼ 10.5ms, TI ¼ 2025ms, flip angle ¼ 111°, bandwidth ¼
62.5 kHz, FOV¼ 24 cm, 36 slices with section thickness ¼ 4mm,
acquisition matrix ¼ 128� 128, resolution ¼ 1.875mm, and
number of excitations ¼ 3. The proton density–weighted images
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were obtained with a saturation recovery acquisition with identi-
cal parameters.

A summary of the multimodal MR imaging preprocessing
pipeline is shown in Fig 1B. We have summarized the prepro-
cessing steps and features extracted for each technique in
Table 1. For detailed preprocessing steps, refer to the Online
Supplemental Data.

Prediction Input and Methods
The sea-level MR imaging features were summarized by
the mean values in ROIs from the Automated Anatomical

Labeling atlas31 (https://www.sciencedirect.com/science/article/pii/
S1053811919307803) or the surface atlas32 and were used as pre-
diction input. Sea-level demographic and physiologic features were
also entered as potential confounding covariates.

For the prediction methods, we used the Least Absolute
Shrinkage and Selection Operator33 logistic regression (LASSO-
LR) due to its capability for feature selection (detailed implemen-
tation is in the Online Supplemental Data). We applied the leave-
one-out framework for cross-validation.

We primarily evaluated the final prediction performance
using the area under the curve (AUC) of the receiver operating

FIG 1. The study design and the analysis pipelines for multimodal MR images. A, The study design. Participants were recruited and underwent
MR imaging at sea level, ascended to the high altitude by plane, were scanned by MR imaging at 22 hours, and evaluated for AMS 5 times at high
altitude. B, Multimodal MR imaging preprocessing. Different preprocessing pipelines produced 11 features from 3 modalities of MR imaging, and
these features were further summarized by the mean value in ROIs. C, Feature selection. The sea-level MR imaging features for prediction of
AMS were selected by LASSO-LR and re-verified by univariate logistic regression. Sea-level predictors were subsequently verified using high-alti-
tude MR imaging and AMS scores (LLS) collected at high altitude. DPARSF indicates Data Processing Assistant for Resting-State fMRI; LR, logistic
regression; PD, proton density–weighted images; PVC, partial volume correction.
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characteristic (ROC) because of the unbalanced labels (36 AMS
of 45 participants). The ROC is suitable for measuring the classi-
fication performance on unbalanced labels34-36 because it is gen-
erated across a range of decision thresholds and is less sensitive to
unbalanced label distribution. Sensitivity and specificity were also
calculated at the cut-point of the best Youden index. All predic-
tion methods were implemented using the scikit-learn toolbox,
Version 1.0.2 (https://scikit-learn.org/stable/index.html).

Statistical Analyses
For investigating the valid predictors, we performed the feature-
selection pipeline shown in Fig 1C. Specifically, we accepted valid
predictors that passed both multivariate LASSO-LR and univari-
ate logistic regressions.

T tests were performed to compare image features between
groups. Because the predictors are regionally averaged, we further
reverified them by detecting group differences between AMS and
non-AMS at both voxelwise and network-wise scales, using MR
imaging data from both sea level and high altitude.

All features were converted to a standard normal z score
before prediction and statistical analyses.

The voxelwise analysis of MR images was performed on the
basis of Statistical Parametric Mapping (SPM 12;http://www.fil.
ion.ucl.ac.uk/spm/software/spm12). The network-wise t tests
between groups used the predefined brain network atlas (https://
surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011).37

This atlas was used to re-verify the regional predictors and to
detect potential networks involved. A partial Pearson correlation
was used to assess the relationship between MR imaging predic-
tors and other brain features they might influence. Before the sta-
tistical tests mentioned above, the values were regressed by the
covariates of age and sex to exclude their potential effects. The
statistical analyses were performed using related in-house scripts
in Matlab (MathWorks).

RESULTS
Incidence Rate of AMS
The demographic and physiologic information at sea-level base-
line is provided in Table 2, and no significant difference between
AMS and non-AMS groups was detected using t tests and x 2 tests.

