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 ABSTRACT 

BACKGROUND AND PURPOSE: Symptoms of normal pressure hydrocephalus (NPH) are sometimes refractory to shunt placement, with 

limited ability to predict improvement for individual patients. We evaluated an MRI-based artificial intelligence method to predict 

post-shunt NPH symptom improvement. 

MATERIALS AND METHODS: NPH patients who underwent magnetic resonance imaging (MRI) prior to shunt placement at a single 

center (2014–2021) were identified. Twelve-month post-shunt improvement in modified Rankin Scale (mRS), incontinence, gait, and 

cognition were retrospectively abstracted from clinical documentation. 3D deep residual neural networks were built on skull stripped 

T2-weighted and fluid attenuated inversion recovery (FLAIR) images. Predictions based on both sequences were fused by additional 

network layers. Patients from 2014–2019 were used for parameter optimization, while those from 2020–2021 were used for testing. 

Models were validated on an external validation dataset from a second institution (n=33). 

RESULTS: Of 249 patients, n=201 and n=185 were included in the T2-based and FLAIR-based models according to imaging availability. 

The combination of T2-weighted and FLAIR sequences offered the best performance in mRS and gait improvement predictions relative 

to models trained on imaging acquired using only one sequence, with AUROC values of 0.7395 [0.5765–0.9024] for mRS and 0.8816 

[0.8030–0.9602] for gait. For urinary incontinence and cognition, combined model performances on predicting outcomes were similar 

to FLAIR-only performance, with AUROC values of 0.7874 [0.6845–0.8903] and 0.7230 [0.5600–0.8859]. 

CONCLUSIONS: Application of a combined algorithm using both T2-weighted and FLAIR sequences offered the best image-based 

prediction of post-shunt symptom improvement, particularly for gait and overall function in terms of mRS. 

 ABBREVIATIONS: NPH = normal pressure hydrocephalus; iNPH = idiopathic NPH; sNPH = secondary NPH; AI = artificial intelligence; 

ML = machine learning; CSF = cerebrospinal fluid; AUROC = area under the receiver operating characteristic; FLAIR = fluid attenuated 

inversion recovery; BMI = body mass index; CCI = Charlson Comorbidity Index; SD = standard deviation; IQR = interquartile range 
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 SUMMARY SECTION 

PREVIOUS LITERATURE: Prior literature has highlighted multiple imaging-based metrics on computed tomography and MRI (e.g., 

DESH score) which can be useful in diagnosis and outcome prediction of normal pressure hydrocephalus, a neurological disorder 

defined by a triad of symptoms including gait abnormality, urinary dysfunction, and cognitive impairment. Prediction of improvement 

following shunt placement surgery remains a challenge, impeding optimal clinical decision-making. We applied artificial intelligence 

approaches to automatically extract radiomic features from multiple MRI sequences (T2-weighted and FLAIR) acquired preoperatively 
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from a single-center cohort of patients with NPH and evaluated the performance of models trained to predict function and symptom 

improvements postoperatively.  

KEY FINDINGS: AI algorithms leveraging combined imaging features from preoperative T2-weighted and FLAIR sequences were 

generally more predictive of postoperative shunt outcome in NPH than models built using one of these sequences. Models performed 

best for prediction of gait and incontinence improvement, and slightly worse for overall function and cognition. 

KNOWLEDGE ADVANCEMENT: We demonstrate implementation of an analytic pipeline for automated radiomic feature extraction 

from multiple MRI sequences and layered integration of those data to optimize and evaluate prognostic models for normal pressure 

hydrocephalus, a complex and poorly understood neurologic disorder with defined symptoms and treatment options. 

 

INTRODUCTION 

Normal pressure hydrocephalus (NPH) is a progressive neurological disorder characterized by a diagnostic triad of presenting symptoms, 

including gait instability, urinary incontinence, and cognitive impairment.1-3 Etiologically, NPH is understood as a form of communicating 

hydrocephalus which may result from impaired cerebrospinal fluid (CSF) clearance and re-absorbance in the brain.3, 4 While difficult to 

diagnose and most frequently idiopathic (iNPH),5 NPH can also occur secondary to other conditions which influence intracranial CSF 

dynamics including traumatic brain injury, meningitis, stroke, hemorrhage, or brain tumor (sNPH).6 The mainstay of treatment for NPH is 

surgical placement of a ventricular shunt, which drains CSF from the cerebral ventricles to the peritoneal (ventriculoperitoneal) or less 

commonly the pleural (ventriculopleural) space.2, 7, 8  

While considered an effective treatment strategy for many patients, symptoms of NPH are sometimes refractory to shunt surgery, 

with 15–30% of patients experiencing little improvement across symptom domains.2 Further, traditional methods of simulating CSF 

drainage, such as high volume lumbar tap test or CSF dynamic testing, have failed to reliably predict which individuals are most likely to 

benefit from shunting, with negative predictive values of ≤50%.9-12 While some evidence supports the utility of comorbidity status and 

other clinical variables in predicting outcome of shunt surgery, models based on comorbidity status alone do not markedly advance clinical 

decision making capacity.13-15 Furthermore, imaging biomarkers derived from single-modality imaging (e.g., T2-weighted MRI alone) have 

failed to significantly improve the overall ability to predict patient outcome.3, 16, 17  

With artificial intelligence (AI) models increasingly applied to prognostication, there is new opportunity to leverage information 

drawn from multiple MRI sequences available upon baseline neuroimaging in NPH. While of limited utility in isolation, MRI-derived markers 

combined into a unified model could advance NPH diagnosis and decision-making.11, 16-18 In the present study, we hypothesized that AI 

driven models trained on MRI sequences sensitive to both structural and CSF distribution parameters may predict clinical benefit following 

shunting for NPH, and that models using multi-sequence information may be the best performing.  

 

MATERIALS AND METHODS 

Primary Clinical Dataset 

This section may be divided into subsections if it facilitates reading the paper. The research design, patients/subjects, material used, means 

of confirming diagnoses, and statistical methods should be included. Do not include manufacturer's names unless the specific product is 

important to the procedures performed. When appropriate, indicate that approval was obtained from the institution's review board.  Indicate 

that informed consent has been obtained from patients who participated in clinical investigations. 

In animal experimentation, acknowledge that National Institutes of Health or equivalent guidelines were followed. If there is a 

sponsoring company, include at the end of this section what input that company had in the formulation of the paper. 

The primary dataset included 249 consecutive patients who underwent ventricular shunting for clinical diagnosis of NPH were 

retrospectively identified from a single institutional cohort (Rhode Island Hospital, Providence RI). 212 patients (85.1%) were diagnosed 

with iNPH and 37 patients (14.9%) had sNPH. All were treated by one of two neurosurgeons (P.M.K. and K.S.) from 2015–2021. Clinical data 

were abstracted from recorded clinical documentation by trained research staff. Baseline characteristics including comorbidity status as 

quantified in the Charlson Comorbidity Index (CCI) were also obtained.14 Postoperatively, 226 patients (90.8%) returned to clinic at 3-

month follow-up and 175 (70.3%) returned for 12-month follow-up. For outcome analysis, 12-month follow-up was preferentially selected 

whenever available, however if 12-month follow-up was not available 3 month follow-up was utilized for evaluation of the symptom 

improvement endpoints.  

MRI sequences of interest included T2-weighted and fluid attenuated inversion recovery (FLAIR), selected based on availability 

as part of routine diagnostic MRI acquired during clinical work-up at our center and the hypothesis that these sequences may provide 

complementary information about underlying disease features (Figure 1). 201 patients (80.7%) had preoperative imaging (i.e., T2-weighted 
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or FLAIR) available for inclusion. Due to lacking imaging and/or follow-up data, 48/249 patients were excluded from the FLAIR-based 

analysis, and 64/249 patients were excluded from the T2 and T2+FLAIR analyses. Most scans were acquired at a single academic center 

using a uniform image acquisition protocol, using either a 1.5T or 3.0T magnet, though a minority of cases were captured at outside 

centers. The acquisition protocols on both scanners were the same except that the slice thickness was 5mm for the 1.5T and 4mm for 

3.0T, which is accounted for by preprocessing methods described subsequently. No notable changes in NPH referral processes occurred 

during the study inclusion period (2015–2021). Accordingly, baseline MRI data from included patients and separated into training and 

testing sets based on date (approximate 7:3 ratio).  