The overall incidence rate of AMS during 5 days was 80.0%
(36 of 45 participants; 95% CI , 66.7%–1.1%). The daily incidence
rates of AMS were as follows: 66.7% at 9 hours after exposure
(95% CI, 51.1%–80.0%), 48.9% at 22hours (95% CI, 33.3%–
64.4%), 46.7% at 46hours (95% CI, 31.2%–62.2%), 31.1% at
70 hours (95% CI, 17.8%–46.7%), and 17.8% at 94hours (95% CI,
6.7%–28.9%). Individual AMS diagnoses are provided in the
Online Supplemental Data.

Prediction of AMS Using Multimodal Sea-Level MR Imaging
We used each type of feature in ROIs from sea-level multimodal
MR imaging to predict AMS at high altitude (Fig 2, and with
Youden cutoff in the Online Supplemental Data). Two fMRI
metrics showed significant predictive performance: for fALFF
as input, AUC¼ 78.1%, sensitivity ¼ 80.5%, and specificity¼
77.8% (P¼ .0098) and for degree centrality (DC) as input,
AUC¼ 86.4%, sensitivity¼ 77.8%, and specificity¼ 100.0%

Table 1: Preprocessing and features of multimodal MR imaging

Technique
Preprocessing

Pipeline Main Preprocessing Steps
Features after
Preprocessing ROI No.

T1-sMRI (volume) Voxel-based
morphometry

Denoising, bias cleaning, affine
registration, segmentation,
spatial normalization, volume
modulation, smoothing

GM volume 166
WM volume 166
CSF volume 166

T1-sMRI (surface) Surface-based
morphometry

Surface reconstruction, cortical
parcellation, spatial
normalization, smoothing

Cortical thickness 68
Gyrification index 68
Fractal dimension 68
Sulcus depth 68

Rs-fMRI DPARSF standard
preprocessing pipeline

Time point removal, section
timing, realignment, affine
registration, nuisance
regression, head motion
correction, spatial
normalization, metric
calculation, smoothing

fALFF 166
Regional homogeneity 166
DC 166

ASL CBF quantification
pipeline

Coregistration, CBF calculation,
partial volume correction,
spatial normalization, whole-
brain normalization, smoothing

CBF 166

Note:—DPARSF indicates Data Processing Assistant for Resting-State fMRI (Matlab); sMRI, structural MR imaging.

Table 2: Demographic and physiologic features for the AMS
and non-AMS groups at sea-level baselinea

Non-AMS (n= 9) AMS (n= 36) P Value
Age (yr) 27.3 (SD, 3.8) 29.4 (SD, 4.6) .1497
Sex (M/F) 5/4 17/19 .1779
Height (cm) 168.9 (SD, 6.5) 168.4 (SD, 8.5) .8776
Weight (kg) 61.1 (SD, 8.0) 64.7 (SD, 13.3) .4462
BMI (kg/m2) 21.4 (SD, 2.3) 22.6 (SD, 3.2) .2848
SBP (min–1) 111.3 (SD, 12.1) 111.9 (SD, 12.4) .9094
DBP (min–1) 75.1 (SD, 8.1) 75.6 (SD, 8.7) .8703
MAP (min–1) 87.2 (SD, 9.2) 87.7 (SD, 9.6) .8823
HR (min–1) 74.3 (SD, 7.2) 74.1 (SD, 8.1) .9402
SpO2 (%) 97.8 (SD, 0.8) 97.6 (SD, 0.7) .4137

Note:—BMI indicates body mass index; DBP, diastolic blood pressure; HR, heart
rate; MAP, mean arterial pressure; SBP, systolic blood pressure.
a Data are means unless otherwise indicated.

4 Zhang � 2024 www.ajnr.org

https://scikit-learn.org/stable/index.html
http://www.fil.ion.ucl.ac.uk/spm/software/spm12
http://www.fil.ion.ucl.ac.uk/spm/software/spm12
https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011


(P¼ .0008). Other input features had no significant predictive
performance, including combined features (such as all fMRI
features or all multimodal MR imaging features). The full per-
formance list of all types of input is provided in the Online
Supplemental Data.