 

 

FIG 1. Exemplary axial images fromT2-weighted and FLAIR sequences of an included patient. 

 

Gait and urinary incontinence scores were estimated using previously reported 8- and 6- point symptom scales, respectively.1, 2 

For the gait scale: 1= normal; 2= slight disturbance of tandem walk and turning; 3= wide-based gait with sway; 4= tendency to fall, with 

foot corrections; 5= walking with cane; 6= bi-manual support; 7= aided by another person; 8= wheelchair-bound. For the incontinence 

scale: 1= normal; 2= urgency without incontinence; 3= infrequent incontinence; 4= frequent incontinence; 5= complete bladder 

incontinence; 6= bladder/bowel incontinence. Cognitive impairment was evaluated as present or absent based on patient report and 

clinician impression. In addition, global functional disability was estimated retrospectively using modified Rankin Scale (mRS).19 All of 

these metrics were estimated based on descriptive reports of patient reported symptoms and examination findings in the history and exam 

sections of baseline and follow-up clinical notes by the two treating surgeons – whenever ambiguity existed between two levels of a given 

score, the lesser of the two was selected. Improvements in gait, incontinence, and mRS were defined by ≥1 point improvement and 

improvement in cognition was defined by the patient’s and clinician’s impression. Binarized clinical endpoints (improved vs. not improved) 

in each symptom domain and mRS were recorded at 3-months and 12-months postoperatively. Institutional review board (IRB) authorization 

was obtained for chart and imaging review (#1345067). 

 

External Validation Dataset 

To assess generalizability of findings to external NPH cohorts, we obtained an external validation dataset comprising 33 shunted NPH 

patients with complete follow-up data treated at a second institution within the same period (Johns Hopkins Hospital). The external 

validation dataset comprised a non-consecutive convenience sample of patients with sufficient follow-up and imaging data from the same 

treatment period. Imaging sequences and acquisition protocols were generally the same as described above (1.5T or 3.0T magnet with 

variable slice thickness, but pre-processed uniformly prior to subsequent feature extraction). 

 

Preprocessing 

All the FLAIR and T2-weighted images were preprocessed according to the pipeline demonstrated in Figure 2. The OncoAI algorithm first 

registers FLAIR and T2-weighted sequences to a standard template, performs brain extraction, concatenates all sequences, deploys the 

pre-trained segmentation to obtain the final label map, warps labels back to the original space, and performs limited, stereotyped post-

processing.20 For each study with multiple sequences, the algorithm first parses all series, skips localizer and calibration images, co-
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registers all series to a standard template, and resamples to 1x1x1 mm3 voxel size. Then, the algorithm finds the series that has the largest 

coverage and runs an AI-based brain segmentation model to extract the brain and warps the brain mask back to each series. The brain 

space was parcellated from the skull (“skull stripping”) and centered within the volume, followed by automated segmentation of intracranial tissue 

structures (Figure 2). MRI images were re-sized to 256x256x64 pixels for the deep neural network. Range scaling normalization was then applied 

based on intensity value distribution.  

 

FIG 2. Our AI pipeline for training an outcome prediction model on shunted NPH baseline MRI dataset. 