Identification and Verification of Sea-Level MR Imaging
Predictors
Following the predictions, sea-level predictors were identified
from the multivariate LASSO-LR. Then, these potential predic-
tors were re-verified by univariate logistic regression, and only
those that passed both regressions were regarded as valid predic-
tors. Valid predictors were fALFF and DC values in the regions
listed in Table 3.

Among the valid predictors, risk factors with ORs . 1 were
mainly located in the orbitofrontal cortex and the right supra-
marginal gyrus. Protective factors with odds ratios , 1 were
mainly located in the paracentral lobule, supplementary motor
area, and Rolandic operculum, all of which belonged to the soma-
tomotor network (SMN). The left superior and middle temporal
gyri were also included as protective factors, which were near the
Rolandic operculum. These predictors selected by the LASSO-LR
models remained robust during the leave-one-out cross-valida-
tion (Online Supplemental Data).

Predictors of AMS Present in the SMN Both at Sea Level
and High Altitude
To further verify the region-wise predictors, we performed voxel-
wise t tests between groups on the fMRI metrics (fALFF and DC)
maps. Both at sea level and at high altitude, the AMS group
showed weaker functional metrics mainly in the motor and sen-
sorimotor areas (Fig 3A, -C) than the non-AMS group (under
P, .05, corrected by Gaussian random field).

We further verified the region-wise predictors by detecting
network-wise group difference on the z-scored fMRI metric (fALFF
and DC) maps using a predefined atlas.37 At sea level (Fig 3B), the
significant functional group difference in the predefined SMN
between the AMS and non-AMS groups was detected by t tests: For
fALFF, the AMS group showed significantly (P¼ .0082) lower val-
ues than the non-AMS group in the SMN (mean AMS)¼ �0.2095
(SD, 0.1613), mean (non-AMS)¼ 0.8381 (SD, 0.2140), group
difference¼ 1.0476 (95% CI , 0.3590–1.7362). Similarly, for DC, the
AMS group had significantly (P¼ .0424) lower values than the non-
AMS group in the SMN (mean AMS) ¼ �0.1706 (SD, 0.1632),
mean (non-AMS)¼ 0.6824 (SD, 0.2693), group difference¼ 0.8529
(95% CI, 0.1394�1.5665). At high altitude (Fig 3D), for fALFF,
the AMS group showed significantly (P¼ .0320) lower values
than the non-AMS group in the SMN (mean AMS) ¼ �0.1486
(SD, 0.1685), mean (non-AMS)¼ 0.5615 (SD, 0.3019), group

FIG 2. ROC curve analysis of MR imaging features. The prediction performance using different features of multimodal MR imaging as input,
measured by the AUC of the ROC curves. fALFF and DC from fMRI were detected as valid predictors, yielding significant AUC values. CT indi-
cates cortical thickness; FD, fractal dimension; GI, gyrification index; GMV, gray matter volume; ReHo, regional homogeneity; SD, sulcus depth;
WMV, white matter volume, CSFV, CSF volume. ** P, .01, *** P, .001.
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difference ¼ 0.7101 (95% CI, �0.0227�1.4429). No significant
group differences were observed in networks other than the
SMN under the threshold of P¼ .05.

AMS Features Associated with the SMN at High Altitude
Using the multimodal MR imaging scanned at high altitude, we
further identified the influence of fMRI predictors (fALFF and
DC in SMN) by performing the partial Pearson correlation
between fMRI predictors and other modalities of brain MR imag-
ing at high altitude (including the whole-brain GM, WM, CSF,
and CBF). At 22hours after exposure, the fALFF in the SMN was
significantly correlated with the percentage changes of CSF vol-
ume (r¼ 0.3277 and P¼ .0365, shown in Fig 4A). Other brain
components except CSF were also examined but showed no sig-
nificance; these are listed in the Online Supplemental Data.