 

Deep Feature Learning 

3D deep residual neural network models were separately built on T2-weighted and FLAIR images for each binary clinical improvement 

endpoint (i.e. “improved” vs. “not improved” in gait, incontinence, cognition and mRS). We used 3D ResNet-50 as the single modality 

deep feature extraction model (Figure 3). Each block of ResNet-50 is a combination of 3 deep layers with different convolution parameters, 

in which every 2 residual layers are inserted within this 3-layer bottleneck block, including a total of fifty 3D residual layers. After an 

average pooling layer, the 2048-dimensional image features extracted by ResNet-50 were used to predict classification probability, 

constructing a classifier with 3 linear layers with ReLU and Dropout. The numbers of hidden nodes in linear layers were 2048, 2048 and 

1024. This pipeline was used for training both the T2- and FLAIR- based models. By contrast, the models trained on both FLAIR and T2-

weighted sequences were fused by additional network layers to obtain combined results accounting for both sequences (Figure 4). The 

features of FLAIR and T2-weighted sequences were extracted by two independent deep residual networks, and the two 2048-dimensional 

features were fused by cascading and passing the classifier to obtain the multi-modality classification probability.  
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FIG 3. Structure of ResNet50 network 

 

 

 

FIG 4. Fusion prediction model with ResNet50 models for integrating information from multiple imaging sequences. 
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Clinical improvement prediction 

We use the cross-entropy loss function during model training. The classification probability estimates the soft target by the SoftMax 

function, and cross-entropy loss calculates the loss between the soft target and the ground-truth label to learn model parameters: 

 

𝐿(𝑦, 𝑧) = ∑ −𝑦𝑖  log (
𝑧𝑖

∑ exp (𝑧𝑗)𝑗

)

𝑀

𝑖=0

 

 

In this function, M is the total number of classes (e.g., M=2 when for binary outcome prediction). The variable 𝑦𝑖 is a vector representing 

the ground-truth label of the training set as 1 and all other elements as 0; 𝑧𝑗 is the logit which is the output of the last layer for the j-th 

class of the model. The weight of the model is updated via adaptive moment estimation with weight decay, in which the optimizer 

calculates the adaptive learning rates of every parameter. The learning rate and weight decay coefficient were set to 0.001. We ran each 

method for 60 epochs and collected the highest average accuracy per run. The fused (T2+FLAIR) model was then initialized with a model 

trained on a single modality.  

 

Statistical Analysis and Reporting 

Overall model performance for T2-weighted alone, FLAIR alone, and T2+FLAIR models are reported in terms of area under the receiver 

operating characteristic (AUROC), a metric which accounts for the balance between true positive rate and false positive rate across 

decision thresholds. AUROC values were also computed for models trained only on age, sex, and CCI. For training data, we applied class-

balance resampling, with equal numbers of non-improved and improved patients to reduce class imbalance. After assessing performance 

on the primary dataset, all models were separately tested on the validation dataset. AUROC values are reported with 95% confidence 

intervals.  

 

RESULTS 

Patient Cohorts 

Of 249 patients, 129 (51.8%) were male, 232 (93.2%) were white, and 212 (85.1%) were diagnosed with iNPH (Table 1).6 The distal terminus 

of the shunt catheter was placed intraperitoneally in 244/249 (98.0%). All patients presented with gait instability with a median estimated 

gait score of 4/8 (IQR 4–6), 196 (78.7%) presented with urinary incontinence with a median estimated incontinence score of 3/6 (IQR 2–4), 

and 217 (87.1%) had subjective cognitive impairment (Table 2).1, 2  

 

Table 1. Patient demographics and characteristics 

Patient Characteristic 

Mean (± SD) or Median (IQR) 

Training / Testing  

(Institution 1, n=249) 

Validation 

(Institution 2, n=33) 

Age 74.2 (± 7.5) years 72.1 (± 7.7) years 

Sex   

     Male 129 (51.8%) 19 (57.6%) 

     Female 120 (48.2%) 14 (42.4%) 

Race   

     White 232 (93.2%) 28 (84.8%) 

     Black/African American 7 (2.8%) 4 (12.1%) 

     Other/Unknown 10 (4.0%) 1 (3.0%) 

BMI 28.5 (± 5.8) 29.1 (±4.6) 

CCI 6 (5–7) 4 (3–6) 

Shunt laterality   
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     Right 239 (95.9%) 33 (100%) 

     Left 10 (4.1%) 0 (0%) 

Catheter terminus placement   

     Ventriculoperitoneal 244 (98.0%) 33 (100%) 