Moreover, we examined the relationship between fMRI pre-
dictors in the SMN and 5 different LLS subscores, which were all
measured immediately before MR imaging and at 22 hours at
high altitude. In Fig 4B, by performing the t tests, we found that
the group that showed significantly (P¼ .0460) positive fatigue
symptoms had lower fALFF in the SMN (mean positive LLS) ¼
�0.2578 (SD, 0.1523), (mean negative LLS)¼ 0.4186 (SD,
0.3341), group difference¼ 0.6764 (95% CI,�0.0136�1.3664),
and the group whose clinical function was affected had signifi-
cantly (P¼ .0024) lower fALFF (mean positive LLS) ¼ �0.5836
(SD, 0.1265), (mean negative LLS) ¼ 0.3525 (SD, 0.3214), group
difference¼ 0.9361 (95% CI, 0.3403�1.5320), and significantly
(P¼ .0112) lower DC, (mean positive LLS) ¼ �0.5452 (SD,
0.1612), (mean negative LLS)¼ 0.2380 (SD, 0.2799), group
difference¼ 0.7832 (95% CI, 0.0856�1.4808) in the SMN.

DISCUSSION
Although a previous MR imaging study for AMS28,29 had
detected several brain abnormalities in the diffusion MR imaging
after exposure, to the best of our knowledge, our study was the
first to perform multimodal MR imaging at sea level and at high
altitude for both integrated predicting and mechanistic investigating

of AMS. The major findings lie in 2 parts:
First, we discovered that sea-level SMN
function can predict AMS with a high
performance of AUC¼ 86.4%, which
offered a method to predict the AMS risk
for individuals requiring rapid ascent to
high-altitude areas, such as those under-
taking urgent high-altitude missions.
Second, we further verified that the pre-
dictors also showed significant group
difference between AMS and non-AMS
at high altitude. The predictors were
also associated with the changes in CSF
volume and the extent of fatigue and
clinical function.

These findings suggest that a cere-
bral functional basis for AMS can be
detected early at sea level and shows
promise as a noninvasive and accu-
rate prediction tool and can offer

insight into the neural basis of the susceptibility and develop-
ment of AMS.

Methodologic Considerations for the Reliability of
Prediction
We used LASSO-LR for its capability for feature selection
(Online Supplemental Data). The selected features remained ro-
bust in cross-validation and different coefficient thresholds
(Online Supplemental Data). We did not correct multiple com-
parisons among predictors because we used a data-driven
LASSO-LR but did not screen all features. The multiple-compari-
sons correction might unnecessarily increase the risk of type II
errors (false-negatives), thereby hindering the exploring of mean-
ingful predictors. Despite including ASL MR imaging and struc-
tural MR imaging at both sites, our exploratory analyses rarely
identified significant predictors from these modalities. We
observed several ROC curves significantly below the diagonal
line. This finding suggests that while these modalities may hold
some useful information, they fail to provide robust and reliable
predictions, indicating their limited applicability in this con-
text.34,38 The combined features like all fMRI or all MR imaging
features showed insignificant performance (Online Supplemental
Data), which indicates that simply combining all features into the
prediction model will lead to overfitting and that each type of fea-
ture should be tested independently.

AMS Predictors as the Functional Features in the SMN
We found that functional features of fALFF and DC in the SMN
were significant predictors for AMS (Table 3). We used both vox-
elwise and network-wise t tests to re-verify these predictors, as
shown in Fig 3. The SMN in the predefined brain network atlas37

broadly includes the primary motor and somatosensory cortices
as well as part of the superior temporal gyrus, and these regions
match the protective predictors well (Table 3).