     Ventriculopleural 5 (2.0%) 0 

NPH Classification   

     iNPH  212 (85.1%) 32 (97.0%) 

     sNPH 37 (14.9%) 1 (3.0%) 

Baseline mRS   

     0– No symptoms 0 0 

     1– No significant disability 1 (0.4%) 0 

     2– Slight disability 107 (43.0%) 8 (24.2%) 

     3– Moderate disability 83 (33.3%) 8 (24.2%) 

     4– Moderate-severe disability 41 (16.5%) 15 (45.5%) 

     5– Severe disability 3 (1.2%) 1 (3.0%) 

     Unable to Determine 14 (5.6%) 0 

8-Point Gait Score 4 (4–6) 5 (4–6) 

6-Point Incontinence Score 3 (2–4) 3 (2–4) 

 

The median CCI of the population was 6 (IQR 5–7). Of those who returned for 12-month postoperative follow-up, the greatest 

overall proportional improvements were observed in gait (70.3%), followed by incontinence (68.0%), overall functional disability (56.4%), 

and cognition (46.9%). The external validation dataset comprising 33 shunted NPH patients from a second institution overall had similar 

demographic, symptom, and postoperative improvement distributions (Tables 1–2). 

 

Table 2. Presenting symptoms and postoperative improvement; denominators for improvement calculations are patients who had each symptom at 

baseline and attended follow-up. 

Triad of NPH Symptoms + 

Functional Disability 
Present at Baseline (Pre-Op) Improved at 3 Months Post-Op Improved at 12 Months Post-Op 

Training & Testing Cohort 249/249 (100%) 226/249 (90.8%) 175/249 (70.3%) 

Gait Impairment 249 (100%) 165/226 (73.0%) 123/175 (70.3%) 

Urinary Incontinence 196 (78.7%) 76/127 (59.8%) 66/97 (68.0%) 

Cognitive Impairment 217 (87.1%) 97/208 (46.6%) 75/160 (46.9%) 

mRS –– 105/179 (58.7%) 84/149 (56.4%) 

Validation Cohort 33/33 (100%) 33/33 (100%) 33/33 (100%) 

Gait Impairment 33 (100%) 29/33 (87.9%) 22/33 (66.7%) 

Urinary Incontinence 21 (63.6%) 4/33 (12.1%) 3/33 (9.1%) 

Cognitive Impairment 31 (93.9%) 14/33 (42.4%) 12/33 (36.4%) 

mRS –– 7/33 (21.2%) 6/33 (18.2%) 
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Machine Learning Models 

When trained using T2-weighted imaging alone, the machine learning model achieved AUROC of 0.5125 [0.3392–0.6858] for 

postoperative improvement in mRS, 0.6994 [0.5901–0.8087] for gait, 0.7304 [0.6253–0.8355] for urinary incontinence, and 0.4479 [0.2763–

0.6195] for cognitive impairment (Table 3). By contrast, models based on FLAIR imaging were generally better performing, yielding AUROC 

values of 0.6723 [0.4968–0.8478], 0.7195 [0.6046–0.8344], 0.7929 [0.6912–0.8947], and 0.7175 [0.5533–0.8816], respectively. The 

combination of T2-weighted and FLAIR sequences offered the best performance in mRS and gait improvement predictions relative to 

models trained on single-sequence imaging, with AUROC values increasing to 0.7395 [0.5765–0.9024] and 0.8816 [0.8030–0.9602]. 

Performances when predicting the other outcomes were similar to FLAIR-only models (Figure 5). FLAIR-weighted and combined imaging-

trained models generally performed better than models trained only on age, sex, and CCI (Table 3).  

 

Table 3. Model performances on primary institution dataset; AUROC values represent the results of pre-trained models when evaluated on testing dataset 

and 95% confidence intervals. 

Model Input mRS Improvement  Gait Improvement Urinary Improvement Cognitive Improvement 

Age, Sex, CCI 
0.6255 

[0.5089–0.7421] 

0.5413 

[0.4205–0.6621] 

0.7135 

[0.5306–0.8964] 

0.6562 

[0.4918–0.8207] 

T2 Only 
0.5125 

[0.3392–0.6858] 

0.6994 

[0.5901–0.8087] 

0.7304 

[0.6253–0.8355] 

0.4479 

[0.2763–0.6195] 

FLAIR Only 
0.6723 

[0.4968–0.8478] 

0.7195 

[0.6046–0.8344] 

0.7929 

[0.6912–0.8947] 

0.7175 

[0.5533–0.8816] 

T2+FLAIR 
0.7395 

[0.5765–0.9024] 

0.8816 

[0.8030–0.9602] 

0.7874 

[0.6845–0.8903] 

0.7230 

[0.5600–0.8859] 

 

 

FIG 5. Receiver operating characteristic (ROC) curves demonstrating comparison between models trained on T2-weighted, 

FLAIR, and both sequences for each of four clinical improvement endpoints on primary institution testing dataset. 

 

 

When applied to the external validation dataset, T2+FLAIR models were again the best performing for mRS and gait improvements, but similar 

to single-sequence models for urinary incontinence and cognition (Table 4).  
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Table 4.  Model performances on external validation dataset; AUROC values represent the results of the same pre-trained models when evaluated on 

external validation dataset and 95% confidence intervals. 

 

Model Input mRS Improvement  Gait Improvement Urinary Improvement Cognitive Improvement 

T2 Only 
0.5513 

[0.2874–0.8152] 

0.6167 

[0.2391–0.9942] 

0.7816 

[0.4609–1] 

0.5732 

[0.4326–0.7139] 

FLAIR Only 
0.7989 

[0.6909–0.9068] 

0.4758 

[0.0517–0.8999] 

0.6724 

[0.3645–0.9803] 

0.6364 

[0.5024–0.7703] 

T2+FLAIR 
0.8291 

[0.7271–0.9311] 

0.7333 

[0.4263–1] 

0.7586 

[0.4286–1] 

0.6310 

[0.4326–0.8293] 

 

DISCUSSION 

Predicting success of shunt surgery in NPH has been historically challenging. Clinical examination and detailed history taking to identify 

the NPH symptom triad aids in the diagnosis and selection of surgical candidates, however overall prognostic accuracy rarely exceed 80–

85% mainly due to poor negative predictive values of objective CSF dynamic testing methods.2, 3, 10, 21 Being able to predict the likelihood 

of improvement of each symptom domain with greater confidence could boost patient-reported quality of life after shunt surgery and aid 

more individualized decision-making.22 In this study, we applied a novel AI-driven approach to outcome prediction using two baseline MRI 

sequences in patients with shunted NPH. Our methods enabled unbiased feature selection from input imaging (Figure 2) and optimization 

of outcome prediction across a broader space of potential features relative to standard statistical outcome prediction methods (e.g., 

regression). Our sizable primary study cohort included both iNPH and sNPH patients diagnosed clinically (Table 1), not dependent on 

lumbar tap test results.21 We observed postoperative improvement rates across the NPH triad similar to the reported literature (Table 

2).8, 23 In this setting, we hypothesized that MRI-based predictive models achieve optimized performance when combining T2-weighted 

and FLAIR MRI sequences, each containing clinically useful features of the underlying disease, though this complementarity may pertain 

to some symptom domains but not others.  

 Our findings confirm the hypothesis, demonstrating proof-of-concept that machine learning models trained on both FLAIR and 

T2-weighted sequences showed improved prediction of treatment success (Table 3). These results confirm the complementary “power” 

of combining features from multiple sequences into a single model: while overall performance in terms of AUROC was generally less 

impressive for T2-weighted imaging alone, values increased substantially across mRS and gait outcome domains for the combined 

(T2+FLAIR) model, and for urinary and cognitive improvement when applying either the FLAIR-only or combined models (Table 3). The 

optimal model performances for predicting improvement in gait (AUROC=0.88 [0.80–0.96]), cognition (AUROC=0.72 [0.56–0.89]), and 

overall function (AUROC=0.74 [0.57–0.90]) were observed when applying the T2+FLAIR model, while the maximum performance for 

predicting urinary symptom improvement was seen with the FLAIR-only model 0.79 [0.69–0.89]. While the T2-weighted sequence offers 

more detailed information about CSF and subarachnoid space volumes, FLAIR provides information about transependymal flow and white 

matter change associated with parenchymal volume loss. Though it is possible automatically extracted radiomic features associated with 

these specific differences between the two sequences led to the observed performance differences across symptom domains between T2, 

FLAIR, and T2+FLAIR models, the methods do not enable us to readily interpret the extracted features in order to confirm or refute this 

theory. 