For the fALFF and DC as predictors, higher DC in the SMN
indicates that the SMN plays a more critical role in facilitating
communication and information flow among other brain regions,

Table 3: ORs of significant predictors for AMS, selected by both the LASSO-LR and uni-
variate logistic regression

Input Features/Input Regions B OR (95% CI) P Value
fALFF
Left Rolandic operculum �1.324 0.266 (0.091–0.778) .0157
Left supplementary motor area �1.931 0.145 (0.025–0.857) .0331
Right superior frontal gyrus, medial orbital 1.272 3.567 (1.207–10.543) .0214
Right anterior orbital gyrus 0.852 2.344 (1.049–5.236) .0379
Right supramarginal gyrus 1.288 3.624 (1.296–10.139) .0141
Left paracentral lobule �2.727 0.065 (0.009–0.488) .0078
Left superior temporal gyrus �1.040 0.354 (0.150–0.836) .0179
Left middle temporal gyrus �1.367 0.255 (0.081–0.803) .0196
Right pulvinar inferior thalamus 0.894 2.445 (1.014–5.895) .0466

DC
Right superior frontal gyrus, dorsolateral 1.363 3.907 (1.169–13.058) .0268
Right superior frontal gyrus, medial orbital 1.230 3.422 (1.213–9.649) .0200
Right gyrus rectus 1.432 4.186 (1.280–13.693) .0179
Right medial orbital gyrus 1.157 3.179 (1.076–9.396) .0365
Right supramarginal gyrus 0.879 2.409 (1.053–5.513) .0374
Left paracentral lobule �1.463 0.232 (0.079–0.677) .0075
Right paracentral lobule �1.587 0.205 (0.066–0.633) .0059

Note:—B indicates b coefficient.
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FIG 3. Comparison of functional metrics between AMS and non-AMS groups. A, Sea-level voxelwise differences. Differences between
AMS and non-AMS groups are identified using t tests, corrected with the Gaussian random field at P, .05. For both fALFF and DC, AMS
showed increased functional metrics in the medial prefrontal cortex, supramarginal gyrus, posterior cingulate cortex, and superior frontal
gyrus and decreased functional metrics in the supplementary motor area, postcentral gyrus, paracentral lobule, Rolandic operculum, mid-
dle cingulate cortex, and superior temporal gyrus. B, Sea-level network-wise differences. Among 7 typical functional networks at sea level,
we detected significant lower fALFF and DC in the SMN in the AMS group (*: P, .05; **: P, .01). The error bars present the standard error
of the mean (SEM). C, High-altitude voxelwise differences. At high altitudes, for both fALFF and DC, AMS showed decreased functional
metrics in the postcentral gyrus, Rolandic operculum, and superior temporal gyrus. D, High-altitude network-wise differences. Among 7
typical functional networks at high altitude, we detected significant lower fALFF in SMN in the AMS group (*: P, .05). The error bars present
SEM. L indicates left; R, right.
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while higher fALFF in the SMN means stronger spontaneous neu-
ral activity.39,40 Insignificant regional homogeneity results sug-
gested that AMS might be less related to local synchrony within
brain regions. Because weaker SMN function leads to higher AMS
probability in this study, resting-state sea-level SMN could poten-
tially indicate the capability for subsequent high-altitude adapta-
tion, showing promise for clinical use. The stronger SMN activity
for better adaptation aligns with previous studies, which regard the
SMN as regions responsible for integrating sensory signals from
the environment, especially for the sensation of hypoxia,41-43 while
hypoxia is a commonly-recognized trigger of AMS.1 Moreover,
the SMN is found to be specifically affected by the brain hy-
poxia–ischemia injury in the former reports on neonatal rats
and humans;44-46 this finding can also be related to the impor-
tant role of SMN during the high-altitude hypoxia and the onset
of AMS. In summary, we speculated that a functionally more
active SMN could imply a more efficient processing and inte-
gration of sensory input, indicating protective and adaptive
compensatory mechanisms in response to exposure.

The risk factors of AMS in Table 3 and Fig 3A were mainly
distributed in the orbitofrontal cortex and right supramarginal
gyrus, aligning with the sensory processing function that was pre-
viously proposed.47,48 However, these group differences did not
remain significant at high altitude (Fig 3C). Therefore, this study
focused more on the SMN as the most promising protective pre-
dictor of AMS.