 Though our methods and results do not define or focus on any individual radiomic feature explicitly, our approach is supported 

by prior studies which have used more traditional statistical approaches to investigate the value of several structural and CSF space -

related imaging features for diagnosis and/or prognosis of NPH.11, 17, 18, 24, 25 MRI-based disproportionately enlarged subarachnoid space 

hydrocephalus (DESH) score has been found to be statistically disparate between patients who improve versus those who don’t across some 

clinical symptom metrics.16, 24 Further, these findings build upon recent studies by Shao et al. and others who applied machine learning 

approaches to capture features of the ventricular system and differentiate NPH patients from non-NPH control individuals,26-28 and Tsou 

et al who demonstrated a convolutional neural network approach to measuring aqueductal CSF flow from phase-contrast MRI.29 In our 

study, we employed an automated radiomic feature extraction and outcome prediction pipeline which was at least as predictive of 

symptom improvement across multiple domains as these previously reported approaches. Our approach also did not require radiologic 

interpretation or measurement of multiple metrics as the DESH score requires.  

Additionally, we define an analytic framework for comparing single-sequence versus multi-sequence models for outcome 
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prediction. While model performance improved by combining T2 and FLAIR when predicting mRS and gait improvements, performance was 

similar between T2+FLAIR and FLAIR-only trained-models when predicting urinary and cognitive symptom improvement. Taken together, 

these findings suggest that T2-weighted imaging may not provide additional features useful for predicting these outcomes, while features 

available on T2-weighted sequences are more sensitive to CSF space and cerebral blood flow characteristics thought to impact gait-related 

function.30 Importantly, overall function as evaluated by mRS is more dependent on gait and less dependent on the cognition and urinary 

incontinence, given the inclusion of mobility-related function explicitly in the score.8, 31  

Further work is needed to understand why some imaging studies, and some specifically identified features within them, may 

hold more prognostic relevance than others, given overall limited knowledge of the underlying disease mechanisms of NPH. It is our hope 

that this study will lay the groundwork for a more sophisticated future predictive model which integrates all available data of known 

prognostic importance. We believe this is among the most comprehensive imaging-based demonstrations of NPH shunt outcome prediction 

to date, benefitting from an unbiased approach not tethered to any specific hypothesis about individually selected features, as prior 

studies largely have been. 

 

Comparison with External Validation Dataset 

To improve the rigor of our analysis and assess generalizability to external NPH cohorts, we applied our models to an independent NPH 

population from a second institution. In validation analyses, high performances for predicting mRS, gait, and urinary symptom 

improvements were maintained, but we observed a drop in performance when predicting cognitive improvement (Table 4). Surprisingly, 

predictions of improvement in overall function (mRS) with either the FLAIR-only or T2+FLAIR models were even better in the validation 

cohort, with AUROC values of 0.80 [0.69–0.91] and 0.83 [0.73–0.93], respectively.  