Identifying the Pathophysiologic Impact of AMS
Predictors at High Altitude
At high altitude, a weaker SMN function showed a significant
association with less change of CSF volume after exposure (Fig
4A). Other modalities of GM, WM, and CBF showed no correla-
tion with SMN function (Online Supplemental Data). Changes in

CSF and the saturation of pulse oxygen (SpO2) are shown in the
Online Supplemental Data. This result provides evidence for the
differential effects of various brain components at the onset of
high-altitude symptoms.25,27 On the basis of the high-altitude
MR imaging, our results propose that among the volume effect of
different brain components,19 CSF is directly related to brain
functional activity during AMS, a relationship also observed in
a previous study,49 and we propose a potential mechanism of
AMS susceptibility: SMN-based functional predictors might be
dynamically associated with AMS by reflecting changes in CSF
flow after exposure.

Then, we detected the differences of SMN function between
LLS-positive and -negative groups (Fig 4B). Although headache is
widely believed to be the key factor of AMS,2 our t test analyses
suggest that the SMN function might lead to the development of
AMS by influencing the levels of fatigue and the clinical function.
In detail, the clinical function measures the overall influence
extent of the symptoms on the individual’s activity. The relation-
ships between weaker SMN function and fatigue or clinical function
was formerly confirmed in studies without high-altitude expo-
sure50,51 and was in line with our results. However, our results fur-
ther suggest that this mechanism can underlie the onset of AMS.

Overall, we suggest that the functional features of the SMN
within the brain serve as early indicators and pathologic features
of AMS, which suggests focusing on the functional aspects of the
brain in future AMS research.

Potential Clues for Future Treatment and Prevention of
AMS
Our SMN-based hypothesis on AMS susceptibility could potentially
explain why lower-altitude or hypoxic training before exposure is
effective in preventing AMS,52 as interpreted by the augmentation
of SMN functionality during training, because this augmentation

FIG 4. The pathophysiologic impact of sea-level functional predictors on AMS, measured at 22 hours after high-altitude exposure. A,
Correlation between the fALFF in the SMN and the percentage change in CSF volume. The partial Pearson correlation coefficient is r¼ 0.3277
and P¼ .0365, considering the effects age and sex. B, T test comparisons show significant differences in fALFF and DC in the SMN between par-
ticipants having positive LLS subscores and those with zero subscores. The error bars present standard error of the mean. The LLS subscores
associated with SMN function were fatigue and clinical function scores. * P, .05; **P, .01.
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was also observed in training patients with incomplete spinal cord
injury.53 Additionally, the relationship between SMN activity and
CSF dynamics or LLS subscores might suggest a potential treatment
target. Treatments that modulate CSF volume and flow in response
to changes in clinical function or fatigue state could be explored
during the development of AMS.

Limitations
Our study had limitations. First, we defined AMS as any diagno-
sis during the 5 time points at the plateau to achieve a generic
prediction for wider populations, but future studies can consider
the different onset, duration, and extent of AMS as separate sub-
groups. Second, all participants are sea-level residents with ages
relatively limited to 20–40 years (mean, 28.7 [SD, 4.4] years).
Therefore, the generalizability to other age ranges and to resi-
dents at high altitude is relatively weaker. However, we selected
this age range to minimize the potential confounding effects of
age-related brain changes.

CONCLUSIONS
Our multimodal MR imaging study revealed that the SMN func-
tion, as detected by sea-level rs-fMRI, emerged as a crucial pre-
dictor for AMS among multimodal MR imaging features.
Furthermore, we validated its pathophysiologic impact at high
altitudes. Although this study is derived from a relatively small
sample size of 45 and should be considered as a preliminary feasi-
bility study that requires validation in larger and more diverse
populations, these significant findings offer a potential direction
for developing a screening tool to predict AMS, particularly for
individuals requiring rapid ascent to high-altitude areas, such as
those undertaking urgent high-altitude missions, and also offer
insight into the underlying mechanisms of AMS at high altitudes.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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