The external validation dataset was different from the primary dataset in two important respects: the lower proportion of sNPH 

patients and the lower rate of improvement across symptom domains. While retrospectively estimated clinical outcomes related to gait 

and urinary incontinence may be more readily evaluated in the absence of detailed prospective study-specific assessments, cognitive 

improvement is more difficult to objectively assess in this manner. This may explain the poor performance of the cognitive improvement 

prediction model on the validation cohort. Furthermore, the confidence intervals of the estimated AUROC value estimates were quite 

broad, likely owing to the small sample size (Table 4, n=33). Confidence intervals were narrower for model evaluation using the primary 

dataset testing split (Table 3, n=55–60, depending on the model). Accordingly, while limited statistical conclusions that can be drawn from 

comparing model performances without a much larger sample size, the overall performance of the generated models on both the primary 

testing and external validation datasets provides conceptual evidence that machine learning models trained on multi-sequence imaging 

data may comprise a generalizable approach to improved clinical outcome prediction in NPH. Inclusion of both iNPH and sNPH 

subpopulations within our cohorts further lends generalizability, as sNPH patients are often excluded from NPH outcome studies and might 

be expected to present with more heterogeneous imaging features on MRI. Future work might also seek to leverage additional layers of 

patient data, such as clinical biomarker data obtained from cerebrospinal fluid, which has also recently been shown to offer clinically 

useful outcome prediction performance.32, 33  

 

Comparison with Other Models 

Within our cohort, models trained on demographic data and CCI without imaging had poor predictive value, underscoring the added value 

of neuroimaging features which cannot be captured by clinical data alone. Several studies examining correlations between comorbidity 

data and outcome in NPH have also documented poor prediction based on comorbidity metrics alone. 13, 34, 35 The limitations of existing 

predictive tools are particularly apparent when NPH is present alongside Parkinson’s and/or Alzheimer’s diseases.36, 37 Multi-sequence 

imaging models such as the T2+FLAIR model presented in this study could be further developed to incorporate T1-weighted imaging more 

sensitive to cognitive outcome,37 as well as other sequences (e.g., diffusion weighted imaging). Future research is needed to determine 

the practical value of incorporating these additional sequences not investigated in the present study, but it is certainly plausible that 

incorporating T1- or diffusion-weighted sequences could improve model performance in outcome prediction domains where our T2+FLAIR 

model is weakest (e.g., cognition). Further, outcome prediction models might endeavor to capture more detailed systemic and 

neurodegenerative comorbidity information than previously published studies of comorbidity burden and NPH outcome,13-15 given the 

possibility that such clinical data could also further enhance the performance of models based on imaging alone. 

 

Limitations 

While we present the first fully integrated AI model trained on multiple MRI sequences, we selected T2-weighted and FLAIR imaging based 

on availability through routine clinical practice. Not considered were other sequences such as T1- or diffusion-weighted sequences which 
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has previously been shown to be of potential importance in NPH owing to the retrospective methods of this study.18, 37 While imaging 

acquisition was generally uniform over the study inclusion period, given that the majority of scans were acquired at a single academic 

medical center under the same protocol, the minority of patients whose imaging originated from outside centers were not excluded on 

that basis alone. Accordingly, some heterogeneity in acquisition MR acquisition parameters likely exists, though pre-processing pipeline 

was intended to partially mitigate any such effect.  

We retrospectively abstracted clinical data including gait and continence scores, improvement in symptoms, and mRS from the 

treating surgeon’s clinical documentation, and a portion of patients were lost to follow-up. Given nearly 30% loss to follow-up rate at 12-

months post-op (versus only 10% at 3-month), the 3-month follow-up was utilized for retrospective outcome assessment for a subset of 

cases (approximately 20%). While standardized scales were used to estimate impairment scores in the gait and incontinence domains, 

cognitive impairment was assessed less objectively. Future studies would benefit from standardized implementation of quantitative 

cognition metrics such as mini mental status examination (MMSE).  

Finally, while we hypothesized that some of the intuitively observable differences between T2 and FLAIR sequences (e.g., 

transependymal flow on FLAIR) might give rise to their additive value in a combined model, the AI methods utilized do not give us ready 

access to the automatically identified radiomic features used in predictive modeling, hence this mechanistic aspect of the hypothesis 

remains unanswered by the present study. 

 

CONCLUSIONS 

AI algorithms leveraging combined imaging features from preoperative T2-weighted and FLAIR sequences were generally more predictive 

of postoperative shunt outcome in NPH than models built using one of these sequences. Models performed best for prediction of gait and 

incontinence improvement, and slightly worse for predicting improvement in mRS and cognition. 
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